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Abstract 
We explore how to validate the soundness of textual explanations in a domain-independent manner. We 
further assess how people perceive explanations of their opponents and what are the factors 
determining whether explanations are acceptable or not. We discover that what we call a complete 
discourse tree (complete DT) determines the acceptability of explanation. A complete DT is a sum of a 
traditional DT for a paragraph of actual text and an imaginary DT for a text about entities used but not 
explicitly defined in the actual text. 

1 Introduction 

Providing explanations of decisions for human users, and understanding how human agents explain their 
decisions, are important features of intelligent decision making and decision support systems. A number 
of complex forms of human behavior is associated with attempts to provide acceptable and convincing 
explanations. In this paper, we propose a computational framework for assessing soundness of 
explanations and explore how such soundness is correlated with discourse-level analysis. 

Importance of the explanation-aware computing has been demonstrated in multiple studies and 
systems. Also, (Walton, 2007) argued that the older model of explanations as a chain of inferences 
with a pragmatic and communicative model that structures an explanation as a dialog exchange. The 
field of explanation-aware computing is now actively contributing to such areas as legal reasoning, 
natural language processing and also multi-agent systems (Dunne and Bench-Capon, 2006). It has 
been shown (Walton, 2008) how the argumentation methodology implements the concept of 
explanation by transforming an example of an explanation into a formal dialog structure. Galitsky 
(2008) differentiated between explaining as a chain of inference of facts mentioned in dialogue, and 
meta-explaining as dealing with formal dialog structure represented as a graph. Both levels of 
explanations are implemented as argumentation: explanation operates with individual claims 
communicated in a dialogue, and meta-explanation relies on the overall argumentation structure of 
scenarios. 

In this paper we explore how good explanation in text can be computationally differentiated from 
bad explanation. Intuitively, a good explanation convinces the addressee that a communicated claim is 
right, and it involves valid argumentation patterns, logical, complete and thorough. A bad explanation 
is unconvincing, detached from the beliefs of the addressee, includes flawed argumentation patterns 
and omits necessary entities. In this work we differentiate between good and bad explanation based on 
a human response to such explanation. Whereas users are satisfied with good explanation by a system 
or a human, bad explanations usually lead to dissatisfactions, embarrassment and complaints. 

2 Validating explanations with Discourse Trees 

2.1 Classes of explanation 

To systematically treat the classes of explanation, we select an environment where customers 
receive explanations from customer service regarding certain dissatisfactions these customers 
encountered. If these customers are not satisfied with explanations, they frequently submit detailed 
complaints to consumer advocacy sites. In some of these complaints these customers explain why they 
are right and why the company’s explanation is wrong. From these training sets we select the 
good/bad explanation pairs and define respective explanation classes via learning to recognize them. 
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Another way to consider a bad explanation is what we call an explanation attempt: a logical chain is 
built but it has some omissions and inconsistencies so that the explanation is bad. An absense of a 
logical chain means the absense of explanation; otherwise, if such chain obeys certain logical 
properties it can be interpreted by something else besides explanation but instead argumentation, 
clarification, confirmation or other mental or epistemic state. 

2.2 Explanation and Argumentation 

    Explanations are correlated with argumentation and sentiments. A request to explain is usually 
associated with certain arguments and a negative sentiment.  
For an arbitrary statement S a person may have little or no prior reason for believing this statement to 
be true. In this case a cognitive response is a doubt, which is articulated with a request for evidence. 
Evidence is a kind of reason, and the attempt to provide evidence in support of a conclusion is 
normally called an argument. Argument reasoning is represented on the top of Fig. 1. 
    On the other hand a person may already know S and require no further evidence for the truth of S. 
But she still may not understand why S holds (occurred, happened etc. In this case she would request 
for a cause. Explanation is defined as an attempt to provide a cause in support of a conclusion. 
Explanation reasoning may be represented in the bottom of Fig. 1. 
 

 
  Fig.1: Relationship between argumentation and explanation 
 

2.3 Hybrid discourse trees 

In the banking domain nonsufficient fund fee (NSF) is a major problem that banks have difficulties 
communicating with customers. An example of brief, informal explanation follows: 

It's not always easy to understand overdraft fees. When a transaction drops your checking account balance 
below zero, what happens next is up to your bank. A bank or credit union might pay for the transaction or 
decline it and, either way, could charge you a fee. 

 
Fig 2. Discourse tree of explanation text with the imaginary part shown in the top-right for nucleus ‘transaction’. 
 

The concept of transaction is not tackled in this text explaining nonsufficient fee. An ontology 
could specify that transaction = {wiring, purchasing, sending money} but it is hard to be complete. 
Instead, one can complement the notion of transaction via additional text that will elaborate on 
transaction, providing more details on it. 
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     Hence Elaboration relation for nucleus transaction is not in actual DT but is assumed by a recipient 
of this explanation text.  We refer to such rhetorical relations as Imaginary: they are not produced from 
text but are instead induced by the context of explanation. Such multiple imaginary RRs form 
additional nodes of an actual DT for a text being communicated. We refer to the extended DT as 
complete: it combines the actual DT and its imaginary parts. Naturally, the latter can be dependent on 
the recipient: different people keep in mind distinct instances of transactions. 

We formalize this intuition by using discourse structure of the text expressed by DTs. Arcs of this 
tree correspond to rhetorical relations (RR), connecting text blocks called Elementary Discourse Units 
(EDU). We rely on the Rhetorical Structure Theory (RST, Mann and Thompson, 1988) when 
construct and describe discourse structure of the text. 

When people explain stuff, they do not have to enumerate all premises: some of them implicitly 
occurring in the explanation chain and are assumed by the person providing explanation to be known 
or believed by an addressee. However, a DT for a text containing explanation only incudes EDUs from 
actual text and assumed, implicit parts with its entities and phrases (which are supposed to enter 
explanation sequence) are absent. How can we cover these implicit entities and phrases? 

In the considered example Elaboration relation for nucleus transaction is not in actual CDT but is 
assumed by a recipient of this explanation text. We refer to such rhetorical relations as Imaginary: 
they are not produced from text but are instead induced by the context of explanation. Such multiple 
imaginary RRs form additional nodes of an actual DT for a text being communicated. We refer to the 
combined CDTs as hybrid: it combines the actual CDT and its imaginary parts. Naturally, the latter 
can be dependent on the recipient: different people keep in mind distinct instances of transactions. 
Complete discourse tree for the example is shown on Fig.2. Complete discourse trees also have 
communicative actions attached to their edges in the form of VerbNet verb signatures (Galitsky and 
Parnis 2019). 
 

 2. 3 Semantic representation 

Fig.3  Frame semantic parse for the explanation 
 
A frame semantic parse for the same text is shown in Fig. 3. The reader observes that it is hard to tag 

entities and determine context properly. Bank is tagged as Placing (not disambiguated properly) and 
‘credit union might’ is determined as a hypothetical event since union is represented literally, as an 
organization, separately from credit. Overall, the main expression being explained, ‘transaction drops 
your checking account balance below zero’, is not represented as a cause of a problem by semantic 
analysis, since a higher level considerations involving a banking – related ontology would be required.  

  Instead of relying on semantic – level analysis to classify explanations, we propose a discourse-level 
machinery. This machinery allows including the explanation structure beyond the ones from explanation 
text but also from the accompanying texts mined from various sources to obtain a complete logical 
structure of the entities involved in explanation. 
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2.4 Discourse tree of explanations 

Valid explanation in text follow certain rhetoric patterns. In addition to default relations of Elaborations, 
valid explanation relies on Cause, Condition, and domain-specific Comparison (Fig. 4) As an example, 
we provide an explanation for why thunder sound comes after lightning: 

 
‘We see the lightning before we hear the thunder. This is because light travels faster than sound. The 
light from the lightning comes to our eyes much quicker than the sound from the lightning. So we hear it 
later than we see it.‘ 
  
 
joint 
  elaboration (LeftToRight) 
    cause (LeftToRight) 
      temporal (LeftToRight) 
        TEXT:We see the lightning 
        TEXT:before we hear the thunder . 
      TEXT:This is because light travels faster than sound . 
    elaboration (LeftToRight) 
      TEXT:The light from the lightning travels to our eyes much quicker than the sound from the 
lightning . 
      comparison (LeftToRight) 
        TEXT:so we hear it later 
        TEXT:than we see it . 

Fig. 4: A discourse tree for an explanation of a lightning 
 
The clause we need to obtain for an implication in the explanation chain is verb-group-for-moving 

{moves, travels, comes} faster → verb-group-for-moving-result {earlier}.  This clause can be easily 
obtained by web mining, searching for expression  ‘if noun verb-group-for-moving faster then noun 
verb-group-for-moving-result earlier. 

What would make this DT look like a one for invalid explanation? If any RR under top-level 
Elaboration turns into Joint it would mean that the explanation chain is interrupted.  

We explore argumentation structure example of (Tuolmin 1958, Kennedy et al 2006). We show two 
visualizations of the discourse tree and the explanation chain (in the middle) in Fig. 5. 
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elaboration 
  TEXT:Harry was born in Bermuda . 
  explanation (LeftToRight) 
    attribution (LeftToRight) 
      TEXT:A person born in Bermuda is a British subject . 
      TEXT:It is on account of the following statutes 123 . 
    condition 
      TEXT:So , presumably , Harry is a British subject , 
      Joint 
        TEXT:unless both his parents were aliens , 
 
        TEXT:or he has become a naturalized American . 

 
 
 
Fig. 5: Toulmin’s argument structure (in the middle) and its rhetorical representation via EDUs (on the 

top) and  via discourse relations (on the bottom) 
 
An interesting application of Toulmin model is the argumentative grammar by Lo Cascio (1991), a 

work that, by defining associative rules for argumentative acts, is naturally applicable, and indeed has 
been applied, to the analysis of discourse structure in the pre-DT times. 

2.5 Logical Validation of Explanation via Discourse trees 

Logically, explanation of text S is a chain of premises P1 ,…, Pm which imply S.  S is frequently 
referred to as a subject of explanation. For this chain P1 ,…, Pm   each element Pi is implied by its 
predecessors: P1 ,… Pi-1 ⇒ Pi. In terms of a discourse tree, there should be a path in it where these 
implications are realized via rhetorical relations. We intend to define a mapping between EDUs of a 
DT and entities Pi occurring in these EDUs which form the explanation chain. In terms on underlying 
text, Pi are entities or phrases which can be represented as logical atoms or terms. 

These implication-focused rhetorical relations rr are: 
1) elaboration: Pi can be an elaboration of Pi-1 ; 
2) attribution: Pi can be attributed to Pi-1 ;  
3) cause: this is a most straightforward case,   

Hence Pi  ⇒ Pj  if rr(EDUi , EDUj ) where Pi∈ EDUi  and Pj ∈ EDUj . We refer to this condition as 
“explainability” via Discourse Tree. 

Actual sequence P1 ,…, Pm   for S is not known, but for each S we have a set of good explanations 
Pg1 ,…, Pgm   and a  set of bad explanations Pb1 ,…, Pb2. 
Good explanation sequences obey explainability via DT condition and bad – do not (Galitsky 2018). 
Bad explanation sequences might obey explainability via DT condition for some Pbi. If a DT for a text 
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is such that explainability via DT condition does not hold for any Pbi   then this DT does not include 
any explanation at all. 
The reader can observe that to define a good and a bad explanation via a DT one needs a training set 
covering all involved entities and phrasing Pi occurring in both positive and negative training sets. 

2.6 Constructing Imaginary Part of a Discourse Tree 

By our definition imaginary DTs are the ones not obtained from actual text but instead built on 
demand to augment the actual ones. For a given chain P1 ,…, Pi’ , …, Pm   let Pi’ be the entity which is 
not explicitly mention in a text but instead is assumed to be known to the addressee. This Pi’ should 
occur in other texts in a training dataset. To make the explainability via DT condition applicable, we 
need to augment actual DTactual with imaginary DTimaginary such that Pi’  ∈ EDU of this DTimaginary.  We 
denote DTactual  DTimaginary as DTcomplete.  

If we have two textual explanations in the positive set of good explanations for the same S, T1 and 
T2: 
T1: P1 ,…, Pm ⇒ S 
T2: P1 , Pi’,…, Pm ⇒ S 

then we can assume that Pi’ should occur in a complete explanation for S and since it does not occur 
in T1  then DT(T1) should be augmented with DTimaginary such that Pi’ ∈ EDU of this DTimaginary.  
 

3 Learning Framework and Evaluation 

In this section we automate our validation of text convincingness including description of a training 
dataset and learning framework. 
   We conduct our evaluation in two steps. Firstly, we try to distinguish between texts with explanation 
and without explanation. This task can be accomplished without an involvement of virtual DTs. 
Secondly, once we confirm that that can be done reasonably well, we drill into more specific tasks of 
differentiating between good and bad explanation chains within the dataset of the first task. 

 

3.1 Building a Dataset of Good/bad Explanation Chains 

 
We form the positive explanation dataset from the following sources: 

1. Customer complaints; 
2. Paragraphs from physics and biology textbook; 
3. Yahoo! Answers for Why/How-to questions. 

The negative training dataset includes the sources of a totally different nature: 
1. Definition/factoid paragraphs from Wikipedia, usually, first paragraphs; 
2. First paragraphs of news articles introducing new events; 
3. Political news from Functional Text Dimension dataset. 

 
We formed the balances components of the positive and negative dataset for both tasks: each 
component includes 240 short texts 5-8 sentences (250-400 words).  
    We now comment on each source. The purpose of the customer complaint dataset is to collect texts 
where authors do their best to explain their points across by employing all means to show that they are 
right and their opponents are wrong. Complaints are emotionally charged texts providing explanation 
of problems they encountered with a financial service, how they tried to explain their viewpoint to a 
company and also a description of how these customers attempted to solve it (Galitsky et al., 2008, 
GitHub Customer Complaints dataset 2019). 
    Also, to select types of text with and without explanation, we adopt the genre system and the 
corpora from (Lee 2001). The genre system is constructed relying on the Functional Text Dimensions. 
These are genre annotations which reflect judgments as to what extent a text can be interpreted as 
belonging to a generalized functional category. A genre is a combination of several dimensions. For 
the positive dataset, we select the genre with the highest density of explanation such as scientific 



 
 
 
 

   7 

textbook. For the negative dataset, we focus on the genres which are least likely to contain 
explanations, such as advertisement, fiction-prose, instruction manuals and political news. The last one 
is chosen since it has the least likelihood to contain an explanation. 
For the positive dataset for the second task, as good explanation chains, we rely on the following 
sources: 

1. Customer complaints with valid argumentation patterns; 
2. Paragraphs from phisics textbook explaining certain phenomena, which are neither factoid nor 

definitional; 
3. Yahoo! Answers for Why/How-to questions; 

 
We form the negative dataset from the following sources:  

1. Customer complaints with invalid argumentation patterns; these complaints are inconsistent, 
illogical and rely on emotions to bring their points across; 

2. Paragraphs from phisics textbook formulating longer questions and problems; 
3. Yahoo! Answers for Why (not How-to) questions which are reduced to break the explanation 

flow. Sentences are deleted or re-shuffled to produce an incohesive, non-systematic 
explanation. 

3.2 Crawling Information for Imaginary Discourse Tree Construction 

Imaginary DTs can be found by employing background knowledge in a domain independent manner: 
no offline ontology construction is required. Documents that were found on the web can be the basis 
of constructing imaginary DTs following the algorithm described in the Section 2.4. 

Given an actual part of the text A, we outline a top-level search strategy for finding a source for 
imaginary DTs (background knowledge) B. 

1) Build DT for A; 
2) Obtain pairs of entities from A that are not linked in DT (e.g. thunder, eye); 
3) Obtain a set of search queries based on provided pairs of entities 
4) For each query: 

a) Find a short list of candidate text fragments on the web using search engine API (such as 
Bing); 

b) Build DT for the text fragments; 
c) Select fragments which contain rhetoric relation (Elaboration, Attribution, Cause) linking 

this pair of entities; 
d) Choose the fragment with the highest relevance score 

The entity mentioned in the algorithm can be interpreted in a few possible ways. It can be named 
entity, head of a noun phrase or a keyword extracted from a dataset. 

Relevance score can be based on the score provided by the search engine. Another option – 
computing score based on structural discourse and syntactic similarity (Galitsky, 2017). 

3.3 Learning Approaches and Pipelines 

Discourse Tree Construction. A number of RST parsers constructing discourse tree of the text are 
available at the moments. For instance, in our previous studies we used the tool provided by (Surdeanu 
et.al., 2015) and (Joty et al., 2014). 

Nearest Neighbor learning. To predict the label of the text, once the complete DT is built, one 
needs to compute its similarity with DTs for the positive class and verify that it is lower than similarity 
to the set of DTs for its negative class. Similarity between CDT's is defined by means of maximal 
common sub-DTs. Formal definitions of labeled graphs and domination relation on them used for 
construction of this operation can be found, e.g., in (Ganter, 2001). 

SVM Tree Kernel learning. A DT can be represented by a vector of integer counts of each sub-
tree type (without taking into account its ancestors). For Elementary Discourse Units (EDUs) as labels 
for terminal nodes only the phrase structure is retained: we suppose to label the terminal nodes with 
the sequence of phrase types instead of parse tree fragments. For the evaluation purpose Tree Kernel 
builder tool (Moschitti, 2006) can be used. 
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3.4 Detecting explanations and valid explanation chains 

We first focus on the first task, detecting paragraphs of text which contain explanation, and estimate the 
detection rate in Table 1. We apply two different learning techniques, nearest neighbor (in the middle, 
greyed) and SVM TK, applied to the same discourse-level and syntactic data. 

 
Table 1: Explanation detection rate 

Source PKNN RKNN F1KNN PSVM RSVM F1SVM 
1+ vs 1- 77.3 80.8 79.0 80.9 82.0 81.4 
2+ vs 2- 78.6 76.4 77.5 74.6 74.8 74.7 
3+ vs 3- 75.0 77.6 76.3 76.6 77.1 76.8 
1..3+ vs 
1..3- 

76.8 78.9 77.8 74.9 75.4 75.1 

The highest recognition accuracy, reaching 80%, is achieved for the first pair of the dataset 
components, complaints vs wikipedia factois, most distinct ‘intense’ explanation vs enumeration of 
facts, with least explanations. The other datasets deliver 2-3% drop in recognition performance. These 
accuracies are comparable with various tasks in genre classification (one-against-all setting in Galitsky 
et al 2016).  
   Table 2 shows the results of differentiation between good and bad explanation. The accuracy is 
about 12% lower than for the first task, since the difference between the good and bad explanation in 
text is fairly subtle. 

 
Table 2: Recognizing good and bad explanation chains 

Source P-

virtual 
R-

virtual 
F1-

virtual 
P R F1 

1+ vs 1- 64.3 60.8 62.5 72.9 74.0 73.4 
2+ vs 2- 68.2 65.9 67.0 74.6 74.8 74.7 
3+ vs 3- 63.7 67.4 65.5 76.6 77.1 76.8 
1..3+ vs 
1..3- 

66.4 64.6 65.5 74.9 75.4 75.1 

 
However, validation of explanation chain is an important task in a decision support. A low accuracy 
can still be leveraged by processing a large number of documents and detecting a birst in problematic 
explanation in a corpus of texts. 
 

4 Discussion and Conclusions 

In this work we considered a new approach to validating the convincingness of textual explanations. We 
introduced the notion of a complete discourse tree (complete DT) including actual and imaginary parts. 
Imaginary DT is constructed for the text about entities used but not explicitly defined in the actual text. 

We outlined an algorithm for building an imaginary discourse tree. We also described a possible 
strategy for crawling background knowledge which is the source of the imaginary part. We also 
introduced the new dataset of good and bad explanations made by complainants in the financial 
domain. Finally, we outlined the learning framework used for automated detection of good and bad 
explanations. It is based on RST parsing and learning on complete discourse trees provided by the 
parser. 
   Both professional and non-professional writers provide explanations in texts but detection of invalid 
explanations is significantly harder in the former case compared to the latter. Professional writers in 
such domains as politics and business are capable of explaining “anything”, and in user-generated 
content errors are visible. 
   Detecting faulty explanations in user-generated content is important in automated Customer Relation 
Management systems where a response to user requests with valid explanation should be different to 
user response with invalid explanation. 
   It is important to combine rule-based learning frameworks with the ones with implicit feature 
engineering such as statistical and deep learning. The latest history of applications of statistical 
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technique sheds a light on the limitation of these techniques for systematic exploration of a given 
domain. Once statistical learning delivered satisfactory results for discourse parsing, the interest to 
automated discourse analysis faded away. Since the researches in statistical ML for discourse parsing 
were mainly interested in recognition accuracies and not the interpretability of obtained DTs, no 
further attempts at leveraging obtained DTs were made. However, a number of studies including the 
given one demonstrates that DTs provide insights in the domain where keyword statistics does not 
help. 
      On the basis of work by Austin, Searle, Grice and Lorenzen, such discipline as pragmadialectics 
provides a comprehensive analysis of argumentative dialogues.  This discipline combines the study on 
the formalism to represent data, from modern logic, and empirical observations, from descriptive 
linguistics, for the analysis of argumentative dialogues, modeled by dialectics, seen as sets of 
linguistic speech. The model propose rule-base  argumentative dialogues, but does not help with a 
dialogue generation algorithm.  
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