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Preface

The five preceding editions of the FCA4AI Workshop showed that many researchers work-
ing in Artificial Intelligence are deeply interested by a well-founded method for classification
and mining such as Formal Concept Analysis (see http://www.fca4ai.hse.ru/). The first
edition of FCA4AI was co-located with ECAI 2012 in Montpellier, the second one with IJCAI
2013 in Beijing, the third one with ECAI 2014 in Prague, the fourth on with IJCAI 2015 in
Buenos Aires, and finally the fifth one with ECAI 2016 in The Hague. All the proceedings of
the preceding editions are published as CEUR Proceedings (http://ceur-ws.org/Vol-939/,
http://ceur-ws.org/Vol-1058/, http://ceur-ws.org/Vol-1257/, and http://ceur-ws.
org/Vol-1430/, and http://ceur-ws.org/Vol-1703/).

This year, the workshop has again attracted many different researchers working on actual
and important topics, e.g. theory, extensions of FCA (MDL), classification, mining of linked
data, annotation, biclustering, recommendation and applications. This shows the diversity
and the richness of the relations between FCA and AI.

Formal Concept Analysis (FCA) is a mathematically well-founded theory aimed at data
analysis and classification. FCA allows one to build a concept lattice and a system of depen-
dencies (implications) which can be used for many Artificial Intelligence needs, e.g. knowl-
edge discovery, learning, knowledge representation, reasoning, ontology engineering, as well
as information retrieval and text processing. As we can see, there are many “natural links”
between FCA and Artificial Intelligence. Recent years have been witnessing increased scien-
tific activity around FCA, in particular a strand of work emerged that is aimed at extending
the possibilities of FCA w.r.t. knowledge processing, such as work on pattern structures and
relational context analysis. These extensions are aimed at allowing FCA to deal with more
complex than just binary data, both from the data analysis and knowledge discovery points
of view and as well from the knowledge representation point of view, including, e.g., ontol-
ogy engineering. All these investigations provide new possibilities for Artificial Intelligence
activities in the framework of FCA. Accordingly, in this workshop, we are interested in main
issues such as:

• How can FCA support AI activities such as knowledge processing (knowledge discov-
ery, knowledge representation and reasoning), learning (clustering, pattern and data
mining), natural language processing, and information retrieval.

• How can FCA be extended in order to help Artificial Intelligence researchers to solve
new and complex problems in their domains.

The workshop is dedicated to discuss such issues. This year, the papers submitted to the
workshop were carefully peer-reviewed by three members of the program committee and 11
papers with the highest scores were selected. We thank all the PC members for their reviews
and all the authors for their contributions.

The Workshop Chairs

Sergei O. Kuznetsov
National Research University Higher School of Economics, Moscow, Russia

Amedeo Napoli
LORIA (CNRS – Inria Nancy Grand Est – Université de Lorraine), Vandoeuvre les Nancy,
France

Sebastian Rudolph
Technische Universität Dresden, Germany
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Invited Talk
Inductive Reasoning with Conceptual Space

Representations

Zied Bouraoui

Zied Bouraoui
CRIL CNRS & Université Artois

Lens, France
bouraoui@cril.univ-artois.fr

Abstract. Structured knowledge is playing an increasingly important
role in areas such as natural language processing and information re-
trieval. Such applications differ from the settings that have traditionally
been considered in the field of knowledge representation, in that they re-
quire knowledge bases with a wide coverage, even if that means accepting
some inaccuracies. In this talk, I will present some methods for knowledge
base completion. At the center of this work are conceptual spaces, which
are geometric representations of knowledge that were proposed by Gär-
denfors (2000) as an intermediate representation level between symbolic
and connectionist representations. In conceptual spaces, objects from a
domain of interest are represented as points in a metric space, and con-
cepts are modeled as convex regions. I will first present how to learn
conceptual space representations from data, and then introduce some
inductive reasoning techniques that use conceptual spaces together with
an efficient Bayesian inference machinery that allows us to find plausible
missing facts and rules from a given knowledge base.
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An Answer Set Programming environment for
high-level specification and visualization of FCA

Lucas Bourneuf �

Université de Rennes 1
Campus de Beaulieu, 35042 Rennes cedex, France.

lucas.bourneuf@inria.fr

Abstract. This paper introduces Biseau, a programming environment
dedicated to the exploration of relations through a graphical display. The
use of Answer Set Programming enables the production of small code
modules which are easy to maintain and debug since they are very close
to the specifications. This paper shows how a mathematical framework
such as Formal Concept Analysis can be efficiently described at the level
of its properties, without needing a costly development process. We hope
that it will help to quickly adapt a given code to the peculiarities of a data
set, thereby speeding up the development of prototypes. Besides, it will
also help the integration of the ideas of the FCA community in a readable
and shareable format. From a practical point of view, Biseau provides
an Answer Set Programming to (graphviz) dot compiler and uses the
graphviz software to render in real-time the calculated graphs to user,
for instance to produce concept lattices or aoc posets visualizations. Its
relation with existing tools like LatViz and FCAbundles is also discussed.

1 Introduction

Large scale data production requires availability of high-level visualizations for
their exploration. This is usually performed by building generic visualization
models, that users may later use to explore their data. Thus, software envi-
ronments oriented towards data mining use efficient implementations of data
structures and their visualizations. For instance, in Formal Concept Analysis,
LatViz is a lattice visualization software, allowing end-user to explore the lat-
tice structure efficiently [1]. Lattice Miner builds and visualize Galois lattices
and provides data mining tools to explore data [15]. FCA Tools Bundle con-
sists in a web interface exposing multiple FCA-related tools for contexts and
(ternary) concept lattices exploration [14]. In-Close algorithm reference imple-
mentation provides a concept trees visualization of contexts encoded in standard
formats [3]. All these tools work with a formal model that provides an abstract
view and a fixed search space on the data. Users cannot work on the model
itself, they are expected to use the implemented methods, not to design new
ones. In contrast, this paper introduces Biseau, a software focused on designing
and exploring elements of the data structure, rather than the data itself. In this
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approach, data are only a support to the model validity, and the user’s aim is
the proper design of a general model. Biseau is a general purpose model builder
that relies on graphs and logic languages.

Graphs are rendered in multiple ways, using field-specialized softwares like
Cytoscape [21] in biology, graph-specific softwares (like LatViz for lattices), or
more generalist like Tulip [4]. Another generic approach is dot, a graph descrip-
tion language specified by the graphviz software, which provides a gallery of
visualization engines [6]. Dot is the internal graphical language used by Biseau
(see Section 3).

Together with a graph data structure, Biseau offers a logical view of the asso-
ciated exploration methods. A pure declarative language is used for this purpose,
Answer Set Programming (ASP). It allows users to transcript the formal prop-
erties they are looking for in a straightforward way (see Section 2). ASP has
already been applied to FCA to accomplish expressive query languages for for-
mal contexts [12], later extended to n-adic FCA and improved with additional
membership constraints, in order to handle large context exploration [20]. In our
approach, ASP is also used for visualization.

Biseau is supplied with a graphical user interface and a command line inter-
face to write an ASP encoding. Biseau uses this encoding as a script to generate
the dot files and the resulting visualizations. The main interest of Biseau is there-
fore to build graph visualizations directly from formal relations. Biseau is not
only dedicated to lattices, and their (efficient or scalable) exploration. It provides
instead a general purpose programming environment that is able to visualize any
ordered structure. Biseau is therefore suited for rapid design and easy testing
of works or extensions in the framework of FCA. It is freely available under the
GNU/GPL license1.

The structure of this paper is as follows. Sections 2 and 3 quickly present
the ASP and dot languages used by Biseau. Section 4 explains how Biseau takes
advantage of these languages to allow the user to build models. Section 5 proposes
as a case study the reconstruction of the Galois lattice. Section 6 shows how
Biseau can easily handle some of the FCA extensions typically used in FCA
applications as knowledge processing [19]. Finally the paper concludes by some
insights about Biseau interest when used in FCA and in artificial intelligence.

2 Answer Set Programming

The following presentation of ASP is taken from [5]. For an in-depth dive into
the language, the reader is redirected to [8].

ASP is a form of purely declarative programming oriented towards the reso-
lution of combinatorial problems [17]. It has been successfully used for knowledge
representation, problem solving, automated reasoning, and search and optimiza-
tion. Unlike Prolog, ASP handles cross-references of rules, enabling the writing
of code much closer to the specification. In the sequel, we rely on the input lan-
guage of the ASP system Potassco (Potsdam Answer Set Solving Collection [8])
1 https://gitlab.inria.fr/lbourneu/biseau
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developed in Potsdam University. An ASP program consists of Prolog-like rules
h :- b1, . . . , bm, not bm+1, . . . , not bn, where each bi and h are literals and not
stands for default negation. Mainly, each literal is a predicate whose arguments
can be constant atoms or variables over a finite domain. Constants start with a
lowercase letter, variables start with an uppercase letter or an underscore (don’t
care variables). The rule states that the head h is proved to be true (h is in an
answer set) if the body of the rule is satisfied, i.e. b1, . . . , bm are true and one
can not prove that bm+1, . . . , bn are true. Note that the result is independent
on the ordering of rules or of the ordering of literals in their body, as it is the
case in Prolog. An ASP solver can compute one, several, or all the answer sets
(stable models) that are solutions of the encoded problem. If the body is empty,
h is a fact while an empty head specifies an integrity constraint. Together with
model minimality, interpreting the program rules this way provides the stable
model semantics (see [11] for details). In the head part, A choice rule of the
form {p(X) : q(X)} will generate p(X) as the powerset of q(X) for all values
of X. In the body part, {p(_)} will count the number of atom p with one pa-
rameter, and N = {h} evaluates N to the cardinal of the set of h. In the body
part, p(X) : q(X) holds if for all X, if q(X) holds, then p(X) holds. Finally,
lines starting by % are comments. In practice, several syntactical extensions to
the language that are not interesting for this paper are available. An example
of ASP encoding is presented in Figure 1, using atoms to reproduce the context
in Table 1 and a rule to build a bipartite graph linking objects and attributes.

1 % Facts.
2 age(john,7). age(eve,71). age(alice,15).
3 male(john). male(bob). female(alice).
4 mother(eve,bob).
5 % Rules.
6 rel(H,child):− age(H,A) ; A<12.
7 rel(H,adult):− age(H,A) ; A>=18.
8 rel(H,male):− male(H).
9 rel(H,female):− female(H).

10 rel(H,man) :− rel(H,male) ; rel(H,adult).
11 rel(H,boy) :− rel(H,male) ; rel(H,child).
12 rel(H,woman):− rel(H,female) ; rel(H,adult).
13 rel(H,girl) :− rel(H,female) ; rel(H,child).
14 rel(H,adult):− rel(H,male) ; not rel(H,boy).
15 rel(H,female):− mother(H,_).
16 % Build the visualization in Figures 2 and 3.
17 link(O,A):− rel(O,A).

Fig. 1: ASP program encoding the context in Table 1, in the form of rel/2 relations
between objects and attributes. The last line yield links/2 atoms that are compiled by
Biseau as edges in the output dot file.
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We used the Potassco system [9] that proposes an efficient implementation
of ASP. ASP processing implies two steps, grounding and solving. The grounder
generates a propositional program replacing variables by their possible values.
The solver is in charge of producing the stable models (answer sets) of the propo-
sitional program. Of course, a dedicated algorithm for a specific problem will be
generally more efficient than its equivalent compact ASP encoding. However,
ASP systems are useful for the design of prototypes. It is an attractive alterna-
tive to standard imperative languages that enable fast developments.

adult child female male boy woman man
alice ×
bob × × ×
eve × × ×
john × × ×

Table 1: Formal context of human relations.

3 Graph Drawing With Dot

Dot is a graph description language, allowing one to generate a graph visual-
ization from the definition of its content [6]. Dot enables the control of precise
visual properties, such as node and edge labelling, position, shape, or color. For
instance, the dot line woman [color="blue"] will color in blue the node labelled
woman. The full language is defined by the graphviz graph visualization soft-
ware, which provides multiple engines to interpret and compile dot encoded files
to other formats, including images. Figure 2 shows an example of a working dot
description, which given to a graphviz engine yields the visualization in Figure 3.

1 Digraph biseau_graph {
2 node [penwidth="0.4" width="0.1"];
3 edge [penwidth="0.4" arrowhead="none"];
4 john−>boy; john−>male; john−>child;
5 eve−>female; eve−>woman; eve−>adult;
6 bob−>man; bob−>adult; bob−>male;
7 alice−>female;
8 }

Fig. 2: Dot encoding of the graph in Figure 3.
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Fig. 3: Visualization of the relations described by context in Table 1.

4 From ASP to Dot With Biseau

Biseau allows the user to write some ASP encoding and retrieve in real-time the
corresponding graph visualization. To achieve this, it implements an ASP to dot
compiler and a Graphical User Interface that helps writing the ASP encoding
and that performs automatically all necessary compilations.

As explained in Section 2, a given ASP encoding yields stable models consist-
ing of true facts, which can be represented by atoms like link(woman,human).
For each stable models found from the ASP user encoding, Biseau will convert
atoms into dot lines. For instance, the ASP atom link(woman,human) will trans-
late to woman -> human in the dot output. This controlled vocabulary will be
only partially explored in Section 5, but note that it maps the full dot language,
including colors, shapes, and general graph options. A complete documentation
is available online2.

Because of the use of ASP to yield the dot description, the graph is therefore
defined in intension: instead of describing manually all objects and properties,
the user specify their definitions, and let the ASP solver infers all necessary
relations. More generally, Biseau internal process can be seen as a compilation
from ASP models to dot, then from dot to image (the last one being delegated
to graphviz software, as seen in Section 3).

As a matter of example, the ASP encoding in Figure 1 will be compiled to
the dot description in Figure 2, itself compiled to the image in Figure 3. If the
ASP expression color(A,blue):- rel(_,A). was added to the ASP encoding
in Figure 1, the final figure would show in blue all attributes nodes. The reader
familiar with software engineering may recognize the use of ASP as a metamodel,
and dot as the model.

Biseau can be extented with scripts, units of ASP (or Python) code to add to
(or run on) the user encoding. They may expose some options to tune their be-
havior. Moreover, user can implement and add its own scripts to Biseau, allowing
him (and others he shares with) to encapsulate ASP or Python programs that
behave accordingly to their preferences. Biseau is shipped with scripts related
to FCA, for data extraction from standard format like SLF or CXT, concept
mining or lattice visualization (as shown in Section 5).

2 https://gitlab.inria.fr/lbourneu/biseau/blob/master/doc/user-doc.mkd
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5 Build and Visualize Galois Lattices With Biseau

This section shows how to build FCA basic mathematical relations in order to
get a visualization of the Galois lattice in Biseau. The context in Table 1 will be
used as case study, encoded in ASP using rel/2 atoms as shown in the first five
lines of Figure 1.

5.1 Mining the Formal Concepts

In a formal context defined by objects O, attributes A, and the binary relation
R ⊆ O ×A, a formal concept is a pair (X,Y ), such as:

X = {y ∈ Y |(x, y) ∈ R ∀x ∈ X} (1)
Y = {x ∈ X |(x, y) ∈ R ∀y ∈ Y } (2)

Where X ⊆ O and Y ⊆ A. The search for formal concepts in ASP can be
expressed like in the above definition:

1 ext(X):− rel(X,_) ; rel(X,Y): int(Y).
2 int(Y):− rel(_,Y) ; rel(X,Y): ext(X).

rel(X,_) fixes variable X as the first term of a relation, i.e. an object. No-
tation rel(X,Y): int(Y) ensure that there is a relation between X and all at-
tributes of the intent. As a consequence, ext(X), the extent, holds for all objects
in relation with all attributes of the intent. The second rule is a symmetric def-
inition for the concept’s intent. For those familiar to Prolog, note that such a
program would lead to an infinite loop. The treatment of loops is a nice feature
of ASP that gives access to a fixed-point semantics. ASP search comes with
the guarantee that all minimal fixed points will be enumerated. Therefore, each
answer set is a different concept, or the supremum or infimum (where extent
or intent are empty sets). To avoid the yield of supremum (infimum), one may
include a constraint specifying that extent (intent) must include at least one
element.

These models/concepts can be aggregated in order to produce an encoding
containing ext/2 (and int/2) atoms, where ext(N,A) (int(N,A)) gives an ele-
ment of N-th concept’s extent (intent). This numbering is arbitrary and serves
no other purpose than identifying the different concepts.

5.2 Galois lattice

A Galois lattice is defined by the partial order on the concepts, i.e. a graph
with concepts as nodes, and an edge between a concept and its successors in the
ordering:

1 % Shortcut to infimum, supremum and concepts identifiers.
2 c(N):− ext(N,_).
3 c(N):− int(N,_).
4 % Ordering of two concepts: the first has all objects of the second.
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5 contains(C1,C2):− c(C1) ; c(C2) ; C1!=C2 ; ext(C1,X): ext(C2,X).
6 % Concepts linked to another in the Galois Lattice .
7 link(C1,C3):− contains(C1,C3) ; not link(C1,C2): contains(C2,C3).
8 % Annotate nodes with extent and intent.
9 annot(upper,X,A):− ext(X,A).

10 annot(lower,X,B):− int(X,B).

These lines yield the visualization shown in Figure 4. Line 2 and 3 are here
to enable the access to the infinum, supremum and concepts with one atom.
Line 5 yields pairs of concepts that are included, based on their extent. Line 7
ensure that a link exists in the lattice between a concept C1 containing another
concept C3 if there no link between C1 and a concept C2 smaller than C3.
Finally, the annot/3 atoms are a Biseau convention (just as link/2 that define
an edge in the dot output), allowing us to print the extent and intent of each
concept, respectively above and below the node.

5.3 Reduced Labelling

The reduced labelling of a lattice is computed as the set of specific objects and
attributes for each concept. This is easily defined as specext/1 and specint/1
atoms in ASP, using the following lines along the search for formal concepts in
section 5.1:

1 % An outsider is any object or attribute linked to an attribute or object not in
the concept.

2 outsider(X):− ext(X) ; rel(X,Z) ; not int(Z).
3 outsider(Y):− int(Y) ; rel(Z,Y) ; not ext(Z).
4 % The specific part of each concept contains no outsider.
5 specext(X):− ext(X) ; not outsider(X).
6 specint(Y):− int(Y) ; not outsider(Y).

With these lines and the collapsing into one model described in section 5.1,
we obtain specext/2 and specint/2 atoms, describing the AOC poset elements,
attached to each concept. We can then compute the reduced labelling of the lat-
tice with the following lines, replacing the previously defined annot/3 definitions
in section 5.2:

1 % Minimalist annotation of nodes with their extent/intent :
2 annot(upper,X,A):− specext(X,A).
3 annot(lower,X,B):− specint(X,B).

Using these definitions, Biseau produces the visualization shown in Figure 5.

6 Pulling Constraints On The Model

This section exposes the implementation in ASP and Biseau of some FCA vari-
ants and extensions often used in knowledge processing [19].
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Fig. 4: Visualization of the Galois Lat-
tice of context in Table 1 using Biseau,
with extent and intent shown for each
node/concept.

Fig. 5: Visualization of the Galois Lat-
tice of context in Table 1 using Biseau,
with reduced labelling.

6.1 Object and Property Oriented Concept Lattices

Following definitions from [23], it is also possible to encode the mining of object
oriented concepts (X,Y ) defined by X = Y ♦ and Y = X�, such as:

Y ♦ =
⋃

y∈Y

Ry X� = {y ∈ A|Ry ⊆ X}

With Ry = {x ∈ O|(x, y) ∈ R}.
1 % Any object linked to an attribute in the intent is in the extent .
2 ext(X):− rel(X,Y) ; int(Y).
3 % Objects in the complementary set of the extent.
4 not_ext(Nx):− rel(Nx,_) ; not ext(Nx).
5 % The intent is made of attributes exclusively linked to objects of the extent .
6 int(Y):− rel(_,Y) ; not rel(Nx,Y): not_ext(Nx).

The code for property-oriented concepts is similar, and both replace the
encoding in section 5.1.

6.2 Iceberg Lattices

The iceberg lattice, loosely defined as the Galois lattice stripped of all concepts
with a too small support (i.e. number of objects in their extents) [22], can be built
by discarding any model containing too few objects in his extent. For instance,
the Figure 3 of [22], reproduced in this paper in Figure 6, shows the iceberg
lattice of the running example MUSHROOMS database of nbobj objects with
a minimal support of minsupp%. It can be reproduced by discarding models
using a constraint:

1 % The number of ext/1 atoms must not fall behind the minimal.
2 :− {ext(_)} < nbobj∗minsupp/100.

16



An ASP environment for high-level specification and visualization of FCA

This constraint can be generated by Biseau knowing the number of objects
and the minimal support.

Fig. 6: Iceberg lattice with a minimal support of 85% of the MUSHROOMS database.
Figure extracted from [22].

6.3 n-adic FCA

n-adic FCA [16] can be encoded the same way as regular FCA, by extending the
number of parameters for rel atoms. For instance, in triadic FCA, conditions
are given as the third argument of rel/3 atoms, such as rel(O,A,C) is true
when the relation between object O, attribute A and condition C holds. Triadic
concepts can thus be generated using the following encoding:

1 ext(X):− rel(X,_,_) ; rel(X,A,C): int(A), cnd(C).
2 int(X):− rel(_,X,_) ; rel(O,X,C): ext(O), cnd(C).
3 cnd(X):− rel(_,_,X) ; rel(O,A,X): ext(O), int(A).

6.4 Pattern Structures

As introduced in [7], a pattern structure is a generalization of FCA applied on
attributes structured in semi-lattices. Pattern concepts are pairs of objects and
lattices, producing the expected pattern lattice. This technics have been applied
to gene expression data [13]. Here, we reproduce the pattern lattice construction
for an example of non-binary data from the same publication:

1 rel (1,1,5) . rel (1,2,7) . rel (1,3,6) . % 5 objects
2 rel (2,1,6) . rel (2,2,8) . rel (2,3,4) . % 3 situations
3 rel (3,1,4) . rel (3,2,8) . rel (3,3,5) . % one value from 4 to 9
4 rel (4,1,4) . rel (4,2,9) . rel (4,3,8) .
5 rel (5,1,5) . rel (5,2,8) . rel (5,3,5) .

Note that data are encoded in rel/3 atoms over 5 objects, 3 conditions, and
expression values in the interval [4; 9] associated with a given gene and condition,
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such as rel(O,S,V) holds when object O in situation S has an expression value
of V. Similarly to section 5.1, we can enumerate the pattern concepts:

1 % Choose a subset of objects as the extent .
2 { ext(O): rel(O,_,_) }.
3 % The intervals of extent .
4 interval(C,Min,Max):− rel(_,C,_) ; Min=#min{V,O: rel(O,C,V), ext(O)} ;
5 Max=#max{V,O: rel(O,C,V), ext(O)}.
6 % Object is valid on Condition.
7 valid_on(O,C):− rel(O,C,V) ; interval(C,Min,Max) ; Min<=V ; V<=Max.
8 % Object is valid for all Conditions.
9 valid(O):− rel(O,_,_) ; valid_on(O,C): rel(_,C,_).

10 % Avoid any model that do not include maximal number of objects.
11 :− not ext(O) ; valid(O).

The use of the meta-programming directives #min and #max allows us to
retrieve the minimal and maximal value associated to the extent. Therefore,
interval(C,Min,Max) stands for the minimal and maximal values on condition
C, e.g. 5 and 6 for condition 1 when extent is {1, 2, 5}. Unlike the concept model
seen in Section 5.1, this model relies on an explicit choice rule for the extent with
subsequent constraints to ensure its maximality. Line 2 generates an answer set
for each element of the power set of the object set. Following lines will discard
answer sets that are not infinum, supremum or concept. Line 4 associate for
each condition the minimal and maximal values over the extent. Line 7 selects
an object and a condition such as they are associated to a value in the interval.
Line 9 selects all objects that are valid for all conditions, and line 11 ensure that
they belong to the extent.

The code in section 5.2 can be reused without modifications to produce and
show the resulting pattern lattice.

7 Discussion & Conclusion

Using the ASP language in the Biseau environment, some well-known FCA struc-
tures (Galois, object-oriented, iceberg, integer pattern lattices) have been recon-
structed. The main contribution of Biseau lies into the straightforward use of
the structure specifications to produce a simple code and a proper visualization.
To achieve that feat, Biseau is compiling a controlled subset of ASP atoms to
dot lines, effectively building a dot formatted file that is compiled to an image
by graphviz software. By letting the user manipulate the visualization with the
full power of ASP, Biseau enables definition of graphs in intension. This gives an
abstract access to dot expressions and lets the user focus on the fast prototyping
of data exploration and the elaboration of mathematical properties. In other
words, Biseau allows user to work on the model in which data are processed, in-
stead of providing an implementation of a single model to be used on particular
data, as usually performed in field-specialized softwares.

ASP limits lies into the absence of float numbers handling, and scaling prob-
lems inherited from the total grounding of data before solving. However, Potassco
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system users may benefit from several extensions of the language like linear pro-
gramming [18] or propagators [10], allowing one to take advantage of other pro-
gramming paradigms, or improving performances by an iterative replacement of
bottlenecks by dedicated algorithms. For instance, the standard concept mining
can be replaced by an implementation of the in-close algorithm [2].

Biseau current state is a very simple proof of concept, and therefore miss
a lot of features typically found in Integrated Development Environments, that
could help user to write, understand and debug produced ASP code.

Future work will focus on the Biseau generalization : other languages like
GML allow to describe graphs, some are field-specific, and some enable outsourc-
ing of the visualization to other (field-)specialized softwares. Future development
of Biseau could provide support for ASP advanced features, and embedding of
more scripts for FCA and its extensions.
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Abstract. In this paper we study a classification process on relational
data that can be applied to the web of data. We start with a set of ob-
jects and relations between objects, and extensional classes of objects.
We then study how to provide a definition to classes, i.e. to build an
intensional description of the class, w.r.t. the relations involving class ob-
jects. To this end, we propose three different approaches based on Formal
Concept Analysis (FCA), redescription mining and Minimum Descrip-
tion Length (MDL). Relying on some experiments on RDF data from
DBpedia, where objects correspond to resources, relations to predicates
and classes to categories, we compare the capabilities and the comple-
mentarity of the three approaches. This research work is a contribution
to understanding the connections existing between FCA and other data
mining formalisms which are gaining importance in knowledge discovery,
namely redescription mining and MDL.

Keywords: Relational data, Formal Concept Analysis, Redescription
mining, DBpedia.

1 Introduction

In this work, we are interested in checking the completeness and the quality
of RDF data in the linked open data (LOD), and the potential to discover
definitions from these sets of linked data. Such definitions can be reused in the
design of Knowledge Bases (KBs). This challenge is of main importance when
we consider the masses of data which are currently published in LOD.

At an abstract level, we can view the current problem as follows. We have
at hand a set of interconnected objects –objects connected by relations– just
as an ABox in a description logics (DL) framework [2], and the objective is to
classify the objects with respect to and in compliance with the connections they
are involved in. Objects are classified in the same class, actually an extension,
as soon as they share common elements. This sharing can be strict –elements
are the same– or soft –elements are similar. Finally, we obtain a set of classes,
possibly partially ordered, and their associated descriptions. These descriptions
are important if not mandatory as they are a basis for building the definitions
of classes. Definitions are considered as sets of necessary (NC) and sufficient
conditions (SC) used for classifying new objects. If x is an instance of class Red
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then x has color red (NC), and conversely, if x has color red then x is an instance
of class Red (SC).

Continuing the analogy with DLs, the idea in this paper is to build and apply
induction rules having the form: r(x, y) and y : C then x : ∃r.C. This means that
given a relation such as r(x, y) between objects x and y, with y instance of class
C, then we infer that x is an instance of a class say D whose description includes
the expression ∃r.C, i.e. instances of D are related to instance(s) of C.

In this work, we aim to build definitions from RDF data. To this end, we
use three approaches including Formal Concept Analysis (FCA), redescription
mining and translation rule discovery. Then the main operations that we should
perform are (i) the preparation of the data, (ii) the discovery of definitions, (iii)
the evaluation of the quality of definitions. To compare the three algorithms, we
run experiments on data extracted from DBpedia. This paper is in continuation
of a line of research work on the discovery of definitions within RDF triples in the
linked open data. The originality in this paper is to compare three approaches
which are not based on the same principles but which can complement each
other. Moreover, to the best of our knowledge, this is one of the first papers
where such a study and comparison is drawn at a theoretical and practical level.

The paper is organized as follows. In the second section, we present the data
on which we will be working and the basis of the classification process in the
linked open data. The third section details the three classification approaches
and their application. The following section is related to the experiments which
have been carried out for evaluating the three approaches. Finally, a discussion,
related and future work conclude the paper.

2 Data representation

In this section, we present basics of linked open data, and how we represent RDF
triples as a formal context.

2.1 Linked Open Data

Linked open data (LOD) are relational data that can be seen as a set of inter-
connected knowledge bases (KB). A KB relies on two main components, a TBox
which defines the schema of the KB and includes the concept definitions and the
ABox which introduces individuals and the expressions in which individuals are
involved. The basic units in a KB are RDF triples 〈s, p, o〉, which encode subject–
predicate–object assertions. The elements of a triple can be a resource uniquely
identified, a literal (values like strings, dates or integers) or a blank node (ex-
istential quantifier). For the sake of simplicity, in this paper we consider that
〈s, p, o〉 ∈ U×U×U , where U is the set of all identified resources. Resources can
refer to any object or abstraction and are identified by a URI (Uniform Resource
Identifier). A URI is an address that is composed of two parts. The first part is
the namespace, which indicates from which KB the resource comes from. The
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x0 : C0

x1 : C1

x2 : C2

r1

r2

(a) Relational data.

ex:x0 ex:r1 ex:x1 .
ex:x0 ex:r2 ex:x2 .
ex:x0 rdf:type ex:C0 .
ex:x1 rdf:type ex:C1 .
ex:x2 rdf:type ex:C2 .

(b) RDF data.

MC MD

C0 C1 C2 ∃r1:x1 ∃r2:x2
x0 × × ×
x1 ×
x2 ×

(c) Formal context.

Fig. 1: Relational data, the associated set of RDF triples and the formal context
built from RDF triples.

second part names the resource in this KB. The relation rdf:type is a specific
relation of RDF which corresponds to the relation of instanciation.

LOD can be queried thanks to SPARQL queries. For example, the query
SELECT ?x WHERE {?x rdf:type ex:C0} returns all the instances of C0. Con-
sidering the example in Figure 1b, only ex : x0 is returned.

2.2 Formal Concept Analysis and RDF data

We rely on Formal Concept Analysis (FCA) from [6] in order to compare the
approaches. Given G a set of objects, M a set of attributes and I ⊆ G ×M
a binary relation between G and M , (G,M, I) is a formal context. Derivation
operators (denoted .′) for a set of entities X ⊆ G and a set of attributes Y ⊆M
are X ′ = {m ∈M | ∀x ∈ X,xIm} and Y ′ = {g ∈ G | ∀y ∈ Y, gIy}.

From RDF data describing a KB, we build a formal context where G is the
set of subjects of the triples (i.e. G = {s | 〈s, p, o〉 ∈ KB}) and M is the set
of pairs (predicate, object) that appear in the RDF data (i.e. M = {(p, o) |
〈s, p, o〉 ∈ KB}). The incidence relation is defined as sI(p, o)⇔ 〈s, p, o〉 ∈ KB.

The set of attributes is a partition of two sets:M = MC∪MD andMC∩MD =
∅. The setMC is the set of all attributes (p, o) such that p = rdf:type. Since all
the resources in the range of rdf:type are classes, MC corresponds to the set
of all the classes we are trying to define. Hereafter, an attribute (rdf : type, C)
will simply be denoted C. The set MD is the set of all attributes (p, o) such
that p 6= rdf:type. Hereafter, an attribute (p, o) ∈ MD will be referred as a
description and denoted ∃p : o where o is an abbreviation of an abstract class
containing only o. Considering the example Figure 1b, the associated context is
presented Figure 1c.

Our goal is to build definitions of classes of the form C ≡ e1 u e2 u . . . u en,
where the ei is an expression of the form ∃r.x. To this end, we are searching
for two sets of attributes C ⊆ MC and D ⊆ MD such that their derivations
are the same (C ′ = D′). For example, in Figure 1, we have {C0}′ = x0 and
{∃r1:x1,∃r2:x2}′ = x0. Thus, the definition C0 ≡ ∃r1:x1 u ∃r2:x2 can be con-
structed. Since data may be incomplete, it is possible that there is no equal-
ity between the derivations of a class and the derivation of its description, i.e.
{Ci}′ 6= {∃r : xj}′. Therefore, we need to find some kind of approximation. This
is allowed by the three algorithms presented in next section.
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3 Rule mining algorithms

In this section, we briefly present the three approaches we are interested in,
namely association rule mining, redescription mining and translation rule min-
ing. Interested reader may refer to the original publications for further explana-
tions.

3.1 Association rules

The goal of association rule mining [7] is to find dependencies between attributes.
An association rule between two sets of attributes A and B, denoted A → B
means that A′ ⊆ B′. This rule has a confidence which can be considered as a
conditional probability:

conf(A→ B) = |A
′ ∩B′|
|A′|

where (.)′ corresponds to the derivation operator. Confidence is used as a quality
measure of the rule. An association rule is valid if its confidence is superior to a
given threshold θ. When conf(A→ B) = 1, the rule is an implication, denoted
byA⇒ B. If B ⇒ A, then A and B form a definition, denoted by A ≡ B.

Since the confidence is not symmetric, A → B can be valid but B → A not
valid. Potentially, an association rule A → B can be considered together with
its reverse B → A, and we can wonder how far they are from being implications.
Accordingly, we introduce the notion of a quasi-definition which is to definition
what association rule is to implication.

Definition 1 (Quasi-definition). Given two sets of attributes A,B and a
user-defined threshold θ, a quasi-definition A ↔ B holds if A → B,B → A
and

min(conf(A→ B), conf(B → A)) > θ

The algorithm Eclat [11] is one of the existing algorithms for enumerating
frequent itemsets. From frequent itemsets, association rules can be enumerated.
Here, we use Eclat as implemented in the Coron system1 for computing associ-
ation rules. It exhaustively enumerates all the association rules that hold w.r.t. a
given threshold. Here, we rely on Eclat to mine association rules.

Since we want to provide definitions of classes, we are interested in rules
X → Y such that X ⊆MC and Y ⊆MD or, conversely, X ⊆MD and Y ⊆MC .
Given a rule R: X → Y , the consequent can be decomposed into two rules
RC : X → YC and RD: X → YD where YC = Y ∩MC and YD = Y ∩MD

respectively. Since YC ⊆ Y , Y ′ ⊆ Y ′C , thus |X ′ ∩ Y ′| 6 |X ′ ∩ Y ′C |, which means
that if R holds, then RC holds. Similarly, if R holds, then RD holds.

We take advantage of this property to keep the quasi-definitions we are
interested in. For example, ∃r1:x1, C0 → ∃r2:x2 is not kept because the an-
tecedent include both categories and descriptions. On the other hand, ∃r1:x1 →
1 http://coron.loria.fr/
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{∃r2:x2, C0} can be decomposed intoR1: ∃r1:x1 → ∃r2:x2 andR2: ∃r1:x1 → C0.
The rule R2 is kept. If its converse is valid, we obtain the quasi-definition
C0 ↔ ∃r1:C1.

3.2 Redescriptions

Redescription mining [8] provides multiple characterizations of a given set of
entities. Contrasting association rules, redescriptions rely on the separation of
the set of attributes into views. The set of all views corresponds to a partition
of the set of attributes. We work here with two views, corresponding to the two
kinds of attributes we distinguished: MC and MD.

The similarity between the sets of attributes, coming from two different views,
is measured thanks to the Jaccard coefficient:

jacc(A,B) = |A
′ ∩B′|

|A′ ∪B′|
where (.)′ corresponds to the derivation operator. We say that the redescription
holds if the Jaccard coefficient is above a given threshold. Contrary to confidence,
the Jaccard coefficient is symmetric. A redescription with a Jaccard coefficient
equal to 1 corresponds to a definition as introduced in the previous section. A
redescription is necessarily a quasi-definition. Indeed,

min(conf(A→ B), conf(B → A)) > jacc(A,B).

Example 1. Given the context Figure 1, the two views are distinguished by the
vertical line in gray. From this context, {C0} ↔ {∃r1:x1,∃r2:x2} is a redescrip-
tion with a Jaccard coefficient of 1.

The algorithm ReReMi [5] is used in this work to mine redescriptions. It
searches for a pair of attributes–one in each view–that may constitute a definition
and tries to extend it by adding one attribute at each step. More than binary
data, ReReMi also handles numerical and categorical data. It also enables to
consider Boolean functions including conjunctions, disjunctions and negations
over the attributes. Here, we only use a binary dataset and conjunctions of
attributes in order to compare the results with the other algorithms.

3.3 Translation rules

The algorithm Translator [10] also relies on two views and searches for a set of
associations between these two views, but the construction of the associations is
based on a different approach, that is minimum description length (MDL).

The associations consist in rules that enable building one context from the
other, as shown in Figure 2. The set of rules has to be compact and representa-
tive. In one hand, it should cover most of the data. In the other hand, the rules
have to be as small as possible in term of attributes. To check these two con-
straints, Translator relies on MDL. Given K = (G,M, I) a context and X ⊆M
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Context K1
a b c d

1 × ×
2 × ×
3 × × ×
4 × × e f g h

1 × ×
2 × ×
3 × × ×
4 ×

Temp.

e f g h
1 × ×
2
3
4 ×

Mask

Context K2
e f g h

1 × ×
2 × ×
3 × × ×
4 × ×

Goal: translate K1 into K2 and K2 into K1

Rules
r1 : a, b→ g, h

r2 : c→ f

Fig. 2: Translator is searching for a set of rules that enables transforming K2
into K1 and K1 into K2. Here we represent only the construction of K2 from K1.
For each object in K1 and for each rule, if the object has all the attributes of
the condition, then all the attributes of the conclusion are added to K2.

a set of attributes, the length of X w.r.t. K corresponds to the minimum number
of bits required in order to encode X. That is:

L(X) = −
∑

x∈X

log2 P (x | K) where P (x | K) = | x
′ |

| G | .

In [10], the authors compare the mining process to a translation task. A rule
is considered as a translation from one context to an other. The underlying idea is
that, with enough translation rules, one can build the first context from the other
and vice versa. The general idea is depicted Figure 2. The errors introduced in
the target context are fixed with a mask. Thus, the size of the mask corresponds
to the number of errors added. The algorithm Translator compute rules step by
step. At the beginning of the process, the mask corresponds to the target context.
The algorithm searches for the rule which has the best trade-off between lowering
density of the mask and not being too long, i.e. the rule which maximizes ∆:

∆(X → Y ) = L(Mask−)− L(Mask+)︸ ︷︷ ︸
Information gain

−L(X ∪ Y )︸ ︷︷ ︸
Rule length

where Mask+ corresponds to the items added to the mask (errors introduced by
the rule) and Mask− corresponds to items removed from the mask (errors fixed
by the rule). Rules are added while ∆ > 0.

The mask is updated each time a rule is added. Since the information gain
depends on the mask, the quality ∆ of a rule depends on the rules that are
already found. Thus, Translator is the only algorithm which takes into account
rules already found to choose which rule is added.

4 Related work

In [1], authors rely on association rule mining to provide a navigation space
over RDF resources. To this end, they search for implications and rank them

26



w.r.t. the confidence of their converse. Our work is in the continuity of this one:
our purpose is the same, but here we use two other approaches and compare
them.

The AMIE algorithmn, extended to AMIE+ [4], is a reference for mining
rules in KBs. Those rules have the form B1 ∧B2 ∧ . . . Bn−1 ⇒ Bn where Bi is a
relation between two objects r(xi, xj). Authors add a constraint: all the variables
have to appear twice in the rule, in different atoms. Our work is distinct from
this one in two manners. We consider rules and their converse, and we do not
focus on relations (i.e. predicates), but on the pair (predicate, object).

In a survey, Sertkaya [9] presents papers trying to bridge the gap between
FCA and ontologies. In ontologies, the knowledge is constructed with top-down
approaches (e.g experts who encode knowledge of a domain). At the contrary, in
FCA, knowledge is discovered with a bottom-up approach, starting from facts
and trying to generalize them. Thus, one way to take advantage of FCA is to
allow bottom-up construction of ontologies and to complete existing ontologies.
This is what is done in our approach: we start from RDF statements and try to
find definitions of classes.

In [3], an extension to FCA for conceptual graphs, called G-FCA, is proposed.
Compared to RDF graphs, conceptual graphs (CG) are oriented bipartite graphs.
The two kinds of nodes are classes and relations. Contrasting RDF graphs which
only consider binary relations, CGs handle n-ary relations. The approach enables
to find projected graph patterns. A projected graph pattern is a pair containing
a graph query and a set of candidate solutions. It is similar to a SPARQL query
where the graph query is the intent and the candidate solutions are the extent.
This work is complementary to our work in the sense that, instead of dealing
with rule mining, it considers the full lattice.

5 Experiments

We run our experiments on DBpedia data, which is one of the most impor-
tant knowledge bases of the linked open data, built from Wikipedia. We are
interested in categories of DBpedia, that is, resources in the range of the rela-
tion dct:subject. Categories are a specific kind of classes. They are built from
specific Wikipedia pages which lists other pages (for example the page Cate-
gory:Smartphones2). The advantage of considering these categories instead of
common classes is that there are much more categories than classes, and the
only information about them provided in DBpedia is which resources belong
to each category. Thus, finding why some resources are gathered together (for
example, “because they all are smartphones”) is an interesting challenge.

To this end, we extracted a subset of DBpedia thanks to a SPARQL query.
The triples extracted are transformed in a context as presented in section 2.2.
We run algorithms which are introduced above, then, we compare and evaluate
the extracted quasi-definitions. Both data and results are available online3.
2 https://en.wikipedia.org/wiki/Category:Smartphones
3 https://gitlab.inria.fr/jreynaud/DefinitionMiningComparison
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Table 1: Statistics of the datasets extracted with the SPARQL query. D is one of
the four domains, whereas the predicate owl:objectProperty ensures that ?o
is a resource, and not a literal nor a blank node.

SELECT DISTINCT * WHERE {
?s ?p ?o .
?s dct:subject dbc:C .
?p a owl:ObjectProperty .

}

D Triples Objects |MC | |MD|
Turing_Award 2 642 65 503 857
Smartphones 8 418 598 359 1 730
Sports_cars 9 047 604 435 2 295
French_films 121 496 6 039 6 028 19 459

5.1 Methodology

We extracted four different subsets of triples, of different size and different do-
mains, from DBpedia, with SPARQL queries. All the queries follow the same
pattern. The datasets correspond to the categories Smartphones, Sports_cars,
Turing_Award_laureates and French_films. Statistics of the datasets are pro-
vided Table 1.

For each dataset, the partition of the attributes is constructed as follows:
MC is the subset of attributes whose predicate is dct:subject whereas MD is
the set of attributes whose predicate differs from dct:subject. For Eclat, since
both attributes of classes and descriptions are in the same context, the input
data is one file which contains the context in a tabular format. For ReReMi and
Translator, the input data are two tabular files.

5.2 Results

Each algorithm returns an ordered set of quasi-definitions. Each quasi-definition
is manually evaluated by three phD students familiar with linked open data,
playing the role of experts. Given a definition C0, . . . , Cn ↔ D0, . . . , Dm from a
dataset X, each evaluator answers the question “ Taking X as a reference, is it
true that belonging to C0 and C1 . . . and Cn and having the properties D0 and
D1 . . . and Dm is equivalent ? ” The final evaluation is the majority between the
experts. Experts gave the same answer in 95.4% of the cases. If evaluated true,
the quasi-definition is added to the set of definitions (see Fig. 3).

The comparison between the algorithms is based on definitions (i.e. quasi-
definition evaluated as true by at least 2 experts) that have been extracted and
categories that have been defined. Figure 4 shows two Venn diagrams for each
dataset: one for the number of definitions extracted and one for the number of
categories defined. In the dataset Turing_Award_laureates, for example, there
are 22 definitions only extracted by Eclat and 8 definitions extracted by both
Eclat and Translator. Eclat extracted 30 definitions in total. A category is
considered as defined as soon as it appears in a definition. Therefore, in one
definition, there can be one or more categories considered as defined.
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Turing_Award_laureates
R Harvard_University_alumni↔ (almaMater Harvard_University) R1
ET Harvard_University_alumni, Turing_Award_laureates ↔ (a Agent), (a Person), (a Scientist), (al-

maMater Harvard_University)
R2

E Turing_Award_laureates↔ (a Agent), (a Person), (award Turing_Award) R3
ET Turing_Award_laureates↔ (a Agent), (a Person), (a Scientist), (award Turing_Award) R4
E Modern_cryptographers↔ (field Cryptography) R5

Sports_cars
R McLaren_vehicles↔ (manufacturer McLaren_Automotive) R6
R McLaren_vehicles↔ (assembly Surrey) R7
ET McLaren_vehicles, Sports_cars↔ (a Automobile), (a MeanOfTransportation), (assembly Woking),

(assembly Surrey), (assembly England), (bodyStyle Coupé), (manufacturer McLaren_Automotive)
R8

E McLaren_vehicles, Sports_cars↔ (a Automobile), (a MeanOfTransportation), (assembly England),
(assembly Surrey), (bodyStyle Coupé)

R9

E McLaren_vehicles, Sports_cars ↔ (a Automobile), (a MeanOfTransportation), (assembly Surrey),
(bodyStyle Coupé)

R10

Smartphones
ET Firefox_OS_devices, Open-source_mobile_phones, Smartphones, Touch-

screen_mobile_phones↔ (a Device), (operatingSystem Firefox_OS)
R11

R Nokia_mobile_phones↔ (manufacturer Nokia) R12
ET Nokia_mobile_phones, Smartphones↔ (a Device), (manufacturer Nokia) R13
R Samsung_Galaxy ↔ (manufacturer Samsung_Electronics), (operatingSystem An-

droid_(operating_system))
R14

ET Samsung_Galaxy, Samsung_mobile_phones, Smartphones ↔ (a Device), (manufacturer Sam-
sung_Electronics), (operatingSystem Android_(operating_system))

R15

French_films
R Pathé_films↔ (distributor Pathé) R16
R Films_directed_by_Georges_Méliès↔ (director Georges_Méliès) R17
ET Films_directed_by_Georges_Méliès, French_films, French_silent_short_films ↔ (a Film), (a

Wikidata:Q11424), (a Work), (director Georges_Méliès)
R18

ET Films_directed_by_Jean_Rollin, French_films↔ (a Film), (a Wikidata:Q11424), (a Work), (director
Jean_Rollin)

R19

ET Film_scores_by_Gabriel_Yared, French_films↔ (a Film), (a Wikidata:Q11424), (a Work), (music-
Composer Gabriel_Yared)

R20

Fig. 3: Definitions extracted by Eclat, ReReMi and Translator for each dataset.
In order to be more readable, namespaces have been removed.

6 Discussion
Hereafter, we will denote BX

cand the set of all the quasi-definitions extracted by
the algorithm X and BX

def the set of quasi-definitions from BX
cand evaluated true

by the experts, i.e. the set of definitions extracted by X. The set Bcand denotes
the set of all the quasi-definitions definitions extracted, regardless the algorithm.
Similarly, Bdef denotes the set of all the definitions extracted.

6.1 Precision, recall and completeness
The precision of an algorithm X is |B

X
def |

|BX
cand| . The precision of ReReMi has a high

variability (from 33% to 75%) and is overall the weakest, especially for the
dataset French_films. The precision of Eclat is stable (from 64% to 72%).
Translator has the best precision which is always over 74%.
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Table 2: Evaluation of the results. For each dataset, the number of quasi-
definitions extracted (|Bcand|) and evaluated true (|Bdef |) are reported, along
with the average number of categories (|Ci|) and descriptions (|Di|) per rule.

(a) Turing_Award_laureates

X Eclat ReReMi Translator
|Bcand| 47 12 11
|Bdef | 30 9 9∣∣BX

def

∣∣/
∣∣BX

cand

∣∣ .64 .75 .85
|Ci|–|Di| 2–4 1–1 3–5

(b) French_films

X Eclat ReReMi Translator
|Bcand| 132 52 31
|Bdef | 95 30 23∣∣BX

def

∣∣/
∣∣BX

cand

∣∣ .72 .68 .74
|Ci|–|Di| 2.8–4.5 1.3–1.4 2.6–4.1

(c) Sports_cars

X Eclat ReReMi Translator
|Bcand| 810 98 41
|Bdef | 521 57 31∣∣BX

def

∣∣/
∣∣BX

cand

∣∣ .64 .58 .76
|Ci|–|Di| 4.3–7.8 1.6–1.8 3.1–3.1

(d) Smartphones

X Eclat ReReMi Translator
|Bcand| 546 36 93
|Bdef | 371 12 89∣∣BX

def

∣∣/
∣∣BX

cand

∣∣ .68 .33 .96
|Ci|–|Di| 2.8–4.4 1.2–1.1 2.3–4.2

The recall could be defined as |B
X
def |
|Bdef | . However, it cannot be used as a per-

formance measure. Indeed, some of the definitions overlap (i.e. have attributes
in common in both sides). This is the case for the rules R6 to R10 in Figure
3 : all the rules define the category McLaren_vehicules. Whereas Translator
extracts only one rule (R8), ReReMi extracts 2 rules (R6 and R7) and Eclat
extracts 9 rules (only 3 of them, R8 to R10, are reported here).

Given the valid quasi-definitions, the uncompleteness of the KB can be mea-
sured as the number of triples which can be inferred from the quasi-definitions
and that are not already in the KB. For example, given the rule Pathé_Films↔
(distributor Pathé), if a resource r belongs to Pathé_Films (i.e. 〈r, subject,
Pathé_Films〉 ∈ KB), then the triple 〈r, distributor, Pathé〉 is expected to
be in the KB. Conversely, if the triple 〈r, distributor, Pathé〉 belongs to the
KB, then 〈r, subject, Pathé_Films〉 is expected to be in the KB. Figure 4c
counts, for each dataset, the number of inferred triples that were not in the KB.

6.2 Shape and interpretation of the rules

From Figure 4, 70% of the categories defined by Eclat or Translator are defined
by both algorithms. However, Translator extracts much less rules than Eclat
(until 16 times less for the dataset Smartphones). This is due to the extraction
process of association rules: if the rule A→ B has the same support as the rule
A → {B,C}, then only the rule A → {B,C} is kept. However, if the support
of A→ B is higher, both rules are kept. Consequently, Eclat mines rule which
can differ from only one attribute (R9 and R10), contrary to Translator (only
R8).
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E R
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1
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9

Sports_cars
E R

T
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8
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30

Smartphones
E R

T

494 0
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E R

T

292 0
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0
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(a) Definitions extracted.

Turing
E R

T

2 1
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1

1

0

Sports_cars
E R

T
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1

0

0

Smartphones
E R

T

3 1
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0

0

0

French_films
E R
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65 1
674
0

0

1

(b) Categories defined.
Turing
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T
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0

1

Sports_cars
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9 0
51

15
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7

0

Smartphones
E R

T

44 9
116

47
0

0

2 67

1211 67
2030

French_films
E R

T

182

30

62

(c) Triples inferred.

Fig. 4: Definitions extracted, categories defined, and triples inferred by Eclat(E),
ReReMi(R) and Translator(T) for each dataset.

None of the definitions mined by ReReMi are shared by Eclat or Translator.
This is due to the heuristic used by ReReMi. If C is a category and D1 and D2
are two descriptions such that C ′ = D′1 = D′2, then ReReMi generates the two
definitions C ↔ D1 and C ↔ D2 rather than one definition C ↔ {D1, D2}
as Eclat does. This is the case for definitions R6 and R7 mined by ReReMi,
and R8 mined by Eclat. If C ′ = D′1 and D′1 ⊂ D′2, ReReMi generates the
definition C ↔ D1 whereas Eclat generates C ↔ {D1, D2}, as shown with
definitions R12 and R13 for example. Another consequence of the heuristic used
by ReReMi is that it mines smaller definitions than definitions mined by Eclat
and Translator wrt the number of attributes. On average, definitions mined
by ReReMi have 1 or 2 attributes on each side whereas definitions mined by
Eclat and Translator have 3 categories and 4 descriptions. These differences
raise the question of the semantics of the conjunctions. Indeed, the semantics
of the conjunctions in the definitions mined by ReReMi differs from the one
in definition mined by Eclat and Translator. For example, in rule R15, the
attribute (a, Device) can be removed without repercussion on the meaning.
On the opposite side, in definition R14, no attribute can be removed without
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changing the meaning of the definition. That is, all the attributes are necessary.
In our approach, it seems more interesting to consider only attributes that are
necessary in the definition. Thus, R14 is better than R15 according to the ease
of interpretation.

7 Conclusion
In this paper, we compared three algorithms to find definitions in the linked open
data. Each algorithm has its specificities and we verified that these specificities
are reflected in the results of our experiments. We showed that, despite their very
different approaches, Eclat and Translator extract a lot of identical rules. At
the opposite, ReReMi, in spite of a quality measure very similar to Eclat, extracts
shorter rules. The advantage of each algorithm depends on the goal of the user. In
our experiments, Eclat is the algorithm which defines the most of the categories,
at the cost of a huge number of quasi-definitions extracted. Translator extracts
significantly less quasi-definitions but defines less categories. ReReMi, despite a
low number of categories defined, offers definitions easier to understand which
do not include attributes that do not contribute to the definition.
Acknowledgements
This work has been conducted with the support of “Région Lorraine” and “Délé-
gation Générale de l’Armement”.

References
1. M. Alam, A. Buzmakov, V. Codocedo, and A. Napoli. Mining definitions from

RDF annotations using formal concept analysis. In IJCAI, pages 823–829, 2015.
2. F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. Patel-Schneider, editors.

The Description Logic Handbook. Cambridge University Press, 2003.
3. S. Ferré and P. Cellier. Graph-FCA in Practice. In Proceedings of 22nd ICCS,

pages 107–121, 2016.
4. L. A. Galárraga, C. Teflioudi, K. Hose, and F. M. Suchanek. Fast rule mining in

ontological knowledge bases with AMIE+. VLDB Journal, 24(6):707–730, 2015.
5. E. Galbrun and P. Miettinen. From Black and White to Full Color: Extending

Redescription Mining Outside the Boolean World. Statistical Analysis and Data
Mining, 5(4):284–303, 2012.

6. B. Ganter and R. Wille. Formal concept analysis - mathematical foundations.
Springer, 1999.

7. J. Han, J. Pei, and M. Kamber. Data mining: concepts and techniques. Elsevier,
2011.

8. N. Ramakrishnan, D. Kumar, B. Mishra, M. Potts, and R. F. Helm. Turning
CARTwheels: an Alternating Algorithm for Mining Redescriptions. In KDD’04,
pages 266–275, 2004.

9. B. Sertkaya. A survey on how description logic ontologies benefit from formal
concept analysis. CoRR, abs/1107.2822, 2011.

10. M. van Leeuwen and E. Galbrun. Association Discovery in Two-View Data. TKDE,
27(12):3190–3202, Dec. 2015.

11. M. J. Zaki. Scalable algorithms for association mining. TKDE, 12(3):372–390,
2000.

32



Relational proportions
between objects and attributes

Nelly Barbot1, Laurent Miclet1, and Henri Prade2

1 Univ. Rennes, CNRS, IRISA, F-22305 Lannion, France,
nbarbot@irisa.fr, laurent.miclet@gmail.com,

2 IRIT, CNRS & Univ. P. Sabatier, 31062 Toulouse Cedex 9, France,
prade@irit.fr

Abstract. Analogical proportions are statements of the form “A is to
B as C is to D”, where A,B,C,D are items of the same nature, or not.
In this paper, we more particularly consider “relational proportions”
of the form “object A has the same relationship with attribute a as
object B with attribute b”. We provide a formal definition for relational
proportions, and investigate how they can be extracted from a formal
context, in the setting of formal concept analysis.

Keywords: Analogy, analogical reasoning, analogical proportion, anal-
ogy in lattices, formal concept analysis.

1 Introduction

A statement such as “Carlsen is to chess as Mozart is to music” introduces
Carlsen as a precocious virtuoso of chess, a quality that Mozart is well known to
have concerning music. It relates two types of items, here people and activities.
It is an example of what we call relational proportions which are statements
of the form “object A has the same relationship with attribute a as object B
with attribute b”. This can be viewed as a special case of analogical proportions
which are statements of the form “A is to B as C is to D”. In the case where
A,B,C,D are items which can be represented in terms of the same set of features,
a formal definition has been proposed for analogical proportions in the setting
of Boolean logic and then extended using multiple-valued logic for handling
numerical features [2, 9], by stating that “A differs from B as C differs from D
and B differs from A as D differs from C”.

The nature of relational proportions suggests to handle them in the setting
of formal concept analysis. This leads us to the question of defining analogical
proportions between formal concepts. The paper first recalls the definition of
analogical proportions in non distributive lattices, as already presented in [4].
Then it brings original material, firstly by studying the links between analogical
proportions between formal concepts and analogical proportions between objects
or attributes. It also shows how relational proportions can be obtained in a formal
context from the identification of an analogical complex.
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2 Analogical proportions: basics and formalization

Analogical proportions are usually characterized by three axioms. The first two
axioms acknowledge the symmetrical role played by the pairs (x, y) and (z, t) in
the proportion ‘x is to y as z is to t’, and enforce the idea that y and z can be
interchanged if the proportion is valid, just as in the equality of two numerical
ratios where means can be exchanged. This view dates back to Aristotle. A third
(optional) axiom, called determinism, insists on the uniqueness of the solution
t = y for completing the analogical proportion in t: (x : y :: x : t). These
axioms are studied in [1].

Definition 1 (Analogical proportion). An analogical proportion (AP) on
a set X is a quaternary relation on X, i.e. a subset of X4. An element of this
subset, written (x : y :: z : t), which reads ‘x is to y as z is to t’, must obey
the following axioms:

1. Reflexivity of ‘as’: (x : y :: x : y)
2. Symmetry of ‘as’: (x : y :: z : t) ⇔ (z : t :: x : y)
3. Exchange of means: (x : y :: z : t) ⇔ (x : z :: y : t)

Then, thanks to symmetry, it can be easily seen that (x : y :: z : t) ⇔
(t : y :: z : x) should also hold (exchange of the extremes). According to the
first two axioms, four other formulations are equivalent to the canonical form
(x : y :: z : t). Finally, the eight equivalent forms of an analogical proportion
are: (x : y :: z : t), (z : t :: x : y), (y : x :: t : z), (t : z :: y : x),
(z : x :: t : y), (t : y :: z : x), (x : z :: y : t) and (y : t :: x : z).

With respect to this axiomatic definition of AP, Stroppa and Yvon [3] have
given another definition, based on the notion of factorization when the set of
objects is a commutative semigroups. From these previous works, Miclet et al.
[4] have derived the following definitions in the lattice framework.

Definition 2. A 4-tuple (x, y, z, t) of a lattice (L,∨,∧,≤)4 is a Factorial Ana-
logical Proportion (FAP) (x : y :: z : t) iff:

x = (x ∧ y) ∨ (x ∧ z) x = (x ∨ y) ∧ (x ∨ z)
y = (x ∧ y) ∨ (y ∧ t) y = (x ∨ y) ∧ (y ∨ t)
z = (z ∧ t) ∨ (x ∧ z) z = (z ∨ t) ∧ (x ∨ z)
t = (z ∧ t) ∨ (y ∧ t) t = (z ∨ t) ∧ (y ∨ t)

Definition 3. A 4-tuple (x, y, z, t) of (L,∨,∧,≤)4 is a Weak Analogical Propor-
tion (WAP) when x∧ t = y∧z and x∨ t = y∨z. It is denoted x : y WAP z : t.

In the case of a distributive lattice (e.g. a Boolean lattice), this alternative
definition is equivalent to the FAP. But, in general, a FAP is a WAP and the
converse is false, which explains the use of adjective “weak” [4].

Example 1. Let us consider a finite set Σ and the associated Boolean lattice
(2Σ ,∪,∩,≤). When saying of subsets x, y, z, t of Σ that “x is to y as z is to t”,
we express that x differs from y in the same way as z differs from t. For example,
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if x = {a, b, e} and y = {b, c, e}, we see that to transform x into y, we have to
remove a and add c. Now, if z = {a, d, e}, we can construct t with the same
operations, to obtain t = {c, d, e}. In more formal terms, with this definition,
the following properties are asked to x, y, z and t (with x\y = x∩¬y): x\y = z\t
and y \ x = t \ z, which are equivalent to x ∩ t = y ∩ z and x ∪ t = y ∪ z. These
relations linking x, y, z, t are clearly symmetrical, and satisfy the exchange of the
means. Hence it is a correct definition of the AP in the Boolean setting [2].

The next proposition gives a simple example of FAP in a lattice.

Proposition 1. Let y and z be two elements of a lattice, the proportion y :
y∨z :: y∧z : z is a FAP. We call it a Canonical Analogical Proportion (CAP).

Proof. The first equality of Definition 2, namely y = (y ∧ (y ∨ z))∨ (y ∧ (y ∧ z)),
is true since the right member is equal to (y) ∨ (y ∧ z) = y. The verification of
the three other equalities of Definition 2 is similar, using the absorption laws.

3 Analogical proportions in FCA

In order to derive more specifically the AP notion in a Formal Concept Analysis
framework (FCA), we first recall some basic elements of FCA, before studying
the relations between several kinds of AP and their characterization in FCA.

3.1 Formal concept analysis

FCA starts with a binary relation R defined between a set O of objects and a
set A of attributes. The tuple (O,A, R) is called a formal context. The notation
(o, a) ∈ R or oRa means that object o has attribute a. We denote o↑ = {a ∈
A|(o, a) ∈ R} the attribute set of object o and a↓ = {o ∈ O|(o, a) ∈ R} the
object set having attribute a. Similarly, for any subset o of objects, o↑ is defined
as {a ∈ A|a↓ ⊇ o}. Then a formal concept is defined as a pair (o,a), such that
a↓ = o and o↑ = a. One calls o the extension of the concept and a its intension.

The set of all formal concepts is equipped with a partial order (denoted ≤)
defined as: (o1,a1) ≤ (o2,a2) iff o1 ⊆ o2 (or, equivalently, a2 ⊆ a1). Then it is
structured as a lattice, called the concept lattice of R.

Example 2. The concept lattice of the following context R is shown in Figure 1.

a1 a2 a3 a4 a5 a6 a7 a8 a9

o1 × × × × × ×
o2 × × × × × ×
o3 × × × × × ×
o4 × × × × × ×
o5 × × × × × × × × ×

The following preliminaries are simple consequences of the definition of con-
cept lattice and the Main Theorem of Formal Concepts [5, 6]. They allow for a
quick demonstration of propositions in the next section.
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{o5}
{a1, . . . , a9}

{o1, o5}
{a2, a3, a4, a7, a8, a9}

{o2, o5}
{a1, a3, a4, a5, a7, a9}

{o3, o5}
{a1, a2, a4, a6, a8, a9}

{o4, o5}
{a1, a2, a3, a5, a6, a9}

{o2, o4, o5}
{a1, a3, a5, a9}

{o3, o4, o5}
{a1, a2, a6, a9}

{o1, o3, o5}
{a2, a4, a8, a9}

{o1, o2, o5}
{a3, a4, a7, a9}

{o1, o4, o5}
{a2, a3, a9}

{o2, o3, o5}
{a1, a4, a9}

{o1, o2, o3, o4, o5}
{a9}

{o2, o3, o4, o5}
{a1, a9}

{o1, o3, o4, o5}
{a2, a9}

{o1, o2, o4, o5}
{a3, a9}

{o1, o2, o3, o5}
{a4, a9}

x y u vz t

Fig. 1. The formal concept lattice of R (it is a Boolean lattice).

Preliminary 1 Given two concepts x = (ox,ax) and y = (oy,ay), one has

(ox ∪ oy)
↑

= ax ∩ ay and (ax ∪ ay)
↓

= ox ∩ oy.

Preliminary 2 Given two concepts x = (ox,ax) and y = (oy,ay), one has
ox ∪ oy ⊆ ox∨y, ox ∩ oy = ox∧y, ax ∪ ay ⊆ ax∧y and ax ∩ ay = ax∨y.

Preliminary 3 Let o (resp. a) be a subset of O (resp. A), there exists at most
one concept x such that ox = o (resp. ax = a).

3.2 Weak and strong analogical proportions in FCA

Since concepts are associated to a set of attributes and objects, the main objec-
tives of this section are to relate the AP definitions with these sets and to study
the links the AP on concept lattice and AP on object or attribute sets.

Proposition 2. Let x, y, z and t be four concepts, one has:
(x ∨ t = y ∨ z iff ax ∩ at = ay ∩ az) and (x ∧ t = y ∧ z iff ox ∩ ot = oy ∩ oz).

As consequence, (x : y WAP z : t) iff ax∩at = ay∩az and ox∩ot = oy∩oz.

Proof. From Preliminary 2, x∨t = y∨z implies ax∩at = ay∩az and conversely,
ax ∩ at = ay ∩ az implies ax∨t = ay∨z. Thus, x ∨ t = y ∨ z using Preliminary 3.
The proof of the second equivalence can be done in a similar manner.

Proposition 3. Let x, y, z and t be four concepts, if (ax : ay :: az : at or
ox : oy :: oz : ot) then x : y WAP z : t.

Proof. Let x, y, z and t be four concepts such that ax : ay :: az : at, or
equivalently ax ∩ at = ay ∩ az and ax ∪ at = ay ∪ az (the APs between the
subsets of attributes correspond to FAPs in the Boolean lattice of (2A,∪,∩,⊆)).
Thanks to Proposition 2, ax∩at = ay∩az is equivalent to x∨t = y∨z. Moreover,
using Preliminary 1, we have (ax∪at)

↓ = ox∩ot and (ay∪az)
↓ = oy∩oz. Thus,

ax∪at = ay ∪az implies ox∩ot = oy ∩oz. In the case where ox : oy :: oz : ot,
the proof is similar since we also have (ox∪ot)

↑ = ax∩at and (oy∪oy)↑ = ay∩az.
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Comments. The converse is false. Let us consider the following formal context

a1 a2 a3 a4 a5

o1 × ×
o2 × ×
o3 × ×
o4 × × ×

its concept lattice is displayed on Figure 2. Concepts x = ({o1}, {a3, a4}), y =
({o2}, {a1, a3}), z = ({o3}, {a2, a4}) and t = ({o4}, {a1, a2, a5}) are in WAP, due
to Proposition 2. However, the Boolean APs ax : ay :: az : at and ox : oy ::
oz : ot are both false. The WAP between concepts is less restrictive than the AP
between sets of attributes: in a WAP, objects are allowed to possess attributes
which are not shared by any other object concerned in the WAP.

∅
{a1, a2, a3, a4, a5}

{o1}
{a3, a4}

{o2}
{a1, a3}

{o3}
{a2, a4}

{o4}
{a1, a2, a5}

{o1, o2}
{a3}

{o1, o3}
{a4}

{o2, o4}
{a1}

{o3, o4}
{a2}

{o1, o2, o3, o4}
∅

x y z t

z′ t′ x′ y′

>

⊥

Fig. 2. In this lattice, x, y, z and t are in WAP but ax : ay :: az : at and ox : oy ::
oz : ot are both false. Besides, x′, y′, z′ and t′ are in WAP and ox′ : oy′ :: oz′ : ot′

is true, but ax′ : ay′ :: az′ : at′ and the FAP x′ : y′ :: z′ : t′ are both false.

We give now a proposition which leads us to a corollary in which is defined
yet another analogical proportion between formal concepts, the strongest of all.

Proposition 4. Let x, y, z and t be four concepts, if (ax ∪ at = ay ∪ az and
ox ∪ ot = oy ∪ oz) then the FAP x : y :: z : t holds.

Proof. ax ∪ at = ay ∪ az implies that ax = (ax ∩ ay)∪ (ax ∩ az). It results that,

using Preliminaries 1 and 2, ox = (ax)↓ = (ax ∩ ay)
↓ ∩ (ax ∩ az)

↓
. Then,

ox = (ax∨y)
↓ ∩ (ax∨z)

↓
= ox∨y ∩ ox∨z = o(x∨y)∧(x∨z)

and Preliminary 3 permits to obtain x = (x ∨ y) ∧ (x ∨ z).
In a same way, from ox∪ot = oy ∪oz, we get that ox = (ox∩oy)∪ (ox∩oz)

and ax = (ox)↑ = (ox ∩ oy)↑ ∩ (ox ∩ oz)
↑. Then,

ax = (ox∧y)↑ ∩ (ox∧z)
↑ = ax∧y ∩ ax∧z = a(x∧y)∨(x∧z).

Thus, x = (x∧y)∨(x∧z). All the equalities of Definition 2 are similarly checked.
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Corollary 1. Let x, y, z and t be four concepts, the following two conjunctions
are equivalent:

ax ∪ at = ay ∪ az and ox ∪ ot = oy ∪ oz

ax : ay :: az : at and ox : oy :: oz : ot

This characterizes a particular case of FAP between concepts that we call a Strong
Analogical Proportion (SAP). It is denoted x : y SAP z : t. In other words,
four concepts in analogical proportion on attributes and on objects are said to be
in strong analogical proportion.

Proof. Let x, y, z and t be such that ax ∪ at = ay ∪ az and ox ∪ ot = oy ∪ oz,
Proposition 4 implies the FAP x : y :: z : t, and then x : y WAP z : t.
Hence, using Proposition 2, we have ax ∩ at = ay ∩ az and ox ∩ ot = oy ∩ oz.
Consequently, ax : ay :: az : at and ox : oy :: oz : ot. The converse is trivial.

Comments. From Corollary 1, ax : ay :: az : at and ox : oy :: oz : ot imply
the FAP x : y :: z : t. However, the reciprocal is false. Let us consider the
concept lattice displayed in Figure 2: we have the FAP y : > :: ⊥ : z (which is
a CAP) but oy ∪ oz 6= o> ∪ o⊥ and ay ∪ az 6= a> ∪ a⊥.

Example 3. In the Boolean lattice displayed in Figure 1, concepts x, y, u and
v form a FAP but are not in SAP. Indeed, ax : ay :: au : av does not hold.
However, without changing the lattice, the formal context can be reduced to

a1 a2 a3 a4

o1 × × ×
o2 × × ×
o3 × × ×
o4 × × ×

and the reduced representation of x, y, u and v gives (x : y SAP u : v):

a1 a2 a3 a4

ax × ×
ay × ×
au × ×
av × ×

o1 o2 o3 o4
ox × ×
oy × ×
ou × ×
ov × ×

These observations stem from the fact that the FAP and WAP between
concepts are directly related to the lattice whereas the Boolean AP between
object or attribute sets directly depends on the formal context.

4 Formal concepts and relational proportion

4.1 From a RP to concepts in AP

In this section, we study if we can deduce from a relational proportion “A is the
B of a”, or “A is to a as B is to b”, formal concepts in WAP and an analogical
complex from this knowledge.
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As an example, we have found in a web magazine3 the following propor-
tion “Massimiliano Alajmo is the Mozart of Italian cooking”. The background
knowledge allowing to understand this relational proportion is the following: mu-
sic and Italian cooking are disciplines practiced by humans, such disciplines can
be practiced with different levels of ability, Mozart is a musician and Mozart is
a genius in music discipline. Since the quality “to be a genius” is not possessed
by everybody, there must exist many “ordinary gifted” musicians. Then, the
background knowledge can be expressed by the following formal context:

a1 a2 a3

o1 × ×
o2 × ×

where o1 stands for Mozart, o2 for one of “ordinary gifted” musicians, a1 is the
attribute “practices music”, a2 “is a genius” and a3 “has an ordinary ability”.

Now, when the new data “Alajmo is the Mozart of Italian cooking” is intro-
duced, the knowledge extends as follows: Alajmo practices Italian cooking, and
he has something in common with Mozart that is not Italian cooking. The rela-
tional proportion is a reduced form of “Alajmo is to Italian cooking as Mozart
is to music”. Since Mozart has only the other attribute “Genius”, Alajmo must
have it. Moreover, since cooking is a discipline practiced by humans, there must
exist some ordinary gifted Italian cook. At last, we must introduce the notion of
non-genius in our universe. If we do not, we implicitly suppose that everybody
is a genius for some activity. The knowledge is now as follows

a1 a2 a3 a4

o1 × ×
o2 × ×
o3 × ×
a4 × ×

where o3 stands for Alajmo, o4 an ordinary gifted Italian cook and a4 Italian
cooking. This context is called the analogical context. Considering the associated
concept lattice, the closest analogical proportion to “Alajmo is the Mozart of
Italian cooking” is ({o3}, {a2, a4}) : ({o4}, {a3, a4}) WAP ({o1}, {a1, a2}) :
({o2}, {a1, a3}) which translates into “Mozart is to some ordinary musician as
Alajmo is to some ordinary cook”.

More formally, from the relational proportion “o1 is the o2 of a”, we can derive
an analogical context as above. It is composed of objects o1 and o2, described by
four attributes: a is possessed by o1 and not by o2, ã is possessed by o2 and not
by o1, b is possessed both by o1 and o2 and b̃ is some attribute not possessed by
o1 nor o2. Secondly we complete the context with two objects o3 and o4 that are
the complements of o2 and o1 with respect to the four attributes. The resulted
context is the analogical context where a1 = b, a2 = a, a3 = ã and a4 = b̃.

3 http://www.slate.fr/story/43841/massimiliano-alajmo
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4.2 Analogical complex

In the previous paragraph, it turns out that the analogical context is an inter-
esting pattern, from which we can extract relational proportion. A more general
definition of this pattern, named analogical complex, has been given in [7].

An analogical complex is a subcontext of a formal context described by:

× ×
× ×

× ×
× ×

associated with the binary matrix AS =




0 0 1 1
0 1 0 1
1 0 1 0
1 1 0 0


. Matrix AS

exhibits characteristic pattern of a Boolean analogical proportion [2] and is called
an analogical schema. We write AS(i, j) if its value at row i and column j is 1.

Definition 4. Given a formal context (O,A, R), a set of objects o ⊆ O, o =
o1 ∪ o2 ∪ o3 ∪ o4, a set of attributes a ⊆ A, a = a1 ∪ a2 ∪ a3 ∪ a4, and a binary
relation R, the subcontext (o,a) forms an analogical complex (o1,4,a1,4) iff

1. the binary relation is compatible with the analogical schema AS:
∀i ∈ [1, 4], ∀o ∈ oi, ∀j ∈ [1, 4], ∀a ∈ aj , ((o, a) ∈ R)⇔ AS(i, j).

2. The context is maximal with respect to the first property (⊕ denotes the
exclusive or and \ the set-theoretic difference):
∀o ∈ O \ o,∀i ∈ [1, 4], ∃j ∈ [1, 4],∃a ∈ aj , ((o, a) ∈ R)⊕AS(i, j).
∀a ∈ A \ a,∀j ∈ [1, 4], ∃i ∈ [1, 4],∃o ∈ oi, ((o, a) ∈ R)⊕AS(i, j).

An analogical complex is complete if none of sets a1, . . . ,a4,o1, . . . ,o4 are empty.

Comments.

1. In order to simplify the notations, the Cartesian products o1 × . . .× o4 and
a1 × . . .× a4 are respectively denoted o1,4 and a1,4.

2. In [7], it has been shown that the set of the analogical complexes of any
formal context is itself structured as a lattice.

Example 4. Let us consider a subcontext, called SmallZoo, extracted from the
Zoo data base [8], it has been shown in [7] that 24 analogical complexes (18
complete ones) can be derived, like the following complete one:

SmallZoo h
a
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eg
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m
il
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a
ti
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re

d
a
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to
o
th

ed

a0 a1 a2 a3 a4 a5 a6 a7

o0 aardvark × × × ×
o1 chicken × × ×
o2 crow × × × ×
o3 dolphin × × × ×
o4 duck × × × ×
o5 fruitbat × × × ×
o6 kiwi × × ×
o7 mink × × × × ×
o8 penguin × × × ×
o9 platypus × × × × ×

a1 a2 a3 a4

a5 a0 a3 a7 a1 a2 a4

o1
o1 × × ×
o2 × × ×

o2 o5 × × × ×
o3 o8 × × ×
o4 o7 × × × ×
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From the analogical complex structure, we derive a formal definition of a
relational proportion.

Definition 5. Let (o1,4,a1,4) be a complete analogical complex in a formal con-
text, the following sets of objects and attributes are said to be in the formal rela-
tional proportion (o1 is to a3 as o2 is to a2), and we write: (o1 ˜ a3 ˜̃ o2 ˜ a2).

Comments.

1. The reduced form of the relational proportion would be (o1 is the o2 of a3).
2. From the same complex, we can extract the 4 following formal relational pro-

portions
(
o1 ˜ a4 ˜̃ o3 ˜ a1

)
,
(
o2 ˜ a4 ˜̃ o4 ˜ a1

)
and

(
o3 ˜ a3 ˜̃ o4 ˜ a2

)
.

Since the operator ˜̃ is commutative, it gives a total of 8, but permuting
the extreme and the means in a relational proportion may lead to awkward
phrasings.

Example 5. Let us take the complex from SmallZoo described above. It implies
all attributes but a6 (predator) and objects o1 and o2 (chicken and crow), o5
(fruitbat), o8 (penguin) and o7 (mink). From this context, the RP in reduced
form “a fruitbat is the mink of airborne animals” can be derived for instance,
meaning that fruitbat and mink have hair, are toothed and produce milk, but
that the mink is aquatic at the contrary of the fruitbat. Of course, the interest
of such phrases has to be taken in context: the SmallZoo data base is supposed
to be the only knowledge.

4.3 WAP and analogical complex

In this section we explore the links between WAP between concepts and complete
analogical complex, and then the formal relational proportion.

First, we are interested in defining a non degenerated WAP, called complete,
forbidding inclusion between two of its concepts. It is a key notion for building
WAPs between concepts with a sound cognitive interpretation.

Definition 6. Let us consider (x : y WAP z : t), this WAP is complete when

1. either (ax ∩ ay) \ a∩, (ax ∩ az) \ a∩, (ay ∩ at) \ a∩ and (az ∩ at) \ a∩ are
nonempty (called complete WAP through attributes),

2. or (ox∩oy)\o∩, (ox∩oz)\o∩, (oy∩ot)\o∩ and (oz∩ot)\o∩ are nonempty
(called complete WAP through objects).

where a∩ = ax ∩ ay ∩ az ∩ at and o∩ = ox ∩ oy ∩ oz ∩ ot.

Proposition 5. 1. A complete WAP is an antichain of concepts.
2. For a complete WAP through attributes, (x ∨ y), (x ∨ z), (y ∨ t) and (z ∨ t)

are in antichain. Similarly, for a complete WAP through objects, (x ∧ y),
(x ∧ z), (y ∧ t) and (z ∧ t) are in antichain.

3. A FAP in antichain forms a complete WAP through attributes and objects,
and reciprocally.
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Proof. 1. Let us suppose that (x : y WAP z : t) and x ≤ y. From Preliminary 2,
we get ax ∩ ay = ax∨y. Then ax ∩ ay = ay and using Proposition 2

ax ∩ az = (ax ∩ ay) ∩ az = ax ∩ (ay ∩ az)

= ax ∩ (ax ∩ at) = ax ∩ at = a∩ .

Thus, ax ∩ az \ a∩ = ∅ and (x : y WAP z : t) is not a complete WAP.
2. From a complete WAP through attributes, ax∨y = ax ∩ ay and three

analog equalities hold. Due to this completeness, there is no inclusion between
ax∨y, ax∨z, az∨t and ay∨t. The associated concepts are then in antichain.

3. Let us consider the FAP x : y :: z : t where {x, y, z, t} is an antichain.
From Proposition 2, we have x = (x∧y)∨ (x∧ z) and x = (x∨y)∧ (x∨ z) which
are equivalent to ax = ax∧y∩ax∧z and ox = ox∨y∩ox∨z thanks to Preliminary 2.
Similarly, ay = ax∧y ∩ ay∧t and ox = ox∨y ∩ oy∨t and

a∩ = ax ∩ ay ∩ az ∩ at = ax ∩ at

o∩ = ox ∩ oy ∩ oz ∩ ot = ox ∩ ot

due to Proposition 2 and the fact that a FAP is a WAP. Therefore, we have
ax∧y \ (ax ∩ at) ⊆ ax ∩ ay \ a∩. Moreover, ax∧y \ (ax ∩ at) = ax∧y \ ax∨t is
nonempty. Indeed, ax∧y \ax∨t = ∅ implies that x∨ t ≤ x∧y which is impossible
since {x, y, z, t} is an antichain. Similarly, we can prove that ox ∩ oy \ o∩ 6= ∅.

Reciprocally, let us take a complete WAP through attributes and objects.
From the previous properties, {x, y, z, t} is an antichain, as well as {x ∨ y, x ∨
z, y ∨ t, z ∨ t} and {x ∧ y, x ∧ z, y ∧ t, z ∧ t}. Therefore, these 12 concepts are
distinct and it can be proved that they generate a Boolean sublattice. Because
of the distributivity of this sublattice, the WAP (x : y WAP z : t) is then a
FAP.

In order to derive relational proportion from an analogical proportion be-
tween concepts, we consider a complete WAP through attributes (a similar rea-
soning can be done from a complete WAP through objects) and introduce a
process to extract an analogical complex.

Due to the completeness, sets a1 = (az ∩ at) \ a∩, a2 = (ay ∩ at) \ a∩,
a3 = (ax∩az)\a∩ and a4 = (ax∩ay)\a∩ are nonempty. We also define o1 = õx
the set of objects proper to x (that appear in ox but not in the objects of y, z
and t) and similarly o2 = õy, o3 = õz and o4 = õt.

By construction, every object of o1 is in relation with every attribute of
a3∪a4. It is also the case between o2 and a2∪a4, o3 and a1∪a3, o4 and a1∪a2.
For all the other combinations, for instance o1 and a1, for any o ∈ o1, there
exists a ∈ a1 such that o and a are not in relation. However, these properties do
not guarantee that the subcontext (o1,4,a1,4) is an analogical schema, even if it
is a closed schema. Indeed, it can exists an object o ∈ oi in relation with an at-
tribute a ∈ aj , where (i, j) ∈ {(1, 1), (1, 2), (2, 1), (2, 3), (3, 2), (3, 4), (4, 3), (4, 4)}.
In such a case, either a or o is removed and this postprocessing permits to obtain
an analogical schema. But this schema is not necessarily a complex, since the
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associated subcontext may be not maximal. Then a second postprocessing max-
imises the schema into complex, adding new attributes and/or objects chosen
among those which do not appear in ax ∪ . . . ∪ at nor ox ∪ . . . ∪ ot. Finally, we
check that the resulting analogical complexes are complete.

This method can lead to several complexes, according to the choices in both
postprocessings. This set of complexes is a sub-lattice of the lattice of complexes.

Example 6. In SmallZoo, x = ({o1, o2, o4}, {a1, a2, a4}), y = ({o5}, {a0, a3, a4, a7}),
z = ({o4, o8}, {a1, a2, a5}), t = ({o7, o9}, {a0, a3, a5, a6}) are concepts in com-
plete WAP through attributes. At the beginning, o1 = {o1, o2}, o2 = {o5},
o3 = {o8}, o4 = {o7, o9}, a1 = {a5}, a2 = {a0, a3}, a3 = {a1, a2} and a4 = {a4}
and, due to the relation between o9 and a2, the first postprocessing can remove
(either o9 or) a2:

a5 a0 a3 a1 a2 a4

o1 × × ×
o2 × × ×
o5 × × ×
o8 × × ×
o7 × × ×
o9 × × × ×

a1 a2 a3 a4

a5 a0 a3 a1 a4

o1
o1 × ×
o2 × ×

o2 o5 × × ×
o3 o8 × ×
o4

o7 × × ×
o9 × × ×

After removing a2, the right table is an analogical schema and we can check
that it is maximal in SmallZoo. Note that if we had chosen to remove o9, the
postprocessings would have produced the analogical complex previously detailed
in Example 4.

For example, from the complete analogical complex described above, we can
derive the following relational proportion: “the chicken and the crow are to the
feathers as the fruitbat is to the hair, the milk and the teeth”. It makes sense
when considering that all these animals share the attribute “airborne”.

Likewise, another proportion from the same complex is “the fruitbat is to the
airborne animals as the mink and the platypus are to the aquatic animals” (fruit-
bat, mink and platypus share the attributes hair and milk). The reduced form
“the fruitbat is the mink of airborne animals” is the same as that of Example 5,
Section 4.2, although the complexes involved are slightly different.

5 Conclusion

The paper has shown how relational proportions can be identified in a formal
context. Relational proportions offer a basis for concise forms of explanations.
Indeed, if B has some well-known features, the proportion “object A is to at-
tribute a as object B is to attribute b” provides an argument for stating that
“object A is the B of a”, when A possesses these well-known features also, as
in “Carlsen is the Mozart of chess”. It is worth pointing out that two cognitive
capabilities, namely conceptual categorization and analogical reasoning can be
handled together in the setting of formal concept analysis. This introductory
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presentation has left aside the algorithmic side (based on the identification of
formal complexes), which is discussed in the long version of the paper [10].

Our study of proportions between concepts explores a simple and fixed re-
lation between concepts in a single lattice. It would be interesting to connect it
with the general framework of Relational Concept Analysis (see e.g., [11]), and
with a recent proposal based on antichains [12].

Following the pioneering work of Rumelhart and Abrahamson [13], a num-
ber of recent woks in computational linguistics (e.g., [14]) have been using a
parallelogram-based modeling of analogical proportions in numerical settings,
where words are represented by vectors of great dimension. Bridging this compu-
tational view of analogical proportions with the work presented here is certainly
a challenging task for the future.
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Abstract. The Minimal Description Length (MDL) principle is a pow-
erful and well founded approach, which has been successfully applied in
a wide range of Data Mining tasks. In this paper we address the problem
of pattern mining with MDL. We discuss how constraints – background
knowledge on interestingness of patterns – can be embedded into MDL
and argue the benefits of MDL over a simple selection of patterns based
on measures.

1 Introduction

Formal Concept Analysis (FCA) is a formalism that can be applied to Knowledge
Discovery and Data Mining. It is used commonly for solving a wide range of
tasks: from pattern mining to design of ontologies.

Even controlled application of FCA in practice may result in exponentially
large output, which entails additional steps aimed at reducing / selecting a small
subset of concepts. The reduction of the number of formal concepts may be done
during pre-/postprocessing stages.

In this paper we propose to combine two of the most common concept filtering
approaches: the Minimal Description Length principle (MDL) [2, 6, 7, 12] and
measure-based selection [8]. This combination tries to take the advantages of
both methods and reduces the drawbacks of each one.

The idea of MDL is to select a subset of patterns that ensures the best
compression of data. It has been embedded into FCA in a number of ways: for
defining how many factors to use in Boolean matrix factorization (BMF) [3,10,11]
or to get more diverse itemsets in frequent pattern mining (FIM) [1, 9, 13] or
to select triclusters [14]. Being threshold-free, MDL provides a succinct non-
redundant set of concepts. However, it has some shortcomings. Since the length
minimisation is at least NP-complete, the implementation of MDL is based on
heuristics. The selected itemsets cannot be interpreted easily by experts.

Unlike MDL, the selection of itemsets based of values of some measure is
easy to interpret. A measure reflects the assumption on interestingness of pat-
terns. Selecting the best itemsets w.r.t. the chosen measure one obtains patterns
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with the desired characteristics. However, this approach requires threshold and
returns a lot of similar patterns.

In this paper we use the Krimp algorithm as an implementation of MDL
principle to improve measure-based selection. Krimp is based on greedy covering
of data by a set of patterns (subsets of attributes) called candidate set. The
patterns in a candidate set are ordered w.r.t. the pattern length and its frequency.
We propose to use different interestingness measures to order candidates. This
modification allows for embedding background knowledge, i.e., our assumptions
on interestingness. The aim of the ordering w.r.t. different measures is to improve
measure-based pattern selection rather than to compress data the best. Using a
preferable ordering one gets a good compression as well as only those patterns
that satisfy defined constraints.

The rest of the paper has the following structure. In Section 2 we briefly
recall the main notions of FCA. In Section 3 we describe the MDL principle and
discuss how interestingness measures can be used within MDL. The benefits of
our approach are discussed in Section 4, where we compare MDL-based with
threshold-based measure selection. Section 5 gives the conclusion and discuss
the direction of future work.

2 Formal Concept Analysis: Basic Notions

Here we briefly recall FCA terminology [5]. A formal context is a triple (G,M, I),
where G = {g1, g2, ..., gn} is called a set objects, M = {m1,m2, . . . ,mk} is
called a set attributes and I ⊆ G×M is a relation called incidence relation, i.e.
(g,m) ∈ I if the object g has the attribute m. The derivation operators (·)′ are
defined for A ⊆ G and B ⊆M as follows:

A′ = {m ∈M | ∀g ∈ A : gIm}
B′ = {g ∈ G | ∀m ∈ B : gIm}

A′ is the set of attributes common to all objects of A and B′ is the set of objects
sharing all attributes of B. An object g is said to contain a pattern (set of items
or itemset) B ⊆M if B ⊆ g′. The double application of (·)′ is a closure operator,
i.e. (·)′′ is extensive, idempotent and monotone. Sets A ⊆ G, B ⊆M , such that
A = A′′ and B = B′′, are said to be closed.

A (formal) concept is a pair (A,B), where A ⊆ G, B ⊆ M and A′ = B,
B′ = A. A is called the (formal) extent and B is called the (formal) intent of
the concept (A,B). A formal concept is said to cover set of objects A and set
of attributes B. A partial order 6 is defined on the set of concepts as follows:
(A,B) ≤ (C,D) iff A ⊆ C (D ⊆ B), a pair (A,B) is a subconcept of (C,D),
while (C,D) is a superconcept of (A,B).

The number of formal concepts can grow exponentially w.r.t. the size of a
formal context, i.e., the number of objects in G and attributes in M . We say
that a set of patterns S covers objects in G if

⋃
B∈S B

′ = G, where B ⊆M . We
are interested in a small set of patterns (intents) S that covers all objects and
most of their attributes, i.e.,

∣∣⋃
B∈S{gIm | g ∈ B′,m ∈ B}

∣∣ ≈ |I|.
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Example. Let us consider a toy example. A formal context is given in Figure 1 (1).
We consider 3 sets of itemsets (intents): S2 = {{abc}, {bcde}, {de}, {cde}, {ac}},
S3 = {{bc}, {de}, {ac}} and S4 = {{c}, {de}}. The corresponding coverings of
the context are given in Figure 1 (2-4). The intensity of colors is proportional to
the number of times a particular “cross” is covered by intents. In our example
“crosses” are covered by intents from 0 to 4 times. We count not only the number
of intents, but also the number of covered “crosses”, we call this value the rate of
a cover relation, or RCR = |“crosses” that covered at least once|/|I|. It can be
seen from the covering given in Figure 1 that S3 (Figure 1, (3)) provides the best
covering w.r.t. the number of itemsets (intents) and the rate of covered elements
in the object-attribute relation.

a b c d e

1 x x x

2 x x x x

3 x x

4 x x x x

5 x x

(1) A formal
context

a b c d e

1 x x x

2 x x x x

3 x x

4 x x x x

5 x x

(2) Covering of
objects with S2 =
{{abc}, {bcde}, {de},
{cde}, {ac}}.
RCR = 1.

a b c d e

1 x x x

2 x x x x

3 x x

4 x x x x

5 x x

(3) Covering of
objects with S3 =
{{bc}, {de}, {ac}}.
RCR = 1.

a b c d e

1 x x x

2 x x x x

3 x x

4 x x x x

5 x x

(4) Covering of
objects with S4 =
{{c}, {de}}. RCR =
10/15.

Fig. 1. Formal context and its coverings.

The Minimal Description Length principle allows for covering with a sub-
stantial rate of “crosses” in I by a small number of patterns. In the next section
we use MDL in a more general framework, i.e., in pattern mining. Intents of
formal concepts, in turn, can be considered as patterns of a special kind.

3 Minimal Description Length: Basic Notions

MDL is aimed to find a subset of patterns that compresses data the best. In
our study we use Krimp [13] as a practical implementation of this principle. In
Section 3.1 we give a short description of it and in Section 3.2 we discuss how
background knowledge can be embedded into MDL.

3.1 MDL in Practice: the Krimp Algorithm

The input of the algorithm is a dataset and a list of patterns (that are computed
on the same dataset). The patterns are ordered w.r.t. their length and frequency.
The result of Krimp is a two-column code table that consists of patterns and
their encoding lengths (an examples of code tables are given in Figure 2). The
objective of Krimp is minimization of the function

L(D,CT ) = L(D | CT ) + L(CT | D), (1)
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where L(D | CT ) is the length of the dataset D = {g′ | g ∈ G} encoded
with the code table CT and L(CT | D) is the length of the code table CT
computed w.r.t. D. The objects are encoded by disjoint patterns in a greedy
manner, i.e., starting from the top elements of CT. The length of pattern B
is computed using an optimal prefix code given by Shannon entropy, i.e., the
length l(B) = − log (u(B)/U) is inversely proportional to the usage u(B) =
|{t ∈ D | B ∈ cover(t, CT )} |. The usage shows how many times B is used to
cover objects in D, U =

∑
B∈CT u(B) is the total usage of itemsets. We leave

the details on itemset storage out of scope of this paper and take into account the
compression related to a particular choice of itemsets, i.e., we use the simplified
version of the lengths:

L(D | CT ) =
∑

g∈D

∑

B∈cover(g,CT )

l(B) = −
∑

B∈CT

u(B) log
u(B)

U
,

L(CT | D) =
∑

B∈CT

l(B) + code(B).

A code table is incrementally computed. At the beginning it contains only
single-attribute patterns {{m} | m ∈M}. A set of patterns – candidates in the
code table – are ordered w.r.t. their length (intent cardinality) and frequency
(extent cardinality). At each step the best candidate is added to the code table
if its usage allows for smaller encoding length, otherwise it is removed from the
code table and the candidate set.

Example. Let us consider how Krimp selects patterns using the running example
(the context is given in Figure 1, (1)). Here we represent the context as a set of
transactions, see Figure 2, (1). The main stages are given in Figure 2, (2-4). As
candidates we use intents of formal concepts with the size of intent and extent
exceeding 1. We sort them first by the size of intent and then by the size of
extent (in descending order). Let us consider some steps of the algorithm.

Initial state (Figure 2, (2)): the code table consists of single-attribute pat-
terns. Usage is equal to frequency. Sets of attributes in the dataset are covered
by single-attribute patterns.

First step (Figure 2, (3)): An attempt to add the top pattern from the
candidate set. Pattern ac is used to cover object g1, g4 and g5 (Figure 2, (3)),
the usage of single attributes a and c decreases by 3. The description length
(see Formula 1) is computed for the updated code table and covering. Since
the inclusion of ac into the code table provides smaller description length, ac is
accepted for the code table.

Further, the top patterns one by one are used to minimize the description
length.

Last step (Figure 2, (4)): The last candidate bc can cover only object g2 (since
subsets bc are partially covered by other members of the code table). It is not
added since its inclusion in the code table does not provide better compression
(i.e. smaller description length). The subset of MDL-optimal patterns is {{ac},
{de}}.

48



.

CT

IS U

a 3

b 2
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de
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b 2
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ac 3
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b 2

c 1

ac 3

de 3
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Objects Desctiption

g1 acb

g2 bcde

g3 de

g4 acde

g5 ac

(1) A formal context
from Figure 1, (1)
represented as a set of
transactions

Covering

(a)(b)(c)

(b)(c)(d)(e)

(d)(e)

(a)(c)(d)(e)

(a)(c)

(2) Initial state.

Covering

(ac)(b)

(b)(c)(d)(e)

(d)(e)

(ac)(d)(e)

(ac)

(3) The state after
adding ac to the
code table.

Covering

(ac)(b)

(b)(c)(de)

(de)

(ac)(de)

(ac)

(4) The last step.
bc is not added to
the code table.

Fig. 2. The main stages of the Krimp algorithm. “Covering” tables show the dataset
with covering by itemsets from the corresponding code table above the covering, (·)
depicts an itemset that covers some attributes of an object. CT is a two-column code
table, where “IS” and“U” stand for itemsets and their usage in greedy covering, re-
spectively. “CS” is a candidate set.

3.2 MDL in Practice: Compression under Constraints

The implementation of the MDL principle is based on heuristics and allows for
the solution which is close to the optimal one. In practice, there exist several
ways to select subsets of patterns that have almost the same size and ensure
good compression. Thus, it becomes difficult to explain why a particular subset
was chosen.

More than that, by selecting a subset of patterns one is interested in pat-
terns that have particular properties, e.g., being stable w.r.t. noise, have high
probability under certain condition, etc. Despite proper interpretability, the ap-
plication of interestingness measures requires a threshold and results in a re-
dundant set of patterns (quite similar patterns). As interestingness measures of
concept (A,B) we took frequency fr(B) = |A|, i.e. the size of extent, length
len(B) = |B|, i.e., the size of the intent, and lift lift(B) =

∏
b∈B Pr(b)/Pr(B),

where Pr(·) = |(·)′|/|G|.
In our study we combine the measure-based selection with Krimp to get a

threshold-free approach that provides a small non-redundant subset of patterns
having desired properties. The modified approach works as follows. First, all
patterns are sorted w.r.t. chosen interestingness measures. Then the ordered set
is considered as a candidate set. The greedy covering strategy (Krimp) is applied
to select the most interesting and diverse patterns. The original workflow and
the adapted version that is used in the paper are given in Figure 3.
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Original Krimp

Adapted Krimp

Compute
(frequent) patterns

Reorder patterns w.r.t. Apply greedy strategy
to cover datalength and frequency

Compute closed
(frequent) patterns

Reorder patterns w.r.t. Apply greedy strategy
to cover dataan interestingness measure

Fig. 3. The workflow for pattern mining by the original Krimp and its adapted version.

In the next section we show how the embedding of background knowledge
(i.e. reordering of patterns w.r.t. interestingness measures) affects the results of
pattern mining.

4 MDL in Closed Itemset Mining

In the worst case a concept lattice contains an exponential number of partially
ordered intents (concepts), the application of MDL allows for the selection of a
small subset of intents. Our experiments show that the application of the MDL
principle allows for significant reduction in the number of patterns (up to 5% of
the formal concepts, see Table 2). In the context of measure-based pattern min-
ing, the application of MDL makes the measure-based selection threshold-free.
More than that, a set of the MDL-optimal patterns has better characteristics
than the top-n patterns. First of all, almost the same concepts (intents) are
removed from the set of selected patterns. In our experiments we call this prop-
erty “non-redundancy”. For a set of patterns to be “non-redundant” means to
have the following characteristics: differ from the most similar pattern in the set
(i.e., distance to the 1st nearest neighbor), make shallow hierarchy by inclusion
B1 ⊂ B2 ⊂ . . . ⊂ Bn (i.e., average length of the longest paths built from par-
tially ordered itemsets) and do not have a lot of more general patterns Bi ⊂ B,
i ∈ [1, k] (the rate of patterns with children).

If we compare the sets of top-n and MDL-optimal patterns of the same
size we will see, as a side effects of the “non-redundancy”, that MDL-optimal
patterns cover in total more data (“crosses” in a formal context) being diverse
and interesting w.r.t. a given measure.

It is clear to see that MDL approach not only dispenses from predefined
thresholds but also filter out similar interesting patterns and provides more com-
prehensive data description.

We examine the following orders of patterns: area fr lift(B) = fr(B) ·
lift(B), area len fr(B) = len(B) · fr(B), area len lift(B) = len(B) · lift(B)
and sequential ordering by len and fr, len and lift, lift and len (the patterns
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compute
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Fig. 4. The principle of computing MDL-optimal and top-n sets of patterns

are ordered by the chosen measure on Step 1 in Figure 4). An example of ordering
for frequent closed itemsets (frequency is greater than 2) for the running example
is given in Table 1.

Table 1. Values of interestingness measures and ordering of patterns for the running
example from Figure 1, (1). An alternative ordering is given in (·), to select one ordering
among the altervative ones additional rules are required to set.

Concepts
(A,B)

fr
|A|

len
|B|

area
(len ×

fr)

patterns ordered w.r.t.
length and frequency
values of measures

patterns ordered w.r.t.
area len fr

values of measures

({1245},{c}) 4 1 4 {cde}; 3,2 {de} ({ac}, {cde}); 6
({234},{de}) 3 2 6 {de} ({ac}); 2,3 {ac} ({de}, {cde}); 6
({145},{ac}) 3 2 6 {ac} ({de}); 2,3 {cde} ({de}, {ac}); 6
({12},{bc}) 2 2 4 {bc}; 2,2 {c} ({bc}); 4
({24},{cde}) 2 3 6 {c}; 1,4 {bc} ({c}); 4

The discretized datasets from LUCS-KDD repository [4] were used in the
study, the parameters of the datasets are given in Table 2. We split each dataset
into 10 parts and in each of 10 experiments we use 9 of them as a training set
and one part as a test set.

In this section we compare characteristics of MDL-optimal with top-n item-
sets, patterns in both sets are ordered w.r.t. the same interestingness measure.
The size of a set of top-n itemsets is equal to the size of a set of MDL-optimal
patterns. The scheme of computing these sets is given in Figure 4. We com-
pare the sets of patterns within the following properties: non-redundancy, data
covering and representativeness.
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Table 2. Characteristics of datasets

dataset
nmb.
of

obj.

nmb.
of

attr.

nmb.
of

concepts

Number of MDL-optimal
area
fr lift

area
len fr

area
len lift

len
fr

len
lift

lift
len

breast 699 16 702 36.0 32.2 20.4 37.3 37.3 33.5

car 1 728 25 12 420 868.4 849.2 138.6 714.6 847.7 698.3

ecoli 336 29 690 58.8 55.9 16.4 64.9 65.6 55.9

iris 150 19 183 31.1 28.9 12.9 34.8 34.6 26.3

led7 3 200 24 3 808 108.0 118.3 64.2 108.7 108.7 130.3

pima 768 38 2 769 110.1 106.3 35.9 120.6 112.1 101.7

4.1 Non-redundancy

By redundant set of patterns we mean a set of patterns that contains a lot of
similar itemsets. We measure redundancy by three parameters: average distance
to the 1st nearest neighbor, average length of the longest paths built from par-
tially ordered itemsets, and average number of itemsets that have at least one
more general itemset (child).

Distance to the 1st nearest neighbor. To compute this parameter we represent
patterns as binary vectors and take into account the smallest Euclidean distance
between each pattern and the remaining patterns in the pattern set. The average
value for a pattern set is taken as the average distance to the 1st nearest neighbor.
A set containing a lot of similar patterns will have low average values, see Figure 5
(1) for an example.

As it can be seen from Figure 6 (1), the MDL principle provides much more
distinctive itemsets. Top-n concepts have a lot of similar patterns, while MDL-
optimal ones are pairwise distinctive (w.r.t. Euclidean distance).

Average length of the longest paths built from partially ordered itemsets. The
patterns can be partially ordered by inclusion, i.e. B1 ⊂ B2 ⊂ . . . ⊂ Bn, where
Bn is the most specific patters and B1 is the most general one. We call this
ordered sequences paths. If Bn ⊆ g′ then Bi ⊆ g′ is guaranteed for all i ∈
[1, n− 1]. Longer paths contain more patterns describing the same objects. Thus,
a long path can be considered as an indicator of redundancy. In other words,
these patterns characterize the same objects at different levels of abstraction and
contain only a few new details w.r.t. the nearest neighbors in the path. Short
paths correspond to “flat” structures with more varied patterns. An example of
comparison of two tiny pattern sets is given in Figure 5, (2).

As we see in Figure 6 (b), for ordering w.r.t. len (see len fr and len lift) the
MDL priciple does not provide any benefits, while its application to area len sep
and area sep lift, lift len fr allows for more flattened structures, even more
flattened than with len. It means that pattern mining with area len sep and
area sep lift, lift len fr can be significantly improved by the application of
MDL.
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√
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√

2
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√

2
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√

2
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√

2.
(1) Euclidean distances to the 1st nearest neighbors. The average distance for S3 is
longer then for S4, thus S3 contains for diverse patterns.

ac acde

The average length
of the longest paths is 1.

ac

abc

de

cde

bcde

The average length
of the longest paths is 2.5.

(2) The longest paths built on partially ordered patterns (by inclusion).

−− −
bcdeac

The rate of pattern with children is 0.

−− + ++

ac

abc

de

cdedeac bcde

cde, de

The rate of pattern with children is
3/5.

(3) The rate of patterns with children (i.e. more general / short patterns).

Fig. 5. Non-redundancy measures computed for patterns set given in Figure 1. The
set S3 (column 1) is better than S2 (column 2) w.r.t. all the parameters: the average
distance is higher, the average length of the longest paths and the rate of patterns with
children are smaller.
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(1) Distance to the 1NN (2) The average path
lengths

(3) Rate of patterns with chil-
dren.

Fig. 6. Non-redundancy parameters: (1) the average distance to the 1st nearest neigh-
bor for itemsets selected with MDL and top-n itemsets; (2) the average length of the
longest paths computed on the chain of itemsets formed by inclusion of its attributes;
(3) the average rate of itemsets with children. On the X-axis is different orderings of
patterns, on the Y -axis is the values of the listed above non-redundancy parameters
for MDL-optimal set (blue) and top-n (green) set of the same size.

Average number of itemsets with children (more general itemsets). This param-
eter characterizes the uniqueness of patterns in a set, absence of the second
pattern B2 ⊂ B1 that characterizes the same subset as a more specific one. This
parameter is related to the previous measure, but it indicates just an amount
of itemsets having at least one more general itemset. An example of computing
this parameter is given on Figure 5, (3).

The results of experiments (see Figure 6, (c)) show that the MDL principle
selects more distinctive itemsets than top-n itemsets.

4.2 Data coverage

A subset of selected patterns can be considered as a concise representation of
a dataset. Thus, it is important to know how much information is lost by com-
pression. We measure this parameter by the rate of covered attributes. Values
close to 1 correspond to the lossless compression.

The average covering rate is given in Figure 7 (1). With the same number
of patterns MDL ensures better covering. For area fr lift, area len fr and
area len lift MDL-optimal set covers much more data than top-n patterns.

4.3 Itemset typicality (representativeness)

In our experiments we also address typicality of patterns. In this study we mea-
sure it by the usage of patterns. To compute usage we consider the ordered
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(1) Data coverage (2) Itemset typicality

Fig. 7. Pattern set parameters: (1) the average covering rate of itemsets (i.e. the
rate of crosses covered by patterns); (2) the average itemset usage (reflects typical-
ity/representativeness of patterns). On the X-axis is different orderings of patterns,
on the Y -axis is the covering rate and the average itemset usage for MDL-optimal set
(blue) and top-n (green) set of the same size.

patterns (in case of MDL, top patterns are those that have the shortest encod-
ing length, for top-n they are top-patterns w.r.t. a chosen measure). The ordered
patterns are used one by one to cover data. The attributes are covered only ones
(disjoint covering by patterns). The number of times a patterns is used in the
covering is its usage, thus the usage does not exceed the pattern frequency. For
example, in Figure 2 (4), the frequency of bc is 2, but it can be used only one
time to cover (b)(c)(de), since in (ac)(b) only b is left to cover.

It should be noted that it is not obvious which values are better. The usage
serves to characterize a subset of patterns. The high values correspond to a
subset of common patterns, while low values indicates that a subset contains
less typical, but still interesting (w.r.t. interestingness measures) patterns.

Figure 7(2) shows the average usage for MDL-optimal and top-n patterns.
The usage of MDL-optimal patterns is almost the same for different orders while
the usage of top-n is dependent on ordering.

5 Conclusion

In the paper we propose a new approach to the measure-based pattern mining. It
can be considered as an “implementation of the MDL principle under constrains”
or “embedding of background knowledge (on interestingness) into MDL”. We took
the Krimp algorithm as a basic implementation of MDL and studied a range of
interestingness measures within it.
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The proposed approach is a threshold-free method for the selection of a small
set of patterns having desired properties. The chosen patterns are diverse and
varied, they cover almost all attributes of objects.

The studied Krimp algorithm can be changed further to improve (closed)
pattern mining as follows. The greedy strategy may be relaxed, i.e., overlapping
patterns can be used to cover an object. Some additional mechanism may be
proposed to deal with noisy data (missed values).
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Abstract. This article is a sequel to the paper "Blocks of the Direct
Product of Tolerance Relations" [7]. The square cover number of the
direct product of tolerance spaces and the rectangle cover number of the
direct product of formal contexts is treated. Furthermore, we compare
rectangle and square covers of tolerance spaces.
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1 Introduction

A tolerance relation or simply a tolerance is a reflexive and symmetric binary
relation τ on a non-empty finite set V . The pair (V, τ) =: T is called tolerance
space. An introduction to tolerance spaces together with applications can be
found in [10] and [11].

For a tolerance τ on V , a non-empty subset S ⊆ V induces a square in τ if
S × S ⊆ τ . If S is maximal with respect to set inclusion, then S × S defines a
maximal square.

The set of all maximal squares of T is denoted by Sq(T) and determines the
tolerance τ , that is τ =

⋃
Sq(T). But often not all squares are necessary to cover

τ . This motivates the definition of the square cover number, sc(T), of a tolerance
space T, as the minimal number of maximal squares necessary to cover τ .

sc(T) := min{k | ∃ S ⊆ Sq(T), τ =
⋃

S, |S| = k}. (1)

In [7] the direct product (defined in Section 2) of tolerance spaces was treated
by means of formal concept analysis, which lead to the conjecture:

Conjecture 1. Let T1 and T2 be tolerance spaces. For their direct product
T1 ×̌T2 it holds that sc(T1 ×̌T2) = sc(T1) + sc(T2).

When we analysed Conjecture 1, it turned out that it is not valid in general.
Still, we will provide a sufficient condition for this conjecture to hold (Section
5). The meta framework for this will be formal concept analysis, introduced in
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Section 2, together with some tools from graph theory (Section 4). Additionally,
we will treat the rectangle cover number of the direct product of formal contexts
in Section 3 and Section 6 provides example classes of tolerance spaces for which
the square cover number and rectangle cover number are equal. Lastly, Section 7
analyses a construction principle for tolerance spaces, which is based on formal
contexts.

2 Formal Concept Analysis

In this section, we will provide the definitions and facts from formal concept
analysis (see [5]) that will be used in the sequel.

A formal context (or in short context) is a triple K = (G, M, I), where the
incidence I ⊆ G × M is a binary relation. For A ⊆ G and B ⊆ M , we define two
derivation operators:

AI := {m ∈ M | ∀a ∈ A : (a, m) ∈ I} =
⋂

a∈A

{a}I ,

BI := {g ∈ G| ∀ b ∈ B : (g, b) ∈ I} =
⋂

b∈B

{b}I .

If AI = B and BI = A, the pair (A, B) is called a formal concept (or
in short concept) with extent A and intent B. The set of all formal concepts
of K is denoted by B(K) and defines the concept lattice B(K), via the or-
der (A1, B1) ≤ (A2, B2) :⇔ A1 ⊆ A2. The complementary context is defined as
Kc = (G, M, Ic) := (G, M, (G×M)\I) and the dual context as Kd := (M, G, I−1),
with the inverse relation I−1 := {(m, g) ∈ M × G | (g, m) ∈ I}.

Let ∪̇ denote the disjoint union of sets. We define four binary operations on
contexts K1 = (G1, M1, I1) and K2 = (G2, M2, I2).

The direct product K1 ×̌K2 := (G1 × G2, M1 × M2, I1 ×̌ I2 ) with

((g, h), (m, n)) ∈ I1 ×̌ I2 :⇐⇒ (g, m) ∈ I1 or (h, n) ∈ I2,

the cardinal product K1 ×̂K2 := (G1 × G2, M1 × M2, I1 ×̂ I2 ) with

((g, h), (m, n)) ∈ I1 ×̂ I2 :⇐⇒ (g, m) ∈ I1 and (h, n) ∈ I2,

the direct sum K1 ⊕K2 := (G1 ∪̇ G2, M1 ∪̇ M2, I1 ∪̇ I2 ∪̇ G1 × M2 ∪̇ G2 × M1),

and the disjoint union K1 ∪̇ K2 := (G1 ∪̇ G2, M1 ∪̇ M2, I1 ∪̇ I2).
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The two products fulfill De Morgan laws

(K1 ×̌K2)c = Kc
1 ×̂Kc

2 and (K1 ×̂K2)c = Kc
1 ×̌Kc

2, (2)

the relation I1 ×̌ I2 can be expressed as

I1 ×̌ I2 = (G1 × M1) ×̂ I2 ∪ I1 ×̂(G2 × M2), (3)

and we will denote the incidence relation of the direct sum by I1 ⊕ I2.

A context K is crossed, if the adjacency matrix AI of its incidence I has at
least one full row and one full column. If AI has at least one empty row and one
empty column, we say that K is co-crossed. In case of two crossed contexts, we
can express the concept lattice of the cardinal product as the direct product (in
terms of Universal Algebra) of each factors concept lattice (see [3]).

B(K1 ×̂K2) ∼= B(K1) × B(K2). (4)

The concept lattice of the direct sum is isomorphic to the direct product of
each components concept lattice too1.

B(K1 ⊕ K2) ∼= B(K1) × B(K2). (5)

Let P = (P, ≤P, 0P, 1P) and L = (L, ≤L, 0L, 1L) be bounded posets such that
P ∩ L = ∅. The poset S = (S, ≤, 0, 1), with P ∗ := P\{0P, 1P}, L∗ := L\{0L, 1L},
S∗ := P ∗ ∪ L∗, S := S∗ ∪ {0, 1} and ≤:=≤P ∪ ≤L ∪{0} × S ∪ S × {1}, is called
the horizontal sum of (P,L) and is denoted by P +̂L := S.

For the disjoint union of two contexts, the resultant concept lattice is the
horizontal sum of each components concept lattice.

B(K1 ∪̇ K2) ∼= B(K1) +̂B(K2). (6)

Next, since a concept (A, B) with non-empty sets A and B induces a maximal
rectangle A × B in I, we define the rectangle cover number (see also [12]), rc(K),
of a context K as

rc(K) := min{k | ∃ F ⊆ B(K), I =
⋃

(A,B)∈F
A × B, |F| = k}. (7)

The Boolean rank, rB(C), of an n × m Boolean matrix C is the least integer
k such that Boolean m × k and k × n matrices with C = A ◦ B exist (see [1]). In
[1] it is implicitly shown that:

rc(K) = rB(AI). (8)
1 The condition to be crossed is not necessary for Identity 5.
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Lastly, we recall some aspects of dimension theory. For a concept lattice B(K),
its 2-dimension, dim2(B(K)), is the smallest number of chains of cardinality 2 in
whose direct product it can be order-embedded. Since the n-fold direct product of
chains of cardinality 2 is isomorphic to the powerset lattice of the n-element set
n, there exists φ : B(K) → P(n) with (A, B) ≤ (C, D) ⇐⇒ φ(A, B) ≤ φ(C, D).

A Ferrers relation is a relation F ⊆ G×M such that (g, m), (h, n) ∈ F implies
(g, n) ∈ F or (h, m) ∈ F . This is equivalent to B(G, M, F ) being a chain. The
length l of F is defined as l(F ) = |B(G, M, F )| − 1. For a context K its Ferrers
2-dimension, fdim2(K), is the smallest number of Ferrers relations Ft, t ∈ T with
l(Ft) < 2, so that I =

⋂
t∈T Ft.

The above defined dimensions are equal and are related to the rectangle cover
number via the complementary context, that is:

rc(K) = fdim2(Kc) = dim2(B(Kc)). (9)

3 The Rectangle Cover Number of the Direct Product of
Formal Contexts

In this section, we will treat the rectangle cover number of the direct product
of two contexts K1 and K2. From Identity 3, it follows that rc(K1 ×̌K2) ≤
rc(K1) + rc(K2). We will provide a sufficient condition for equality. Therefore,
we will need a proposition about the Ferrers 2-dimension of the direct sum of
two contexts. This proposition and its use in Theorem 1 is inspired by [14].
Proposition 1. For the direct sum of two contexts K1 = (G1, M1, I1) and K2 =
(G2, M2, I2), it holds that fdim2(K1 ⊕ K2) = fdim2(K1) + fdim2(K2).
Proof. The claim follows from Identity 9 with interchanged roles of K and Kc,
and the structure of the relation (I1 ⊕ I2)c depicted in Figure 1.

Fig. 1. The relation I1 ⊕ I2 and (I1 ⊕ I2)c of the direct sum of K1 and K2.

I1 ⊕ I2 M1 M2

G1 I1 G1 ×M2
G2 G2 ×M1 I2

(I1 ⊕ I2)c M1 M2

G1 Ic
1 ∅

G2 ∅ Ic
2

Theorem 1. Let K1 and K2 be co-crossed contexts. For the rectangle cover
number of their direct product it holds that:

rc(K1 ×̌K2) = rc(K1) + rc(K2).
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Proof. First, we notice that Kc
1 and Kc

2 are crossed contexts. From Proposition 1,
and Identity 2, 4, 5 and 9, we conclude that

rc(K1 ×̌K2) = fdim2((K1 ×̌K2)c)
= fdim2(Kc

1 ×̂Kc
2)

= dim2(B(Kc
1 ×̂Kc

2))
= dim2(B(Kc

1) × B(Kc
2))

= dim2(B(Kc
1 ⊕ Kc

2))
= fdim2(Kc

1 ⊕ Kc
2)

= fdim2(Kc
1) + fdim2(Kc

2)
= rc(K1) + rc(K2).

Remark 1. In case that the hypothesis for both factors to be co-crossed does
not hold, the simplest example to consider would be I := ({g}, {m}, {g} × {m}).
It is crossed and for any non-empty context K, it holds that rc(K ×̌ I) = 1 <
rc(K) + 1 = rc(K) + rc(I).

Without providing a formal definition, we restate Theorem 1 for Boolean
matrices. Since in this case the term direct product would not be appropriate,
we will use the established notion Cartesian sum from graph theory (see [9]).
Identity 8 implies:

Corollary 1. Let A1 and A2 be Boolean matrices with at least one empty row
and one empty column. For the Boolean rank of their Cartesian sum it holds that
rB(A1 ×̌ A2) = rB(A1) + rB(A2).

4 Edge Clique Covers of Simple Graphs

In order to analyse the square cover number of tolerance spaces, we will use
some results from graph theory which will be introduced in this section. A graph
is considered as a relational structure G = (V, E) with vertex set V and an
irreflexive, symmetric binary relation E ⊆ V × V . Let Eref denote the reflexive
closure of E. The reflexive closure of G is defined as Gref := (V, Eref). It follows
that the graph Gref defines a tolerance space. On the contrary, let T be a tolerance
space, then GT denotes the underlying graph.

As usual, Kn denotes the complete graph with n vertices and Km,n the
complete bipartite graph with disjoint vertex sets A and B, such that |A| = m
and |B| = n. An n-clique (or just clique) of G is a complete subgraph Kn ≤ G.
Every clique of a graph G induces a clique in the reflexive closure Gref and every
isolated vertex of G induces a 1-clique in Gref . The difference between cliques
and reflexive cliques is that the latter one can be identified with a formal concept
and especially with a maximal square in Eref in the sense of tolerance relations.
Figure 2 provides an example.

61



Fig. 2. The reflexive closure of a 4 cycle is depicted.

a

d

b

c
a b c d

a 0 1 0 1
b 1 0 1 0
c 0 1 0 1
d 1 0 1 0

ref
a

d

b

c
a b c d

a 1 1 0 1
b 1 1 1 0
c 0 1 1 1
d 1 0 1 1

The edge clique cover number of a graph G, θe(G), is the smallest number of
cliques such that their edges cover the edges of G. For a graph with n vertices,
we have that θe(G) ≤ ⌊n2/4⌋, in which equality holds for the graph K⌊n/2⌋,⌈n/2⌉
(see [13]).

θe(K⌊n/2⌋,⌈n/2⌉) = ⌊n2/4⌋. (10)

The following proposition relates θe to the square covering number.

Proposition 2. Let G be a graph and T be a tolerance space. It holds that
θe(G) = sc(Gref) and sc(T) = θe(GT).

Another graph parameter related to cliques is the vertex clique cover number,
θv(G), that is the smallest number of cliques, such that their vertices cover all
vertices of G.

Lastly, we describe the concept lattice of a graph G and the relationship
between graph homomorphisms (edge preserving maps) and certain maps between
concept lattices of graphs. In [15], concept lattices of graphs are studied under the
name neighborhood ortholattice. It is shown that B(G) is a complete ortholattice,
that is a complete bounded lattice with an involutory antiautomorphism c, such
that x ≤ c(x) implies x = 0. We define an abstract orthogonality relation through
x ⊥ y :⇐⇒ x ≤ c(y).

An orthomap between complete ortholattices preserves order and orthogonality,
and maps only the bottom element of the domain lattice to the bottom element
of the codomain lattice. The next theorem relates graph homomorphisms to
orthomaps.

Theorem 2 ([15]). A graph homomorphism from G1 to G2 exists if and only
if there exists an orthomap from B(G1) to B(G2).

Furthermore, it is shown in [15] that the concept lattice of Kn is isomorphic
to the powerset lattice of an n-element set: B(Kn) ∼= P(n).
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5 The Square Cover Number of the Direct Product of
Tolerance Spaces

This section treats Conjecture 1, i.e., for tolerance spaces T1 and T2:
sc(T1 ×̌T2) = sc(T1) + sc(T2).

First, similar to Remark 1, we see that Conjecture 1 is false for an arbitrary
tolerance space T1, and T2 = ({v}, {v}, {v} × {v}). Second, due to Identity 3, it
always holds that sc(T1 ×̌T2) ≤ sc(T1)+sc(T2). The question for which tolerance
spaces equality holds remains. An analogue to Theorem 1 can not exist, since
tolerance spaces, due to their reflexivity, can not be co-crossed.

In order to be able to make use of the the rectangle cover number, we will
relate the square cover number, sc(T), to the rectangle cover number, rc(T).
Since every square is also a rectangle, it holds that for any tolerance space, the
rectangle cover number is less or equal to the square cover number.

rc(T) ≤ sc(T). (11)
But, the reverse inequality is wrong in general. To see this, we notice that

rc(T) = rB(Aτ ) ≤ |V | (see [1]). Consequently, a tolerance space with square cover
number larger than |V | would provide a counter example. From Identity 10 and
Proposition 2, we conclude that 6 = sc(Kref

2,3) > rc(Kref
2,3) = 5 (see Fig. 3).

Fig. 3. The graph K2,3 and the adjacency matrix of Kref
2,3.

v1

v2

a

b

c v1 v2 a b c

v1 1 0 1 1 1
v2 0 1 1 1 1
a 1 1 1 0 0
b 1 1 0 1 0
c 1 1 0 0 1

This motivates the following definition.
Definition 1. We will say that a tolerance space T has the balanced covering
property (in short BCP) if sc(T) = rc(T).

This definition leads immediately to:
Theorem 3. Let T1 and T2 be tolerance spaces with the BCP, such that rc(T1 ×̌T2) =
rc(T1) + rc(T2). It follows that sc(T1 ×̌T2) = sc(T1) + sc(T2).

Proof. It always holds that sc(T1 ×̌T2) ≤ sc(T1) + sc(T2). From the BCP of T1
and T2, and Inequality 11, we conclude the reverse direction

sc(T1) + sc(T2) = rc(T1) + rc(T2) = rc(T1 ×̌T2) ≤ sc(T1 ×̌T2).
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6 Tolerance Spaces with the balanced covering property

In this section, we will provide examples of tolerance spaces which have the BCP.

Example 1. The following is inspired by [8]. A covering H ⊆ P(V ) of V is
irredundant if H\{X} is not a covering of V for any X ∈ H. An irredundant
covering induces the tolerance τH :=

⋃{X×X | X ∈ H} with underlying tolerance
space TH := (V, τH). It follows that sc(TH) ≤ |H|. Since, H is an irredundant
covering, for every X ∈ H there exists v ∈ X, such that X × X is the only
maximal square which is covering (v, v). Hence, the squares X × X with X ∈ H
are mandatory (see [1] for mandatory factors in the sense of factor analysis) for
every covering of τH, which implies sc(TH) = rc(TH) = |H|.

Furthermore, note that tolerances induced by irredundant coverings can be
considered as the reflexive closure of graphs G with θe(G) = θv(G) (see [2]
Theorem 1) and that equivalence relations are a special case of such tolerances.

Next, we will describe the structure of the graphs G = (V, E) whose underlying
relation E is the complement of a tolerance induced by an irredundant covering.

Theorem 4. Let T = (V, τ) be a tolerance space and G = (V, E) the graph
defined through G := Tc. If the tolerance τ is induced by an irredundant covering
H ⊆ P(V ) with |H| = n, then G is a connected graph with Kn as a retract2.

Proof. In [8] it is shown that B(G) is an atomistic boolean lattice if τ is induced
by an irredundant covering. Since we only consider finite tolerance spaces, this
means that B(G) is isomorphic to a powerset lattice. We denote the isomorphism
by Φ and show that it is an orthomap.

Since it is an isomorphism it preserves order and only the bottom element
of the domain lattice is mapped to the bottom element of the codomain lattice.
Consequently, just the preservation of orthogonality is left to show:

x ⊥ y ⇒ x ≤ c(y) ⇒ Φ(x) ≤ Φ(c(y)) = c(Φ(y))3 ⇒ Φ(x) ⊥ Φ(y).

The same holds for the inverse Φ−1 so that we have orthomaps B(G) → P(n)
and P(n) → B(G). Theorem 2 implies the existence of two graph homomorphisms
φ1 : G → Kn and φ2 : Kn → G. Since φ2 must be an embedding, it can be
defined such that φ1 ◦ φ2 = idG holds.

Lastly, we notice that G must be connected. Otherwise B(G) would be equal
to the horizontal sum of the connected components of G (see Identity 6). But
B(G) ∼= P(n) implies that for n ≥ 3 and n = 1, the concept lattice B(G) can not
2 A graph G is a retract of H if there exist graph homomorphisms φ : G → H and
ψ : H → G such that the composite ψ ◦ φ is the identity on G.

3 The last equality is a consequence of the fact that the isomorphic image of an
orthocomplemented lattice is again an orthocomplemented lattice. Just define
c(Φ(x)) := Φ(c(x)). Since the powerset lattice has a unique orthocomplementation,
this is the only possible choise for c.
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be horizontally decomposed. For n = 2, the graph G must have two connected
components such that their concept lattice is a chain. This is a contradiction,
since the underlying relation of a graph can not be a Ferrers relation.

Example 2. In this example we generalize the construction of (K⌊n/2⌋,⌈n/2⌉)ref

(see Section 4 and Figure 3). For this purpose let K be a context. We consider
T := (K∪̇Kd)ref , the reflexive closure of the union of K and Kd. This construction
yields the reflexive closure of a bipartite graph with disjoint vertex sets G and M ,
such that we draw a line from g ∈ G to m ∈ M whenever gIm holds. It follows
that every element of I induces a maximal clique in this bipartite graph and
hence a maximal square in (I ∪̇ I−1)ref (Fig. 4). In [6] the concepts of B(T) are

Fig. 4. The reflexive closure of I ∪̇ I−1, where EX denotes the identity on X .

(I ∪̇ I−1)ref : G M

G EG I
M I−1 EM

characterized. Let {a}, A ⊆ G and {b}, B ⊆ M . The following types of concepts
can occur. First, concepts which represent a row or column in (I ∪̇ I−1)ref ,

({a}, {a} ∪ AI), ({b}, BI ∪ {b}), ({a} ∪ B, {a}), (A ∪ {b}, {b}),

and second concepts from B(K), that is (A, AI), (B, BI), as well as the above
mentioned squares ({a} ∪ {b}, {a} ∪ {b}). It follows that for |G| + |M | < |I|, we
have that rc(T) = |G| + |M | < sc(T) = |I|. In the next step we remove elements
from I until |G| + |M | = |I|, which gives us rc(T) = sc(T) ≤ |G| + |M |. If
|G| + |M | > |I|, it still holds that rc(T) = sc(T).

Finally, we notice that a graph G with Gc = (K ∪̇ Kd)ref consists of complete
graphs K|G| and K|M |, such that their vertices are symmetrically connected
through the context Kc.

Example 3. A further example is the symmetrization Ks of a context K (see
[7]). It is defined as Ks := K⊕Kd = (G ∪̇ M, G ∪̇ M, I ∪ I−1 ∪ G × G ∪ M × M)
(Fig. 5). Every concept (A, B) of K induces a maximal square (A ∪ B) × (A ∪ B).

More generally, every concept of Ks has the form (A ∪ D, B ∪ C), in which
(A, B) and (C, D) are concepts of K. Hence, a minimal rectangle cover of K
induces a set of maximal squares which cover I and I−1, but G × G and M × M
may not be covered. It follows that rc(K) ≤ rc(Ks) ≤ rc(K) + 2 and that rc(K) ≤
sc(Ks) ≤ rc(K) + 2. If sc(Ks) = rc(K), the BCP sc(Ks) = rc(Ks) follows from
Inequality 11.
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Fig. 5. The symmetrization of K.

Ks G M

G G×G I
M I−1 M ×M

A graph G with Gc = K ⊕ Kd consists of two empty graphs on G and M ,
such that their vertices are symmetrically connected via Kc

7 Construction of Tolerance Spaces

In this section, we will analyse a construction principle for tolerance spaces
which is based on formal contexts. Example 2 and 3 suggest that we consider a
triple (A,K,B) with tolerance spaces A = (G, G, α), B = (M, M, β) and a context
K = (G, M, I). That triple defines the tolerance space T := (G∪M, I ∪I−1∪α∪β)
(Fig. 6).

Fig. 6. The triple (A,K,B) defines the tolerance space T.

τ : G M

G α I
M I−1 β

Fig. 7. The bipartite structure of the triple (A,K,B).

... ...

α

β
I

...
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The interaction of α, I and β determines the structure of the tolerance space.
This fact can be interpreted as a bipartite graph defined through I, such that α
and β are tolerance relations on the disjoint vertex sets (Fig. 7). In the context
of clique partitions of graphs, this was already observed in [4].

If I is the empty relation, then rc(T) = rc(A)+rc(B) and sc(T) = sc(A)+sc(B).
For ||G| − |M || ≤ 1 and I = G × M , as well as α, β equal to the identity rela-
tion, the square cover number sc(T) is maximal. In this case, an increase of the
elements of α and β can only reduce the square cover number. Generally, if I
has many edges, more edges in α and β are necessary for a small square cover
number, because one has to connect the edges of I into just a few maximal squares.

For arbitrary I, α and β, we state the following theorem.

Theorem 5. Let (A,K,B) be defined as above. For A, C ⊆ G and B, D ⊆ M ,
let A × B and C × D be subsets of I. If A × C ⊆ α and D × B ⊆ β, then
(A∪D)×(B ∪C) is a rectangle of the underlying tolerance space. This rectangle is
maximal if A, B, C and D are maximal with respect to the above stated inclusions.
For A = C and B = D a (maximal) square is induced.

Proof. If C × D ⊆ I, then D × C ⊆ I−1. The rest of the proof is graphical (Fig.
8).

Fig. 8. The structure of maximal rectangles.

C

A A

B

D

C

D

B

Note that in order to induce a maximal rectangle, neither A × B and C × D
have to be maximal in I, nor A × C and D × B have to be maximal in α and β.

Corollary 2. Let T = (A,K,B) be defined as above. A concept (A, B) ∈ B(K)
induces a maximal rectangle in T if there exists no rectangle C × D ⊆ I such that
A × C ⊆ α and D × B ⊆ β. Furthermore, (A, C) ∈ B(A) and (D, B) ∈ B(B)
induce a maximal rectangle in T if there exist no rectangles A × B ⊆ I and
C × D ⊆ I.
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8 Conclusion

This paper analysed rectangle covers of the direct product of formal contexts. If
the contexts are co-crossed, then the rectangle cover number of the direct product
is equal the sum of each factors’ rectangle cover number.

In the next step, we treated the square cover number of the direct product
of tolerance spaces. If each factor has the balanced covering property (BCP),
which means that its square cover number is equal to its rectangle cover number,
then additivity of the rectangle cover number with respect to the direct product
transfers to the square cover number.

Lastly, we provided a variety of examples for tolerance spaces which have the
BCP, analysed the corresponding graphs and introduced a construction principle
for tolerance spaces based on formal contexts.

Acknowledgments. Finally, we want to express our thanks to the anonymous
referees for their suggestions to improve our paper.
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Abstract. In Formal Concept Analysis, a many-valued context is a col-
lection of objects described by attributes that take on more than binary
values, such as age (as integers or ranges of integer values) or color (a list
or even a hierarchy of color combinations). Conceptual scaling is the pro-
cess by which such a many-valued context is transformed into a formal
context, by associating a concept lattice with the many-valued context.
A many-valued context can be compared to a single table in a relational
database populated with multiple rows and non-binary values. A gener-
alization of conceptual scaling as a relational database as a whole should
take into account the relations between objects, as expressed by means of
foreign keys. Previous approaches to scaling a relational database (e.g.
relational scaling) take such relations into account, but either do not
maintain a separation between objects and values, which is characteris-
tic for the unary case, or result in unary contexts only. In the approach
presented in this paper, the use of n-ary scales is suggested, whereby a
relational database is transformed into a family of n-ary contexts (a so
called power context family). This paper describes the fundamentals of
a Web application that allows connection to a relational database, its
scaling interactively into a power context family, and navigation within
that context family.

Keywords: Formal concept analysis, relational databases, conjunctive
queries, data navigation, power context families, conceptual scaling.

1 Background and Motivation

In a previous paper [12], a variant of Formal Concept Analysis was introduced
that uses conjunctive queries as concept intents, and resulting tables as concept
extents. The resulting complete lattice of these conjunctive-query/table pairs1

is a mathematical model of the information space over a relational database
(accessible through conjunctive querying). Conjunctive queries correspond to a
subset of logical formulas over a relational signature Σ (i.e. Σ is the query vocab-
ulary), and thus have interpretations in a relational structure, which represents
the database.

1 The actual concept lattices have been defined as certain sub-lattices C[{x1, . . . , xn}].
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When representing a database by a relational structure, we have to decide
whether the carrier set should consist of table entries or table rows. The impor-
tance of this decision is that it determines what the query variables represent;
queries will then either be formulated in the domain calculus or in the tuple cal-
culus(cf. [1, p.74]). The domain calculus is a natural choice if all database tables
represent relations (not just technically, but also conceptually) between objects.
We might then employ a simple one-to-one correspondence between databases
and relational structures: the n-column tables are precisely the n-ary relations
in the relational structure, and the query vocabulary Σ is the set of table names,
which are used as n-ary predicates.

In practice, databases are centered around object tables in the ORM-style,
and the above modeling option does not reflect how users conceptualize database
content. Because objects are represented by table rows, these should constitute
the carrier set, so that the relational structure provides interpretations for the tu-
ple calculus (which is also used by SQL [1, p.74]). But, unlike in the hypothetical
case above, there is no immediate suitable choice of relations. While the signa-
ture Σ should express conditions in a WHERE-clause, meaningless comparisons
(e.g. t.age = t.shoe size) should be eliminated in the formation of concepts.

In this paper, we propose a method to build meaningful query vocabulary
around a relational database with reasonable effort. To this end, we utilize an al-
ternative formalization [13] of the conjunctive-query lattice model [12] consistent
with Wille’s concept graphs [18], work which relates FCA to Sowa’s Conceptual
Graphs [17]. In particular, the relational database is represented by a power
context family [18], i.e. by a sequence of formal contexts.

Power context families and relational structures correspond to each other in
an almost trivial way: the columns of the n-th context correspond to n-ary rela-
tions, i.e. its attributes are the n-ary symbols of Σ. But the change of formalism
encourages to think about databases in terms of conceptual scaling [5, Section
1.3]. Conceptual scaling is a method of deriving a formal context from a many-
valued context, which can be seen as a database table with value columns only
(no foreign keys). Huchard et. al. [10] have presented a way to obtain a context
family from a database (a set of many-valued contexts, together with binary
inter-object relations), but only unary contexts (where attributes represent ob-
ject properties) are obtained. The idea of scaling a database into a power context
family has been formulated under the title of relational scaling [14, 8], but the
domain calculus has been used, which may have been the reason for a conflation
of objects and values, in so doing destroying the analogy to conceptual scaling.
Our scaling approach adheres to the analogy by maintaining a clear separation
between objects and values, which in turn leads to generic and reusable scales
so that (after the initial creation of scales) scaling a database can be done on a
point-and-click basis.

Section 2 describes the graph representation of conjunctive queries that is
used throughout this paper. The SQL translation of graphs is detailed in Sect. 3.
The scaling approach is described in Section 4. The scales are not only used for
the creation of the power context family; they define facets, which control the
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user options in a navigation application. Navigation in the power context family
is discussed in Section 5. In this context, we revisit previous work on concept
graphs and propose a new definition.

2 Conjunctive Queries

Conjunctive queries are a natural subset of database queries with nice theoreti-
cal properties [6]. Different representations for conjunctive queries are in popular
use, including tableaux, formulas and Datalog rules [1]. In this paper, we repre-
sent conjunctive queries with windowed intension graphs [13] (similar to concep-
tual graphs [17]). An example windowed intension graph is shown in Fig. 2. This
represents a query for 20th-century-born British authors who published in the
21st century. The rectangles are called object nodes and the rounded rectangles
relation nodes. All object nodes of a query take on the role of variables. Colored
nodes represent the subject(s) of the query; they are called subject nodes. Only
object nodes can be subject nodes. The window represents the choice of subject
nodes; so it can be thought of as a window into the data. Every object node
carries a sort label, and a subject node carries in addition a marker, so that the
combined label is of the form sort/marker. Every subject node is associated with
a column in the result table, and the marker specifies the name of that column.
The available sorts are precisely the table names in the database.

Each relation node is connected to object nodes by n ≥ 1 outgoing arrows,
labeled from 1 to n. A node with n outgoing arrows is said to have arity n. Two
or more arrows may point to the same object node. A relation node carries one
or more labels of the form facet:attribute. An attribute is a name for an n-ary
relation, and a facet acts as a namespace for attributes. The label facet:attribute
states that attribute applies to the objects at the end of the arrow tips (the
i-th arrow points to the i-th argument). If a node label comprises two or more
attributes, they must belong to the same facet.

A relation sort is an n-tuple (s1, . . . , sn) of table names. A facet only provides
attributes of a single relation sort (s1, . . . , sn), which means that its attributes
may only occur on n-ary relation nodes whose i-th arrows point to objects of
sort si (i = 1, . . . , n). The nationality and DOB facets of Fig. 2 provide unary
relations on Authors, pubdate provides unary relations on Books and wrote binary
relations from Authors to Books.

Formally, an intension graph (cf. Fig. 1) is a 4-tuple (V,E, ν, κ) where V is
the set of object nodes, E is the set of relation nodes, ν(e) := (v1, . . . , vn) is the
n-tuple of object nodes connected to e ∈ E, and κ(u) is the label on the node
u ∈ V ∪ E. In the original definition of intension graphs [13], ν was required to
be injective, so it was omitted. This is convenient for theory, but multiple edges
make sense when working with facets.

A windowed intension graph is formalized as a pair (λ,G), where G is an
intension graph and λ : X 9 VG is a partial map from a set X of markers to
the object nodes of G.
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Fig. 1. Intension Graph of the statement “20th-century-born British authors who pub-
lished in the 21st century”

Fig. 2. Windowed Intension Graph of the statement “20th-century-born British au-
thors who published in the 21st century”

id first name last name nationality date of birth

1 Lewis Carroll British 1832-01-27

2 Virginia Woolf British 1882-01-25

3 Douglas Adams British 1952-03-11

4 Neil Gaiman British 1960-11-10

5 J. K. Rowling British 1965-07-31

6 Stephen King American 1947-09-21

7 Dan Brown American 1964-06-22

Author

x1

Neil Gaiman

J. K. Rowling

Result Table

title author publication date

Alice in Wonderland 1 1865-11-26

To the Lighthouse 2 1927-05-05

The Hitchhiker’s Guide to the Galaxy 3 1979-10-12

Trigger Warning 4 2015-02-03

Harry Potter and the Deathly Hallows 5 2007-07-21

The Casual Vacancy 5 2012-09-27

The Shining 6 1977-01-28

Doctor Sleep 6 2013-09-24

The Da Vinci Code 7 2003-03-18

Inferno 7 2013-03-14

Book

Fig. 3. Database for the running example, consisting of tables Book and Author, and
result table for the query in Fig. 2.
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3 SQL Translation

A facet c provides an SQL-interpretation of its attributes by means of a function
Φc, which maps an attribute a to a WHERE-condition Φc(a) in the syntax of the
target database. If the attribute a has sort (s1, . . . , sn), then Φc(a) contains the
placeholders t1, . . . , tn, which have to be replaced by the respective arguments
in every concrete case.

The expressions below interpret the attributes of the graph in Fig. 2 in terms
of the schema of the database in Fig. 3.

Φwrote(wrote) ≡ t1.id = t2.author (1)

Φnationality(GB) ≡ t1.nationality=”GB” (2)

ΦDOB(20C) ≡ t1.date of birth BETWEEN ”1999-01-01” AND ”1999-12-31” (3)

Φpubdate(21C) ≡ t1.publication date BETWEEN ”2000-01-01” AND ”2099-12-31” (4)

To obtain a result table as in Fig. 3, we have to specify in addition how the
objects of each sort (i.e. the rows of each table) are printed. This is achieved by
fixing an output expression Ωs for each sort s. For the sorts of the database in
Fig. 3 we specify

ΩAuthor ≡ CONCAT (t1.first name, ” ”, t1.last name) , (5)

ΩBook ≡ t1.title . (6)

The SQL translation of a windowed intension graph is thus given by a statement
of the following form:

SELECT DISTINCT Ωsort(u1)(u1) AS x1 , ...,

Ωsort(um)(um) AS xm

FROM sort(v1) AS v1 , ...,

sort(vn) AS vn

WHERE Φc1(a1)(v11, ..., v1n1
) AND ...

AND Φck(ak)(vk1, ..., vknk
)

(7)

In eqn. (7), the object nodes are represented by variables v1, . . . , vn, and the
FROM-clause can be seen as a variable declaration, which declares vi to be of
sort sort(vi). In SQL terminology, vi is called a table alias. The WHERE-clause
contains for each attribute cj : aj a WHERE-condition Φcj (aj)(vj1, . . . , vjnj

),
where Φcj (aj)(vj1, . . . , vjnj ) denotes substitution of ti by the applicable table
alias vji. The FROM-WHERE-part realizes the query’s underlying intension
graph (cf. Fig. 1). The SELECT-clause defines an output column for each marker
xi on a subject node ui. In SQL terminology, xi is called a column alias.

So far, result tables display objects, but no values are shown beyond those
that occur in the output expression (cf. Fig. 3). In a navigation application user
interface (cf. Sect. 5), we envision relation nodes as controls to show in addition
(or hide) the column values associated with a facet, by modifying the SELECT-
clause in eqn. (7). These additional columns are not part of the concept extent,
but they are of course informative. In the next section, we make precise how
facets are associated with column values.
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4 Database Scaling

A syntactic interpretation defines the symbols of a given signature by expressions
over another signature (cf. [4]). The attributes provided by a facet c can be
understood as symbols of a relational signature. The SQL-interpretation Φc is in
this sense a syntactic interpretation: namely it interprets the attributes of c in
a given database schema S (which is not exactly a signature, but the database-
theoretic analogue).

Each facet c defines a context Kc. This is how the extension of the attribute
a of Kc is defined:

SELECT Ωs1(t1), . . . , Ωsn(tn)

FROM s1 AS t1, . . . , sn AS tn

WHERE Φc(a)(t1, . . . , tn)

(8)

Using eqns. (5) and (3) in eqn. (8), the 20C column in Fig. 4 is obtained. In
this manner, the contexts for the DOB and pubdate facets (Figs. 4 and 5) can be
derived from the database. The SQL definitions of the attributes 19C, 20C and

DOB

1
9
C

2
0
C

2
1
C

Lewis Carroll ×
Virginia Woolf ×
Douglas Adams ×
Neil Gaiman ×
J. K. Rowling ×
Stephen King ×
Dan Brown ×

Fig. 4. Context for the DOB facet

pubdate

1
9
C

2
0
C

2
1
C

Alice in Wonderland ×
To the Lighthouse ×
Hitchhiker’s Guide ×
Harry Potter 7 ×
The Casual Vacancy ×
Trigger Warning ×
The Shining ×
Doctor Sleep ×
The Da Vinci Code ×
Inferno ×

Fig. 5. Context for the pubdate facet

21, which occur in both contexts, are not defined in the facets. Instead, every
facet imports its attributes from exactly one underlying scale. A scale in FCA is
a formal context which describes values; examples are ordinal scales (Fig. 7) and
nominal scales (Fig. 8) [5]. The scale that underlies the DOB and pubdate facets
is the Centuries scale in Fig. 11. The scales that we use to scale databases (i.e.
generate context families from databases) should describe values that can occur
in a database column; for the Centuries scale, these are ISO 8601 dates. Of course,
it is generally not efficient or even possible to represent scales in the computer
as cross-tables; we would expect the Centuries scale to describe all possible dates
that can occur in a column, and not just the 17 dates of Fig. 11. A scale for a
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database must be able to produce an SQL definition for an attribute. The SQL
definition for the 20C attribute is

z1 BETWEEN ”1999-01-01” AND ”1999-12-31” , (9)

where z1, z2, z3, . . . are variables reserved for values. A facet binds a scale to one
or more columns (each variable zi is bound to a column). The Centuries scale is
a unary scale, so its attributes are described by a single variable z1. The DOB
facet binds z1 to the Author.date of birth column (which yields ΦDOB, cf. (3)),
whereas pubdate binds z1 to Book.publication date. 2. Scales encode the actual
logic, whereas a facet merely translates a relation between values into a relation
between objects, by means of a syntactic substitution that is specified by the
binding. The scale interface and facet class are shown in Fig. 12.

Examples for binary scales are equality scales (Fig. 9), which have been used
in a prototype to generate binary single-column contexts for foreign keys, or
distance scales (Fig. 10), which can be used to measure spatial distance between
objects, or time spans between events. A comparison to the classic unary scales
(Figs. 7 and 8) shows that these binary scales are in the same spirit.

A syntactic interpretation provides, in addition to symbol definitions, a for-
mula that defines the carrier of the derived structure (cf. [4]). In our scaling ap-
proach, this is the object set of the derived context. We call this formula a domain
expression and denote it by Φc(∗), where ∗ is a special symbol. The domain ex-
pression for the contexts in Figs. 4 and 5 is a sort restriction. Ideally, the domain
expression would also be a WHERE-condition, but SQL requires special treat-
ment in this case. However, a WHERE-condition is allowed in addition to the
sort restriction. The domain expression for the wrote facet is ”t1.id=t2.author”,
where t1 is an Author and t2 is a Book. On top of this, the wrote facet uses a dis-
tance scale, bound to Author.date of birth and Book.publication date, to measure
at what age an author wrote a particular book. A facet supports renaming of
attributes to allow for more expressive attribute names than the generic names
provided by the scales. The context derived from the wrote facet is the bottom
context in Fig. 6.

The contexts that are derived from the facets can be assembled into a power
context family (Fig. 6). Working with power context families is more convenient
for mathematical investigations, whereas working with the contexts derived from
the facets (as in Figs. 4 and 5) is more convenient for practical work. As with
the scales, it is not necessary that the power context family, or individual facets,
are explicitly constructed. The power context family has been realized in a pro-
totype as a virtual layer around the database, although the computation of re-
finement options (cf. Section 5) required an additional query, and SQL does not
adequately support all types of scales (such as taxonomies), which may require
post-processing of result tables.

2 Direct specification of Φc(a) in the facet (thus by-passing scales) is not supported.
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Douglas Adams ×
Neil Gaiman ×
J. K. Rowling ×
Stephen King ×
Dan Brown ×
Alice in Wonderland ×
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Lewis Carroll × ×
Virginia Woolf × ×
Douglas Adams × ×
Neil Gaiman × ×
J. K. Rowling × ×
Stephen King × ×
Dan Brown × ×
Alice in Wonderland ×
To the Lighthouse ×
Hitchhiker’s Guide ×
Harry Potter 7 ×
The Casual Vacancy ×
Trigger Warning ×
The Shining ×
Doctor Sleep ×
The Da Vinci Code ×
Inferno ×
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(Lewis Carroll, Alice in Wonderland) × × ×
(Virginia Woolf, To the Lighthouse) × ×
(Douglas Adams, Hitchhiker’s Guide) × × × ×
(Neil Gaiman, Trigger Warning) ×
(J. K. Rowling, Harry Potter 7) × ×
(J. K. Rowling, The Casual Vacancy) × ×
(Stephen King, The Shining) × × × ×
(Stephen King, Doctor Sleep) ×
(Dan Brown, The Da Vinci Code) × × ×
(Dan Brown, Inferno) × ×

Fig. 6. Power Context Family
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Ordinal ≤1 ≤2 ≤3 ≤4 ≤5

1 × × × × ×
2 × × × ×
3 × × ×
4 × ×
5 ×

Fig. 7. Ordinal Scale

Nominal =1 =2 =3 =4 =5

1 ×
2 ×
3 ×
4 ×
5 ×

Fig. 8. Nominal Scale

Equality =

(1,1) ×
(1,2)

(1,3)

(2,1)

(2,2) ×
(2,3)

(3,1)

(3,2)

(3,3) ×

Fig. 9. Equality Scale

Distance =0 ≤1 ≤2

(1,1) × × ×
(1,2) × ×
(1,3) ×
(2,1) × ×
(2,2) × × ×
(2,3) × ×
(3,1) ×
(3,2) × ×
(3,3) × × ×

Fig. 10. Distance Scale

Centuries

1
9
C

2
0
C

2
1
C

1832-01-27 ×
1865-11-26 ×
1882-01-25 ×
1927-05-05 ×
1947-09-21 ×
1952-03-11 ×
1960-11-10 ×
1964-06-22 ×
1965-07-31 ×
1977-01-28 ×
1979-10-12 ×
2003-03-18 ×
2007-07-21 ×
2012-09-27 ×
2013-03-14 ×
2013-09-24 ×
2015-02-03 ×

Fig. 11. Centuries Scale

Fig. 12. The main API functions of the DB-
Facet class and DBScale interface. The in-
ternal representation of scales is up to the
implementation.
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5 Navigation using Projectional Concept Graphs

The ideas of the previous sections can be turned to account in a navigation
application. The viability of its core features has already been explored in a
prototype; a full version will be presented in an upcoming paper.

The application provides for two roles, user and admin. In the admin role,
one can connect to an existing database, view its schema and a list of available
scales, bind scales to database columns (thus scaling the database) and store the
binding, together with the database connection info, in a file (i.e. the database
can be read-only). A binding, together with the database that it references,
constitutes a virtual power context family.

In the user role, one can choose from a list of available power context fam-
ilies to navigate in. Note that the user does not need to know that the power
context family originates from a relational database, and indeed, there could be
different back ends for different sources of data, such as RDF or object-oriented
databases (although we have only worked this out for relational databases with
SQL access). Different user interfaces are possible, but it is instructive to assume
that a conjunctive query looks to the user like the graph in Fig. 2. As mentioned
in Sect. 2, it is formalized by a windowed intension graph (λ,G).

A solution of an intension graph G in a power context family ~K is formalized
by a map ϕ : G → ~K from object nodes to objects (of the context K0). The set of

all solutions is denoted by S(G, ~K). For a windowed intension graph (λ,G), the

rows in the result table are the maps λ ◦ ϕ with ϕ ∈ S(G, ~K). In the following,
we introduce projectional concept graphs as a basic structure for navigation.

Definition 1 (Projectional Concept Graph). A projectional concept graph
is a 5-tuple (V,E, ν, κ, ext~K) comprised of an intension graph G := (V,E, ν, κ)
and its extension map

ext~K(v) := {ϕ(v) | ϕ ∈ S(G, ~K)} (10)

for a given power context family ~K with S(G, ~K) 6= ∅ (i.e. ext~K(v) 6= ∅ for all
v ∈ V ). We call ext~K(v) the node extent of v.

The node extent of the Author node in Fig. 1 is the extent of the windowed
intension graph in Fig. 2. It is thus an extent in the lattice B1(~K) of unary con-

cepts over the power context family ~K (cf. [13]). Therefore, projectional concept
graphs should indeed be considered concept graphs.

Considering node extents rather than whole result tables spares the user
going through large result tables; the navigation approach allows however to
place windows of arbitrary size on the graph, if the specific combinations of
objects in the solution are of interest.

Refinement options are given by a triple (E+, κ+, θ+). For each v ∈ V , E+(v)
is a set of facets for which a new relation node can be connected to v, extending
the graph structure. For each u ∈ V ∪E, κ+(u) is a set of scale concepts which
can replace κ(u). And θ+ is a set of pairs of object nodes in the graph which can
be merged. All refinement options lead to a refined projectional concept graph
that has at least one solution in ~K.
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6 Related Work

Concept graphs and power context families were defined by Wille [18]. Rela-
tional context families, used in Relational Concept Analysis (RCA) developed
by Huchard et. al, [9] are similar to power context families but define different
contexts for objects of different sorts. The contexts derived from facets in this pa-
per represent facets of such sort contexts. Faceted navigation on the basis of FCA
was suggested by Priss [15] and later developed by Eklund and Ducrou [3]. In
RCA, conceptual scaling is generalized to relations but produces unary contexts
only. The idea of scaling databases into power context families was formulated
by Prediger and Wille [14] and expanded on by Hereth [8]. The scales presented
there correspond to facets in our work; a central idea to conceptual scaling, the
translation of properties of values into properties of objects, is not reflected in
this work, but is addressed by the scales in our work.

From the beginning, conceptual graphs have been considered as a database
interface [16]. Their translation into logical formulas, stated by Sowa [17], seems
to imply that an interpretation as conjunctive queries is intended for conceptual
graphs with variables. An SQL translation of Wille’s concept Graphs, which
treats concept graphs as conjunctive queries, is described by Groh and Ek-
lund [7]. Interpretations were provided by a power context family, but it was
encoded in a database (which imposes a particular format), not derived from
the database, so scaling (as we define it here) was not involved. Both object
and relation nodes were considered variables, whereas in the present work, only
object nodes are considered variables.

An intension graph can be thought of as Wille’s abstract concept graph (see
[18, p. 300]). A concept graph (in the standard definition) defines in addition a
realization % which, like the extension map in Def. 1, assigns to each object node
a nonempty set of objects. In a concept graph, the elements of the sets %(v) can
be freely combined to obtain solutions, whereas for projectional concept graphs,
each element of %(v) is part of some solution.

The navigation approach of Sect. 5 has been described in [11]. FCA-based
navigation in relational data is also the subject of [2].

7 Conclusion

This paper describes the fundamental theory of a Web application that allows
connection to a relational database, its scaling interactively into a power con-
text family, and navigation within that context family. The conceptual scaling
approach used is based on a syntactic interpretation of attributes, which results
in an FCA-based method to build suitable query vocabulary around a relational
database. Generic and reusable scales allow easy database scaling on a point-
and-click basis. Scales constitute facets in a faceted-navigation approach based
on projectional concept graphs, which are a new class of concept graphs.
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Abstract. We introduce an order theoretic approach to generalized
metrics that covers various concepts of distance. In particular, we point
out the role of supermodular mappings on lattices, which we then ap-
ply in diverse settings such as comparison of ratings and formal concept
lattices.

Keywords: Generalized metric, supermodular mappings, comparison of
ratings, semimodular lattices, formal concept analysis

1 Introduction

Generalized metrics recently have become of increased interest for modeling di-
rected distances with values in qualitative measurement spaces including ordered
monoids and lattices. In [8] generalized metrics are proposed which turned out to
be relevant for formal concept analysis and closure operators (see [4], [9], [10]).

In this paper, we will apply generalized metrics in order to compare ratings,
that is comparing the rating methodologies of different rating agencies with
different result scales. We analyze suitable result scales for the rating process
and show that ratings are not limited to chain lattices but can as well use
certain semimodular lattices as target. The paper also considers applications to
formal concept analysis covering the extensional as well as the intensional point
of view.

For our approach supermodularity plays an important role, which goes beyond
ideas of measurement associated with Dempster-Shafer-Theory (see [10]).

2 A prior result on generalized metrics

In this section we recall a theorem on generalized metrics (compare [8]). We start
with
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Generalized metrics with applications to ratings and formal concept analysis

Definition 1 ([8]) M = (M, ∗, ε,≤) is an ordered monoid if M := (M, ∗, ε)
is a monoid and (M,≤) is a poset such that a ≤ b implies c ∗ a ≤ c ∗ b and
a ∗ c ≤ b ∗ c, for all a, b, c ∈M .

The class of ordered monoids is quite large. Examples are:

– (R,+, 0,≤) and (R+, ∗, 1,≤) under the natural ordering of the real numbers;

– for any set E, (P(E),∪,⊆, ∅) and (P(E),∩,⊆, E);

– a meet-semilattice (L,∧, 1L,≤L) bounded from above by 1L and a join-
semilattice (L,∨, 0L,≤L) bounded from below by 0L.

In order to distinguish the respective order relations, in the following we will use
the symbol ”≤P” for the order relations of a given poset P and ”≤” of a given
ordered monoid M, respectively:

Definition 2 ([8]) Let P = (P,≤P) be a poset and M = (M, ∗, ε,≤) be an
ordered monoid. A mapping

∆ : ≤P −→M

is called functorial w. r. t. (P,M), if

– for all p ∈ P : ∆(p, p) = ε,

– for all p, t, q ∈ P with p ≤P t ≤P q : ∆(p, t) ∗∆(t, q) = ∆(p, q).

Furthermore, ∆ is called weakly positive, if ε ≤ ∆(p, q) for all (p, q) ∈ ≤P.

In case P = (P,≤P) is a lattice, ∆ is called supermodular w. r. t. (P,M) (resp.
modular), if ∆(p ∧ q, q) ≤ ∆(p, p ∨ q) (resp. equality) holds for all p, q ∈ P .

So far, functorial mappings are only defined on the order relation ≤P ⊆ P×P . In
order to extend functorial mappings from the ordering ≤P to its superset P ×P ,
we need

Definition 3 ([8]) Let P be a set, andM = (M, ∗, ε,≤) be an ordered monoid.
A function d : P × P −→ M is called generalized quasi-metric (GQM) w.
r. t. (P,M), if

(A0) for all (p, q) ∈ P × P : ε ≤ d(p, q)

(A1) for all p ∈ P : d(p, p) = ε

(A2) for all p, t, q ∈ P : d(p, q) ≤ d(p, t) ∗ d(t, q)

If in addition, (A3) holds, d is a generalized metric (GM) w. r. t. (P,M):

(A3) for all (p, q) ∈ P × P : d(p, q) = ε = d(q, p) =⇒ p = q
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It is not quite obvious if functorial maps can be extended from ≤P to the superset
P × P , which gives rise to the following

Question: For a given ∆ : ≤P−→M , does there exist a generalized quasi-metric
d : P × P −→M w. r. t. (P,M) which extends ∆ such that d|≤P = ∆?

We find a positive answer and sufficient conditions in the following

Theorem 1 ([8]) Let P = (P,≤P) be a lattice and let M = (M, ∗, ε,≤) be an
ordered monoid. If a map ∆ : ≤P −→M is weakly positive, supermodular and
functorial w. r. t. (P,M), then

d : P × P −→M, (p, q) 7→ ∆(p ∧ q, q)

is a GQM w. r. t. (P,M).

3 Application to ratings

In this section we formalize the rating process and show how to compare ratings
from different sources.

Let O be a finite set of objects to be rated, prominent examples are financial
entities which issue debt. There are different (credit) rating agencies applying
different ratings, where a (credit) rating is a mapping A : O → C(n):={0, . . . , n}.
”0” represents the lowest (credit) quality, ”n” the highest, and C(n) is called
rating scale. It is clear that C(n) is a complete lattice, naturally and totally
ordered by ”≤”, and n is called length of the chain C(n). Our goal is to compare
the results of two different rating agencies. The two agencies rate the same
objects but they apply different rating methodologies, which leads to the

Question: Given two ratings A and B from different sources, which one is more
progressive?

Progressive in this context means systematically giving a better rating to the
same set of objects. Such ”optimism” might lead to an underestimation of the
underlying risks compared to the less progressive view since the more progressive
view tends to ask for a lower risk premium.

Input: O a set, a finite chain S := C(n) = {0, . . . , n}, two ratings A,B : O → S

Definition 4 (Rating B is progressive given rating A)

D+(A,B) :=
∑

o∈O: A(o)≤B(o)

rank B(o)− rank A(o)

where the natural rank function in a chain is given by rank := s, s ∈ S

We immediately notice:
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– D+(A,B) is well defined and finite if O is finite: since there are only finitely
many objects to be rated, we do not need to worry about non finite or even
non countable sets.

– D+(A,B) ≥ 0

– D+(A,B) = 0 iff ∀o ∈ O : B(o) ≤ A(o)

A little less obvious is the following property: D+(A,B) is ”triangular”, i.e.
∀E : O → S: D+(A,B) ≤ D+(A,E) + D+(E,B). To see this we apply
Theorem 1 as follows:

The set O of all ratings O : A → S is endowed with a natural order: A ≤O B
if A(o) ≤ B(o) for all o ∈ O. We write O = (O,≤O). O is even a lattice where
(A ∨B)(o) = max(A(o), B(o)) and (A ∧B)(o) = min(A(o), B(o)).

For A ≤O E define ∆+ : ≤O→ N ∪ {0} via ∆+(A,E) :=
∑

o∈O rank E(o) −
rank A(o). ∆+ is functorial, since ∆+(A,E) =∆+(A,B)+∆+(B,E) for the
totally ordered triple A ≤O B ≤O E. Since min(a, b) + max(a, b) = a+ b for all
real numbers a, b, ∆+ is even a modular map.

Applying Theorem 1, thus D+, which is the the extension of ∆+, is triangular.

Usually D+(A,B) 6= D+(B,A), i.e. D+ is not symmetric. If D+(A,B) >
D+(B,A) then A is more conservative than B, and B is more progressive than
A. In order to measure a symmetric distance between ratings, we proceed as
follows:

Input: O a finite set, a finite chain C(n), two ratings A,B : O → C(n)

Definition 5 (Distance between ratings A and B)

D(A,B) := D+(A,B) +D+(B,A)

Being the L1-distance of the rankings, D is symmetric: D(A,B) = D(B,A), and
D(A,B) = 0 = D(B,A) if and only if A = B.

We will use D to derive a brute-force algorithm to solve the following issue:
Rating scales do not need to be identical since different raters might use different
rating scales:

Question: how can we compare ratings in case the rating scales are of different
length?

The algorithm we propose will use embeddings (order preserving injections) of
one chain into the other and minimize the distance D over all possible embed-
dings. For example, there are 3 possibilities of embedding C(1) into C(2), and 6
possibilities of embedding C(1) into C(3).

Input: O a finite set, ratings A : O → C(k), B : O → C(n), k, n ∈ N with k ≤ n

Algorithm 1 (Scaling with minimal distance) –
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– Run through all embeddings Ei : C(k)→ C(n)

– Calculate Ei ◦A and D(B, Ei ◦A) for each embedding Ei

– Pick (one of) the Ei with minimal distance D(B, Ei ◦A)

Comments: This algorithm is based on the implicit assumption, that both rating
agencies are subject matter experts and ”know what they are doing”, which is
reflected in building the minimum of the distances over all possible embeddings.
No (subjective) expert opinion or management discretion is needed to decide
before hand on the best possible embedding: instead, the algorithm increases
objectivity in the sense that the best embedding is chosen purely based on the
input data.

4 Generalized targets for ratings

So far, we only have used finite chains - i.e. totally ordered sets - for the rating
process. In this section we will generalize the target sets of the rating process,
another application of Theorem 1 will help us to answer the following

Questions: Are we limited to totally ordered sets? What about more general lat-
tices as target of ratings? Which lattices will work?

The idea is to use Theorem 1 to ”extend” the distances defined above, which
essentially compares positions in a finite chain. To this end, we need

Definition 6 (Jordan-Dedekind chain condition) A poset P is said to sat-
isfy the Jordan-Dedekind chain condition if any two maximal chains between the
same elements of P have the same finite length, where a chain C ⊆ P is called
maximal if, for any chain D ⊆ P , C ⊆ D implies C = D.

If p, q ∈ P with p ≤ q, then p, q are contained in at least one chain in P . In
order to measure a distance ∆ between p and q using the natural rank function
as introduced in Definition 4, we can take any maximal chain between p and
q, and the Jordan-Dedekind chain condition makes sure that this procedure
is independent of choice of the maximal chain, and thus the following is well
defined: ∆(p, q) := length(C) = rank(q) (in C) for any maximal chain C with
p, q ∈ C.

The lattice depicted in Figure 1 violates the Jordan-Dedekind chain condition
and serves as counter example: the chain on the left side yields ∆(x∧y, x∨y) = 2,
the chain on the right would yield 3 as distance ∆ between x ∧ y and x ∨ y.
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x

y

z

x ∧ y = x ∧ z

x ∨ y = x ∨ z

Fig. 1: A lattice violating the Jordan-Dedekind chain condition

Slightly more general formulated, in a poset P with Jordan-Dedekind chain
condition which has a smallest element 0P we can define rank(q) in the same
way for every element q ∈ P as length(C) for any maximal chain containing 0P
and q. This rank function ∆ : P → N ∪ {0} is weakly positive and functorial. If
∆ happens to be also supermodular, then applying Theorem 1 all together we
get

Corollary 1 Let P be a lattice with Jordan-Dedekind chain condition and su-
permodular rank function ∆. Then

d : P × P −→M, (p, q) 7→ ∆(p ∧ q, q)

is a GQM w. r. t. (P,N ∪ {0}). Furthermore, given two ratings A,B : O → P ,

D+(A,B) :=
∑

o∈O: A(o)≤B(o)

rank B(o)− rank A(o)

is a also a GQM w. r. t. (O,N ∪ {0}).

Remark: The Jordan-Dedekind chain condition per se is not enough, as we can
deduct from the lattice depicted in Figure 2.
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p ∧ t

p ∧ q q ∧ t

p q t

d(p, t) = rank(p)− rank(p ∧ t) = 3− 0 = 3

d(p, q) = rank(p)− rank(p ∧ q) = 3− 2 = 1

d(q, t) = rank(q)− rank(q ∧ t) = 3− 2 = 1

Hence, d(p, t) = 3 > 2 = d(p, q) + d(q, t), and d is
not a triangular metric.

Fig. 2: A complete lattice satisfying the Jordan-Dedekind chain condition but bearing
a non triangular metric based on the rank function

So with the help of Corollary 1 we can give a positive answer: not only sim-
ple chains are suitable targets for the rating process, much more, there is the
huge class of lattices which allow for a (finite) Jordan-Dedekind chain condi-
tion together with a supermodular rank function as rating targets. In particular,
modular lattices of finite length will work very well, where a lattice is called
modular if it does not contain a sublattice of the form in Figure 1.

But we are not limited to modular lattices. In Figure 3 there is an example of a
lower semimodular lattice which is not modular.

a ∧ b

cb

a

a ∨ b

1

Fig. 3: A non modular lattice satisfying the Jordan-Dedekind chain condition

A lattice L is called lower semimodular if ∀a, b ∈ L : b <· a ∨ b ⇒ a ∧ b <· a,
where we write a <· b if a < b and a < x ≤ b implies x = b. Every modular
is lower semimodular, but the converse is obviously not true. In particular, the
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rank function of the lattice depicted in Figure 3 is only supermodular but not
modular since rank(b)+ rank(c) = 2 < 3 = rank(1) = rank(b∨ c)+ rank(b∧ c).

This behavior of the rank function is somewhat typical, as we can see by the
following characterization of lower semimodular lattices:

Theorem 2 Let L be a lattice bounded from below such that any chain between
any two elements of L is finite. L is lower semimodular if and only if L possesses
a rank function r such that ∀x, y ∈ L:

rank(x) + rank(y) ≤ rank(x ∨ y) + rank(x ∧ y).

L is modular if and only if ∀x, y ∈ L :

rank(x) + rank(y) = rank(x ∨ y) + rank(x ∧ y).

Proof: this is the dual version of Theorem 2.27 from [1].

So lower semimodular lattices, bounded from below such that any chain between
any two elements is finite, are exactly the appropriate class of lattices for our
purposes.

Furthermore, we can generalize the scaling Algorithm 1 to this class of lattices
using rank preserving mappings, where a mapping ϕ between two lattices L and
L′, which both possess a well-defined rank function, is called rank preserving if
rank(u) ≤ rank(v) implies rank(ϕ(u)) ≤ rank(ϕ(v)) for all u, v ∈ L.

Input: O a finite set, ratings A : O → L, B : O → L′ for lower semimodular
lattices L,L′, where the finite number of elements of L′ is denoted by n, and k
denotes the number of elements of L such that k ≤ n.

Algorithm 2 (Extended scaling with minimal distance) –

– Run through all rank preserving injections Ei : L→ L′

– Calculate Ei ◦A and D(B, Ei ◦A) for each embedding Ei

– Pick (one of) the Ei with minimal distance D(B, Ei ◦A)

Actually, this algorithm is the same as Algorithm 1, but applied to rank pre-
serving injections instead of order preserving embeddings.

An example with only two rank preserving injections is depicted in Figure 4.
Should we pick ϕ(1) = a and ϕ(2) = b or should we opt for the other possibility
ϕ(1) = b and ϕ(2) = a? Based on data, we would pick the possibility with the
minimum distance.
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3

2

1

0

L
0

a b

3

L′

Fig. 4: Lattices L,L′ which allow only for two rank preserving injections ϕ : L→ L′

5 Application to concept lattices

In order to keep the paper self-contained, we give a very short summary of formal
concept lattices:

A formal context is a triple K = (G,M, I), where G is a set of objects, M is a
set of attributes, and I ⊆ G ×M is a binary incidence relation that expresses
which objects have which attributes. For subsets X ⊆ G of objects and subsets
Y ⊆M of attributes, one defines the following mappings between the power sets
of G and M :

– G ⊇ X 7→ X. = {m ∈M : (x,m) ∈ I for every x ∈ X}, and dually

– M ⊇ Y 7→ Y / = {g ∈ G : (g, y) ∈ I for every y ∈ Y }.
Clearly, X1 ⊆ X2 implies X.

1 ⊇ X.
2 and Y1 ⊇ Y2 implies Y /

1 ⊆ Y /
2 . By a formal

concept of the context K is understood a pair (X,Y ) with X ⊆ G, Y ⊆M such
that X. = Y and Y / = X. The set X is called the extent of the concept, and
the set Y is referred to as intent of the concept. (X1, Y1) is called a subconcept
of (X2, Y2) if X1 ⊆ X2, and we write (X1, Y1) � (X2, Y2). The class BK of all
formal concepts of a given context K turns out to be ordered by �, and even to
be a complete lattice (cfr. Theorem 3 in chapter 1 of [9]), where supremum resp.
infimum of two formal concepts are defined by

– (X1, Y1) ∨ (X2, Y2) = ((X1 ∪X2)./, Y1 ∩ Y2), resp.

– (X1, Y1) ∧ (X2, Y2) = (X1 ∩X2, (Y1 ∪ Y2)/.)

The lattice BK is called concept lattice of the context K = (G,M, I).

One consequence is that the mapping G ⊇ X 7→ X./ ⊆ G is a closure mapping,
and therefore #(X) ≤ #(X./), where #(A) is the count measure of a set A, i.e.
counting the number of elements of A. After these preparations we can derive

Proposition 1 For α := (A1, A2), β := (B1, B2) ∈ BK with α ≤ β, the map

∆ : ≤BK−→ N ∪ {0}, (α, β) 7→ ∆(α, β) := #(B1 −A1). (1)

is functorial, weakly positive and supermodular.
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Proof. Let γ := (C1, C2) such that α ≤ β ≤ γ.

– Firstly, we can calculate

∆(α, γ) = #C1 −#A1

= (#C1 −#B1) + (#B1 −#A1)

= ∆(β, γ) +∆(α, β).

Secondly, we see that

∆(α, α) = #(A1 −A1) = #∅ = 0.

Hence, ∆ is functorial.

– ∆ is weakly positive, since 0 ≤ ∆(α, β) holds for all α, β ∈ BK.

– To show that ∆ is supermodular, we start to calculate ∆(α ∧ β, β) and
∆(α, α ∨ β) separately:

∆(α ∧ β, β) = ∆
(
(A1 ∩B1, (A2 ∪B2)/.), (B1, B2)

)

= #
(
B1 − (A1 ∩B1)

)

= #B1 −#(A1 ∩B1).

∆(α, α ∨ β) = ∆
(
(A1, A2), (A1 ∪B1)./, A2 ∩B2)

)

= #
(
(A1 ∪B1)./−A1))

= #
(
A1 ∪B1)./

)
−#A1.

Consequently, since X 7→ X./ is a closure mapping:

∆(α ∧ β, β) = #B1 −#(A1 ∩B1)

= #(A1 ∪B1)−#A1

≤ #
(
A1 ∪B1)./

)
−#A1

= ∆(α, α ∨ β).

Hence, ∆ is supermodular. 3

All together, we now can introduce a generalized metric for concept lattices as
follows:

Theorem 3 Let ∆ be as in (1) and α := (A1, A2), β := (B1, B2) ∈ BK.

Then the map

d : BK×BK −→ N ∪ {0}, (α, β) 7→ d(α, β) := ∆(α ∧ β, β)

is a GM.
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Proof. This is a consequence of Proposition 1 together with Theorem 1. 3

In our considerations we have focused on the extent. Likewise, there is also an
intensional point of view for generalized metrics. In general, there are always
two types of generalized metrics:

1 dext(α, β) := #(B1 −A1)

2 dint(α, β) := #(B2 −A2)

6 Conclusions

– In order to compare ratings, we propose a sound directed metric in order to
measure how progressive or conservative ratings are.

– Scaling: For chains S, S′ of different size we propose an algorithmic solution.

– Posets as target: As target other then simply chains there is the huge
class of lattices which allow for a (finite) Jordan-Dedekind chain condition
together with a supermodular rank function. In particular, lower semimod-
ular lattices of finite length will work very well. Also, our scaling algorithm
based on minimal distances extends to this class of lattices.

– Formal concept analysis: Our concept of generalized metrics carries over
to concept lattices, where we can cover the extensional as well as the inten-
sional point of view.
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Abstract. A concept lattice is said to be binary if every formal concept
covers at most two other concepts and is covered by at most two. These
particular lattices can be seen as a generalization of decision trees (which
rely on binary yes/no decisions). A non-binary lattice is binarizable if and
only if it can be embedded into a binary lattice. We show in this paper
that crown-free lattices are exactly binarizable ones. We also provide an
algorithm which binarizes any crown-free concept lattice by adding and
modifying a minimum number of concepts.

Keywords: crown-free lattice, formal concept analysis, decision systems

1 Introduction

Binary decision systems (choosing one among two possibilities) are usually more
interpretable and clearer than more complex systems (choosing one among k)
and for many data structures, the binary case is the standard case. For instance,
in machine learning, decision trees [3] can be de�ned with any number of children
per nodes, but one generally uses binary decision trees.

Moreover, the use of decision trees for prediction can be seen as recursively
asking whether a particular individual has or not a chosen attribute hence nodes
can be seen as sets of individuals sharing some attribute(s). As formal concepts
are elements of concept lattices which also represent objects with common at-
tributes, concept lattices and decision trees are strongly linked : concept lattices
can be seen as a collection of overlapping decision trees [2].

We study binary lattices associated with formal contexts. By binary, we mean
a concept lattice such that each formal concept covers at most two other concepts
and is covered by at most two concepts. We will focus on binarizable lattices,
i.e. lattices which can be embedded into a binary lattice. This is similar to
the transformation of a non-binary node in a decision tree into an equivalent
sequence of binary nodes. In a concept lattice, this amounts to adding some new
formal concepts and modifying some existing concepts by adding some objects
and/or attributes.

We show in this paper that binarizable lattices are exactly crown-free lattices.
Crown-free lattices are an interesting case of lattices as they only have a poly-
nomial number of elements, admit strong properties and a convenient graphical
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representation [4], [5]. These lattices are equivalent to totally balanced hyper-
graphs which can be seen as a generalization of trees (they are hypergraphs with
no special cycle) and can be characterized by a sequence of trees [7].

This paper is organized as follows: the next section contains basic results and
de�nitions linked to crown-free lattices and formal concept analysis. Section 3
presents our algorithm of binarization of a crown-free set system used to prove
the equivalence between crow-free and binarisable lattices. Section 4 gives an
illustrative example of binarization applied to formal concept analysis. Finally,
Section 5 concludes and gives some topics of future research.

2 Preliminaries

In this paper, all the sets, posets and lattices are �nite.
A poset (partially ordered set) is a pair (A,≤) such that A is a nonempty set

and ≤ a re�exive, antisymetric, transitive binary relation on A. (A,≥) is called
the dual of (A,≤).

De�nition 1. A poset (A,≤) can be embedded into a poset (B,≤) if there exists
f : A→ B such that for all A1, A2 ∈ A, A1 ≤ A2 if and only if f(A1) ≤ f(A2)

In a poset (A,≤), we note ≺ the covering relation : ∀U, V ∈ A, U ≺ V (V
covers U or U is covered by V ) if and only if U < V and @X ∈ A, U < X < V .
One can then represent a poset by its Hasse diagram. On such a diagram, each
element of A is represented by a node and U, V ∈ A are linked by a segment
going upward if and only if U ≺ V .

A poset (L,≤) is a lattice if inf{U, V } (the largest element that is smaller
than or equal to U and V , written U ∧ V and also called the meet of U and V )
and sup{U, V } (the smallest element that is larger than or equal to U and V ,
written U ∨ V and also called the join of U and V ) exist for all U, V ∈ L.

In formal context analysis, a formal context is a triplet K = (G,M, I) with
G a set of objects, M a set of attributes and I ⊆ G×M a binary relation.

De�nition 2. A formal concept associated with a formal context K = (G,M, I),
is a pair (A,B) with:

� A ⊆ G, B ⊆M
� {y ∈M |∀x ∈ A, xIy} = B
� {x ∈ G|∀y ∈ B, xIy} = A

A is called an extent and B is called an intent.

The concept lattice LK associated with a formal context K is the lattice
of all concepts of the formal context with (A1, B1) ≤ (A2, B2) if and only if
A1 ⊆ A2 and B2 ⊆ B1. An example of a concept lattice is represented in Figure
1 with blue semicircles representing attributes and black semicircles representing
objects and Table 1 gives the concepts of this formal context. We will call extent
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(∅, {c1, c2, c3, c4, c5, c6, c7, c8})
({r2}, {c6, c7, c8})
({r1}, {c3, c4, c5})
({r3}, {c2, c3, c4, c6, c8})
({r5}, {c1, c2, c3})
({r2, r4}, {c7, c8})
({r2, r3}, {c6, c8})
({r1, r3}, {c3, c4})
({r3, r5}, {c2, c3})
({r2, r3, r4}, {c8})
({r1, r3, r5}, {c3})
({r1, r2, r3, r4, r5}, ∅)

Table 1: Example of formal
concepts (associated with Ta-
ble 2)

c1 c2 c3 c4 c5 c6 c7 c8
r1 × × ×
r2 × × ×
r3 × × × × ×
r4 × ×
r5 × × ×

Table 2: Example of a
cross table associated
with Table 1

lattice of a concept lattice the lattice (A,⊆) with A the set of extents of the
formal concepts and intent lattice the lattice (B,⊆) with B the set of intents.
These two lattices are the dual of each other and the concept lattice can be seen
as merging them hence working on the intent lattice or on the extent lattice is
equivalent to working on the concept lattice.

The intent lattice and the extent lattice of a concept lattice are lattices whose
elements are subsets of the same set. They are set systems.

De�nition 3. S is a set system on a set V if :

� S ⊆ 2V ,
� S is closed under intersection (i.e. A ∈ S,B ∈ S =⇒ A ∩B ∈ S),
� S has a minimum and a maximum element.

Note that all the de�nitions given in this paper for lattices (embdedded, binary,
crown-free, ...) can be extended to set systems as for a given set system S, (S,⊆)
is a lattice.

Formal contexts can also be represented as matrices, rows being the objects
and columns the attributes they can have. Table 2 gives the matrix associated
with the concept lattice of Figure 1 (with 1 replaced by × symbols and 0 replaced
by a blank for readability purposes).

Moreover, every �nite lattice L = (L,≤) can be associated with a formal
context KL ([1], [6]) such that its concept lattice LKL is equivalent to the initial
lattice.

We will focus on a particular type of lattices : crown-free lattices (i.e. lattices
with no crown).

De�nition 4. A crown is a poset (X1, X
′
1, . . . , Xn, X

′
n) such that for all i ≥ 2,

Xi < X ′i−1, Xi < X ′i and X1 < X ′n, X1 < X ′1 and there is no other comparability
relation between these elements.
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⊥

r2

r1

c5

r3 r5

r4

c7

c6 c4 c2

c8 c3

>

Fig. 1: Concept lattice associated with the formal context of Table 2

The Hasse diagrams of a 3-crown and of an n-crown are given in Figure 2.
The concept lattice represented in Figure 1 does not contain any crown. One can
remark that if (L,≤) is a 3-crown free lattice, for all A,B,C ∈ L, A ∧ B ∧ C ∈
{A ∧B,A ∧ C,B ∧ C}.

X ′1 X ′2 X ′3

X1 X2 X3

(a) 3-crown

X ′1 X ′2 X ′n−2 X ′n−1 X ′n

X1 X2 X3 Xn−1 Xn

......

(b) n-crown

Fig. 2: Hasse diagram of a crown

3 Binary lattices and crown-free lattices

In binary decision trees, each internal node has exactly two children. More gen-
erally, binary trees are trees such that each node has at most two children.
Moreover the structure of tree implies that every node has only one parent.
The use of a decision tree is based on the simple idea to ask successive yes/no
questions about an individual in order to classify it according to the known in-
dividuals. We extend the de�nition of these binary structures to lattices, taking
into account that elements of a lattice can be covered by more than one element.
In these structures, yes/no questions about a single attribute are replaced by a
question about two di�erent attributes. An object can then have only one of the
two attributes or both of them.
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De�nition 5. Let L = (L,≤) be a �nite lattice. L is said to be binary if

∀v ∈ L, v 6= ⊥ =⇒
{
|{u ∈ L | u ≺ v}| ≤ 2
|{w ∈ L | v ≺ w}| ≤ 2

If only the �rst condition is respected, L is said to be lower-binary.

We will characterize binary lattices and those which can be embedded into a
binary lattice.

De�nition 6. Let L = (L,≤) be a �nite lattice. L is binarizable if and only if
there exists a lattice L′ = (L′,≤) such that L can be embedded in L′ and L′ is
binary.

We will �rst prove that binarizable lattices are crown-free (Proposition 8).
The intuition of this result can be summarized as follows : considering an element
Y covering more than three elements, in an attempt to binarize the lattice, Y
would cover two elements Y ′ and Y ′′ which must be the joins of the incomparable
elements they cover. We show that in a crown, Y ′ = Y or Y ′′ = Y which is not
possible. The intuition is easy to understand on a 3-crown. For example in Figure
2, it is impossible to create the union of X ′1 and X ′2 without X ′3.

Property 7. Let L = (L,≤) be a �nite lattice and X1, X
′
1, . . . , Xn, X

′
n ∈ L. If

(X1, X
′
1, . . . , Xn, X

′
n) is a crown of L then (X1, X1 ∨X2, . . . , Xn, Xn ∨X1) is a

crown of L.

Proof. We show that Xi ∨Xi+1 ‖ Xj for all j 6= i, i+1 mod n. Indeed, Xi ‖ Xj

and Xi+1 ‖ Xj by de�nition of a crown hence Xi ∨ Xi+1 � Xj . Moreover
Xj ‖ X ′i by de�nition of a crown. Yet for all i ≤ n, Xi ≤ X ′i and Xi+1 ≤ X ′i
hence Xi ∨Xi+1 ≤ X ′i. Hence Xj � Xi ∨Xi+1. Hence Xj ‖ Xi ∨Xi+1. ut

We will therefore only consider cycles of the form (X1, X1∨X2, . . . , Xn, Xn∨
X1) in the proofs.

Proposition 8. Let L = (L,≤) be a �nite lattice. If L is binarizable then L is
crown-free.

Proof. We �rst show that any binary lattice is crown-free by induction on the
size of the crown. Suppose (L,≤) is a binary lattice containing a 3-crown. Let
(X1, X1 ∨X2, X2, X2 ∨X3, X3, X3 ∨X1) a 3-crown and Y = sup(X1, X2, X3) =
sup(X1∨X2, X2∨X3, X3∨X1). (L,≤) is binary so Y covers at most two elements
Y ′ and Y ′′ and {Xi ≤ Y ′ ∪ Y ′′} = {X1, X2, X3}. Y is the supremum of X1 ∨
X2, X2 ∨X3, X3 ∨X1 and Y ′ ≺ Y, Y ′′ ≺ Y hence, by the pigeonhole property,
we can suppose without loss of generality that X2 ∨X3 ≤ Y ′ and X3 ∨X1 ≤ Y ′.
Hence X1 < Y ′ and X2 < Y ′ so X1 ∨ X2 ≤ Y ′ hence Y ′ ≥ Y which is a
contradiction.

Suppose that any (L,≤) containing a crown of size inferior or equal to n− 1
(with n > 3) is not binary. Let (L,≤) a binary lattice containing an n-crown.
Let (X1, X1 ∨X2, . . . Xn, Xn ∨X1) a crown and Y = sup(X1, . . . Xn). (L,≤) is
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Y

X1 X2

...
Xn−1 Xn

(a) Initial con�guration

Y

X1

... ......

Xi ∪Xj

Xi Xj Xn

(b) Example of �rst step

Fig. 3: Binarization

binary hence Y covers at most two elements Y ′ and Y ′′. Y = sup(X1, . . . , Xn)
hence 1 ≤ |{Xi ≤ Y ′|i ≤ n}| < n and 1 ≤ |{Xi ≤ Y ′′ | i ≤ n}| < n. Y is
binary hence {Xi ≤ Y ′ | i ≤ n} ∪ {Xi ≤ Y ′′ | i ≤ n} = {Xi | 1 ≤ i ≤ n} so we
can suppose without loss of generality that |{Xi ≤ Y ′ | i ≤ n}| ≥ 2. Suppose
moreover that X1 � Y ′. Let j = min{i ≤ n | Xi ≤ Y ′} and j′ = max{i ≤
n | Xi ≤ Y ′}. (Xj′ , Xj′ ∨ Xj′+1 mod n, Xj′+1 mod n . . . , Xn, Xn ∨ X1, X1, X1 ∨
X2, X2 . . . , Xj , Y

′) is a crown of size inferior or equal to n − 1 and superior to
3. Indeed for all i < j and for all i > j′, Xi � Y ′. Hence the lattice has a crown
of size inferior or equal to n− 1 hence by induction hypothesis the lattice is not
binary.

By de�nition of embedding and of a crown, for all lattice (L,≤) containing a
crown, if (L,≤) can be embedded in (L′,≤) by a function f , then (X1, X

′
1, . . . Xn,

X ′n) is a crown in (L,≤) if and only if (f(X1), f(X
′
1), . . . , f(Xn), f(X

′
n)) is a

crown in (L′,≤). By the previous result, if (L′,≤) has a crown then (L′,≤) is
not binary hence if (L,≤) has a crown, (L,≤) is not binarizable.

In this proof we only used the fact that for all Y in a binary lattice, Y covers
at most two elements. If Y is covered by more than 3 elements, the same proof
can be applied to the dual of the lattice in which Y covers more than 3 elements.

ut

We will now show that any crown-free lattice can be embedded in a binary
lattice (Proposition 14). We will work on set systems associated with lattices
and use Algorithm 1 in order to transform any crown-free set system into a
lower-binary set system. Each non-binary element is transformed into a binary
one by creating unions of some of the elements it covers. In order to keep the
closure under intersection of the set system, the elements used to created the
new elements have to be chosen wisely.

De�nition 9. Let {X1, . . . , Xn} be a set of incomparable subsets of the same
set. Xi and Xj are said to be of maximal intersection among {X1, X2, . . . Xn}
if and only if there does not exist k 6= i, j such that Xi ∩ Xj ( Xi ∩ Xk or
Xi ∩Xj ( Xj ∩Xk.

One step of the process is illustrated in Figure 3.
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Algorithm 1: Lower-binarization of a crown-free set system

Data: S a set system
Result: B(S) a set system such that every element covers at most two other

elements and S can be embedded into B(S)
1 B(S) = S
2 for Y ∈ S do

3 C = {X ∈ B(S) | X ≺ Y }
4 while |C| > 2 do

5 Find Xi, Xj of maximal intersection among C
6 B(S) = B(S) ∪ {Xi ∪Xj}
7 C = C ∪ {Xi ∪Xj}\{Xi, Xj}
8 return B(S)

The process adds as few elements as possible to the set system to make it
binary. Indeed, if an element Y covers k elements X1, . . . , Xk, our construction
adds exactly k − 2 elements.

The following technical lemmas will be used to prove Proposition 13. Note
that all these lemmas only require the set system to have no 3-crowns and not
to be crown-free.

Lemma 10. Let L be a set system with no 3-crown and {X1, . . . , Xn} ⊂ L a
set of incomparable elements of L.

Let Xi and Xj of maximal intersection among {X1, . . . Xn}.
Then,

∀l ∈ {1, . . . , n}, Xl ∩ (Xi ∪Xj) =

{
Xi ∩Xl
or
Xj ∩Xl

Proof. Let Xi, Xj of maximal intersection among {X1, . . . , Xn}.
L has no 3-crowns, so Xi ∩Xj ∩Xl ∈ {Xi ∩Xj , Xi ∩Xl, Xj ∩Xl}.
Xi and Xj are of maximal intersection so Xi ∩Xj * Xl ∩Xi and Xi ∩Xj *

Xl ∩ Xj . Hence Xi ∩ Xj ∩ Xl ∈ {Xi ∩ Xl, Xj ∩ Xl} i.e. Xj ∩ Xl ⊆ Xi ∩ Xl or
Xi ∩Xl ⊆ Xj ∩Xl. Yet

∀l,Xl ∩ (Xi ∪Xj) = (Xi ∩Xl) ∪ (Xj ∩Xl)

Hence

∀l,Xl ∩ (Xi ∪Xj) =

{
Xi ∩Xl
or
Xj ∩Xl

⇐⇒
{
Xj ∩Xl ⊆ Xi ∩Xl
or
Xi ∩Xl ⊆ Xj ∩Xl

ut
Lemma 11. Let L be a set system with no 3-crown and {X1, . . . , Xn} ⊂ L
the set of elements covered by Y ∈ L. Taking Xi, Xj, two elements of maximal
intersection among {X1, . . . Xn} :

∀Z ∈ L\ {X1, . . . , Xn, Y } , Z ∩ (Xi ∪Xj) ∈ L ∪ {X ∪ Y }.
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Proof. If Z ∩ Xi ⊆ Xj then Z ∩ (Xi ∪ Xj) = Z ∩ Xj . As L is closed under
intersection, Z ∩Xj ∈ L. The same goes for Xj .
Suppose now Z ∩Xi\ {Xj} 6= ∅ and Z ∩Xj\ {Xi} 6= ∅. Hence Xi ∩Xj ⊆ Z, as
L has no 3-crowns. So Xi ∩Xj ⊆ Z ∩ Y .
If Y ⊆ Z, the result is obvious. If Z ‖ Y or Z ( Y then Z ∩ Y ( Y so there
exists k such that Z ∩ Y ⊆ Xk as Y exactly covers the elements (X1, . . . , Xn).
Xi∩Xj ⊆ Z ∩Y ⊆ Xk and Xi, Xj are of maximal intersection so k = i or k = j.
Hence Z∩Y ⊆ Xi (or symmetrically Z∩Y ⊆ Xj) which leads to Z∩Y ⊆ Z∩Xi

so Z ∩ Y ⊆ Z ∩ (Xi ∪Xj).
Moreover as Xi ∪Xj ⊆ Y , Z ∩ (Xi ∪Xj) ⊆ Z ∩Y , by double inclusion Z ∩ (Xi ∪
Xj) = Z ∩ Y . Yet Z ∩ Y ∈ L as L is closed under intersection, which completes
the proof. ut

Lemma 12. Let L be a set system with no 3-crown and {X1, . . . , Xn} ∈ L
the set of elements covered by Y ∈ L. For all Xi, Xj of maximal intersection
among {X1, . . . , Xn}, all elements of {X1, . . . Xn} ∪ {Xi ∪Xj} \ {Xi, Xj} are
incomparable.

Proof. We prove that for all k 6= i, j, Xi ∪Xj ‖ Xk.
As, for all k 6= i, j, Xi, Xj and Xk are incomparable, Xi * Xk and Xj * Xk

hence Xi ∪Xj * Xk.
As L has no 3-crown, Xi ∩Xj ∩Xk ∈ {Xi ∩Xj , Xi ∩Xk, Xj ∩Xk} so as Xi and
Xj are of maximal intersection, Xi ∩ Xj 6⊂ Xi ∩ Xk and Xi ∩ Xj 6⊂ Xj ∩ Xk.
So Xi ∩ Xj ∩ Xk ∈ {Xi ∩ Xk, Xj ∩ Xk}. Suppose Xi ∩ Xj ∩ Xk = Xi ∩ Xk.
We then have Xi ∩Xk ⊆ Xj . Moreover, as (X1, . . . Xn) are incomparable, there
exists x ∈ Xk such that x /∈ Xj . Xi ∩ Xk ⊆ Xj hence x /∈ Xi. So there exists
x ∈ Xk, x /∈ Xi ∪Xj so Xk * Xi ∪Xj . ut

Proposition 13. Algorithm 1 applied on a set system S returns a set system
B(S) such that:

� for all X ∈ B(S), X covers at most two elements,
� S ⊆ B(S),
� for all X ∈ S, X is covered by the same number of elements in S and in
B(S).

Proof. By Lemma 10 and 11, creating new elements as described in the construc-
tion preserves the closure under intersection of the system. Lemma 10 shows
that the intersection of any element of the considered part of the system and
the new element is already in the system and Lemma 11 shows the same for
other elements. Moreover, the minimum element and the maximum element are
unchanged as the algorithm only adds unions of two elements hence the system
is a set system. Lemma 12 shows that if Xi and Xj are chosen from the set of
incomparable elements {X1, . . . , Xn} covered by an element Y to create a new
element, the only changes in the covering relation of the system are Xi∪Xj ≺ Y ,
Xi ≺ Xi ∪ Xj and Xj ≺ Xi ∪ Xj . Hence, no new crown is added and the set
system is still crown-free. Moreover, for k = i, j, Xk is not anymore covered by
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Y but by Xi ∪ Xj which keeps unchanged the number of covering elements of
Xk. The other elements are unchanged. Lemma 12 also proves that the process
can be iterated if the set system still has no 3-crowns.

The algorithm ends when all elements of the initial system cover at most two
elements. Moreover, the elements added by the construction cover exactly two
elements by construction. ut

Proposition 14. Let L = (L,≤) be a �nite lattice. If L is crown-free then L is
binarizable.

Proof. Let (A,⊆) be the extent lattice of KL (the formal context associated
with L). Algorithm 1 can be applied on the set system A. By Proposition 13,
the obtained set system B(A) is such that A ⊆ B(A) and B(A) is lower-binary.
Moreover L can trivially be embedded in the lattice L′ = (B(A),⊆).

Let (B,⊆) be the intent lattice of L′. By Proposition 13, B(B), the result of
Algorithm 1 applied on B, is binary. Finally, L′ can be embedded in the binary
lattice L′′ = (B(B),⊆) so L can also be embedded into L′′ by transitivity of the
embedding. ut

Propositions 8 and 14 prove the main result of this paper.

Theorem 15. Let (L,≤) be a �nite lattice. (L,≤) is binarizable if and only if
(L,≤) is crown-free.

4 Example

We will now apply our binarization algorithm on a small concept lattice. Table
3a gives a small formal context describing some animals to apply our algorithm.
The formal concepts associated with this context are given in Table 3b. The
representation of the Hasse diagram of the concept lattice associated with this
formal context (Figure 4) gives an easy way to see non-binary formal concepts.

Here, the concept representing the duck is covered by three concepts and
the concept representing the attribute swim covers three concepts. This repre-
sentation also shows that the lattice is crown-free so it it binarizable and our
algorithm can be applied.

A binarization of the set system associated with the extent lattice of this con-
cept lattice gives the Hasse diagram given in Figure 5a with the new latent node
(a new attribute) represented as a rectangle. We deliberately ignore the fact that
the element ⊥ is not binary as binarizing it would not increase interpretability or
help using the model in machine learning. The Hasse diagram associated with a
binarization of the extents and of the intents is represented in Figure 5b and is as-
sociated with the formal context of Table 4. The process creates two new formal
concepts : one associated with a new object obj (which could be interpreted as the
existence of a bird eating seeds, for example a canary) and one associated with a
new attribute att (which suggests the existence of an attribute allowing to distin-
guish salmon, shark, barracuda and crocodile from frog and duck) and modi�es
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salmon × ×
shark × ×

barracuda × × ×
frog × ×

crocodile × × ×
eagle × × ×

ostrich × × ×
duck × × × × ×

(a) Cross-table of animals
data

({∅}, {scale, teeth, swim, �y, seed, feather, air})
({crocodile}, {teeth, swim, air})
({duck}, {swim, �y, seed, feather, air})
({barracuda}, {scale, teeth, swim})
({ostrich, duck}, {seed, feather, air})
({salmon, barracuda}, {scale, swim})
({eagle, duck}, {�y, feather, air})
({shark, barracuda, crocodile}, {teeth, swim})
({frog, crocodile, duck}, {air, swim})
({eagle, ostrich, duck}, {feather, air})
({frog, crocodile, eagle, ostrich, duck}, {air})
({salmon, shark, barracuda, frog, crocodile}, {swim})

(b) Formal concepts of animals formal context

Table 3: Animal example formal context
sc
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salmon × × ×
shark × × ×

barracuda × × × ×
frog × ×

crocodile × × × ×
eagle × × ×

ostrich × × ×
obj × × × ×
duck × × × × ×

Table 4: Binarized formal context

⊥

barracuda
crocodile

duck

salmon

scale teeth

shark
frog

eagle

�y
seed

ostrich

feather

swim air

>

Fig. 4: Hasse diagram of the lattice associated with Table 3b
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⊥
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duck
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scale teeth
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att
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>

(a) Binarization of the extents

⊥

barracuda
crocodile

duck

salmon

scale teeth

shark

att

frog
obj

eagle

�y
seed

ostrich

feather

swim air

>

(b) Binarization of the extents and the in-
tents

Fig. 5: Hasse diagram of binarization of the lattice associated with Table 3b

other formal concepts using this new attribute and object. The binarization pro-
cess does not give a unique solution. Indeed, att could have been associated with
a new concept {(shark, frog, barracuda, crocodile, duck), (teeth, att, swim)} in-
stead of {salmon, shark, barracuda, crocodile), (scale, att, swim)} as the two in-
tersections concerned are incomparable. This allows to make interactive systems
giving the user di�erent choices to binarize each concept. The model can then
be used in the same way a decision tree is used : beginning from the top of the
lattice, a new element is propagated in the nodes asking at each node whether it
has the attribute of the right child or of the left child of the current node beforce
classifying it as close to some known concept.

5 Conclusion

We presented a simple and e�cient algorithm to transform a crown-free set
system into a binary one. This construction allows us to prove the equivalence
between binary lattices and crown-free ones. Our algorithm can be easily used
in formal context analysis in order to modify a concept lattice to obtain a bi-
nary one, adding some objects and attributes. Moreover, our algorithm can be
independently applied on the intents only or on the extents only or on both. The
system being binary, it is easy to interpret and understand. The equivalence be-
tween binary lattices and crown-free ones makes of crown-free lattices a perfect
candidate to extend machine learning ideas developped in decision trees to more
complex systems. Indeed, it can then be used in machine learning to predict the
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class of a given object by propagating it in the concept lattice recursively asking
whether the object has or not the attribute represented by the predecessor of
the concept in the lattice. Moreover, the binarization we proposed is not unique
but always adds the same number of elements to the lattice, which allows the
development of interactive systems to build the model. Topics for future work
include :

� a top-down process to build binary lattices inspired from decision trees,
� machine learning applications of lattice structures,
� study of the interest of intersecting classes in the machine learning perspec-

tive and the classi�cation one.
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Abstract. This paper focuses on item recommendation for visitors in
a museum within the framework of European Project CrossCult about
cultural heritage. We present a theoretical research work about recom-
mendation using biclustering. Our approach is based on biclustering us-
ing FCA and partition pattern structures. First, we recall a previous
method of recommendation based on constant-column biclusters. Then,
we propose an alternative approach that incorporates an order informa-
tion and that uses coherent-evolution-on-columns biclusters. This alter-
native approach shares some common features with sequential pattern
mining. Finally, given a dataset of visitor trajectories, we indicate how
these approaches can be used to build a collaborative recommendation
strategy.

Keywords: biclustering, FCA, pattern structures, recommendation

1 Introduction

CrossCult (http://www.crosscult.eu) is a European project whose idea is to
support the emergence of a European cultural heritage by allowing visitors in
different cultural sites (e.g. museum, historic city, archaeological site) to improve
the quality of their visit by using adapted computer-based devices and to con-
sider the visit at a European level. Such improvement can be accomplished by
studying, among others, the possibility to build a dynamic recommendation sys-
tem. This system should be able to produce a relevant suggestion on which part
of a cultural site may be interesting for a specific visitor.

Here, our objective is to study a dynamic recommendation system for visitors
in a museum. Given a new visitor Vn, the task is to suggest a museum item that
may be interesting for him/her. Based on how a suggestion is made to a new
visitor Vn, a recommendation system can be classified into one of the three
following categories [1]:

– Content-based recommendations: The system makes a suggestion based only
on the previous visited items of Vn. For example, if Vn visited mostly the
items from prehistoric era, then the system recommends another item from
that era.
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– Collaborative recommendations: The system looks for previous users who
have similar interest to Vn, and makes a suggestion based on their visited
items. For example, if many of Vn’s similar users have visited item I, then
the system recommends this item.

– Hybrid approaches: The combination of content-based and collaborative ap-
proaches.

Our method belongs to the second category (collaborative recommendation).
First we group all previous users based on their visit trajectories using biclus-
tering. When Vn arrives, we try to find a Gs, i.e. a group of visitors who shares
a similar interest to Vn. Then, based on the behavior of the visitors in Gs, we
can suggest one item that may be interesting for Vn.

In this paper we will recall an approach in [6] that uses partition pattern
structures to obtain biclusters with constant (or similar) values on the columns.
Then we will propose an alternative approach that relies on this approach to
mine another type of biclusters: those with coherent evolution on the columns
(CEC biclusters). This bicluster type is useful when we are dealing with a dataset
of trajectories where each trajectory corresponds to an ordered list of items.
Furthermore, the mining of CEC biclusters can be related to sequential pattern
mining, which we will explore in this paper.

This paper is organized as follows. First, we mention some related works
about recommendation in Section 2. Then the basic background on biclustering is
given in Section 3. Section 4 explains how to perform biclustering using partition
pattern structures. The application of biclustering to recommendation systems
will be presented in Section 5. Finally, we conclude our paper and outline some
future works in Section 6.

2 Related work

In this section, we will describe related work about recommendation systems,
biclustering, and Formal Concept Analysis (FCA).

FCA has been studied in collaborative movie recommendations for a user by
looking at the ratings given by other users. In [5], FCA is used to generate a
lattice from a binary matrix (with users as rows and movies as columns) as the
formal context. This matrix is derived from a rating dataset which is binarized,
such that the matrix contains only the information whether a user has rated a
movie. The lattice is then drawn to select some neighbors – i.e. users who have
rated the same movies as the new user – regardless of the rating values. In this
way, the exhaustive search of neighbors can be avoided. The neighbors’ ratings
can be then studied to recommend movies rated by the neighbors but not yet
rated by the new user.

Pattern structures [8,13] are a generalization of FCA, where the objects have
more complex descriptions (e.g. sequence, graph, etc.). FCA was also extended
into Triadic Concept Analysis, and it was shown in [13] that triadic concepts are
in 1-1-correspondence with maximal biclusters of similar values.
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Partition pattern structures are an instance of the pattern structure frame-
work. They were used in a collaborative movie recommendation [7] by identifying
similar-column biclusters within the rating matrix. Such a bicluster corresponds
to a set of users with similar rating behavior (hence similar interest) across a
set of movies. Therefore, to recommend a movie to a new user, there is a search
for biclusters whose users have similar interest to him/her. Then, a recommen-
dation is given by looking at the movies rated by users in the biclusters but
not yet rated by the new user. Using the real MovieLens data, a study was also
conducted based on Boolean matrix factorization [2].

Moreover, recommendation systems based on FCA and/or biclustering have
been applied to other real world problems such as detection of future advertising
terms for a company [10], educational orientation of Russian school graduates
[11], and idea recommendation at a crowdsourcing project of Witology company
[9]. Furthermore, a unified taxonomy of biclustering methods was proposed in
[12].

3 Biclustering

In this section, we will recall the basic background and discuss illustrative ex-
amples of the different types of biclusters as described in [14]. We consider a
dataset composed of a set of objects, each of which has values over a set of at-
tributes. This dataset can be represented as a numerical matrix, where each cell
ij indicates the value of object i w.r.t. attribute j.

One may be interested in finding which subset of objects possesses the same
values w.r.t. a subset of attributes. Regarding the matrix representation, this is
equivalent to the problem of finding a submatrix that has a constant value over
all of its elements (example in Table 1). This task is called biclustering with
constant values, which is a simultaneous clustering of the rows and columns of
a matrix.

Table 1. A bicluster with constant value (shaded)

1 1 4 3 5

1 1 2 5 1

3 3 4 2 1

Other than constant values, the bicluster approach also focused on find-
ing other types of submatrices, as shown in Table 2. A bicluster with constant
columns (rows) is a submatrix where each column (row) has the same value, as
illustrated in Table 2a (Table 2b, resp.).

In a bicluster with additive coherent values, the value of each cell ij follows
the equation γ +αi + βj , where γ is a constant, αi is a constant value for row i,
and βj is a constant value for column j. For example, if γ = 1, (α1, α2, α3, α4) =
(3, 2, 4, 6), and (β1, β2, β3, β4) = (0,−2, 1,−1), then we can obtain the bicluster
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Table 2. Examples of some types of biclusters. (a) Constant columns, (b) constant
rows, (c) additive coherent values, (d) multiplicative coherent values, (e) coherent evo-
lution on the columns, and (f) coherent evolution on the rows.

4 2 5 3

4 2 5 3

4 2 5 3

4 2 5 3

(a)

1 1 1 1

2 2 2 2

4 4 4 4

3 3 3 3

(b)

4 2 5 3

3 1 4 2

5 3 6 4

7 5 8 6

(c)

4 2 5 3

2 1 2.5 1.5

8 4 10 6

6 3 7.5 4.5

(d)

1 2 4 3

3 5 7 6

2 3 8 4

4 5 9 8

(e)

1 2 4 3

0 1 1 2

5 4 6 4

6 5 7 5

(f)

in Table 2c. Similarly, we can obtain a bicluster with multiplicative coherent
values as shown in Table 2d using a constant for each row and each column. The
main difference is that, instead of adding, we multiply them.

Another interesting type is the CEC bicluster, also known as order-preserving
submatrix [4]. In this type of bicluster, each row induces the same linear order
across all columns. For example, in the bicluster in Table 2e, each row follows
column1 ≤ column2 ≤ column4 ≤ column3. Moreover, a bicluster with coherent
evolution on the rows can be defined similarly, as shown in Table 2f.

Those different types of biclusters are useful when we are interested in iden-
tifying a group of people who behave similarly according to a set of attributes.
This group identification is necessary in the task of collaborative recommenda-
tion, because in the process of making a suggestion to a person, we first identify
the people who are similar to him/her. As suggested in [3] the bicluster-based
recommendation may give a better performance than state-of-the-art recommen-
dation algorithms.

4 Biclustering Using Partition Pattern Structures

Biclustering has many common elements with FCA. In FCA, from a binary
matrix we try to find a maximal submatrix whose elements are 1. In other
words, the objective is to identify maximal constant-value biclusters (but only
for biclusters whose values are 1). Hence, a formal concept can be considered as a
bicluster of objects and attributes. Furthermore, formal concepts are arranged in
a concept lattice, that can describe the hierarchical relation among all biclusters.

Consider the matrix given by Table 3, where we are interested in finding
constant-column biclusters. We recognize that the values of m1 “break” the ob-
jects into two sets: {g1, g2} and {g3, g4}. The same “break” is also obtained from
the values of m4. In particular, we can see that the pair ({g1, g2}, {m1, m4}) corre-
sponds to a constant-column bicluster. Therefore, it is possible to mine this type
of bicluster using this “breaking” – or “partitioning” – technique. Moreover, this
technique can be performed using partition pattern structures – an extension of
FCA.

In this section, first we will recall the constant-column biclustering approach
using partition pattern structures [6]. After that, we will explain the possibility
to perform CEC biclustering based on this approach.
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4.1 Biclustering with Constant Columns

A partition d = {pi} of a set G is a collection of pi ⊆ G such that:

⋃

pi∈d
pi = G and pi ∩ pj = ∅ whenever i 6= j. (1)

Notice that when calculating the initial partitions, missing values can produce
overlapping partitions (i.e. pi ∩ pj 6= ∅). Consider the dataset given by Table 3
that has G = {g1, g2, g3, g4} as the set of objects and M = {m1, m2, m3, m4, m5}
as the set of attributes. Here we can define a partition mapping δ : M → D.
The partition is based on the fact that the values of the attribute are equal
for all objects in a subset. For example, δ(m1) = {{g1, g2}, {g3, g4}} because
G is partitioned as such regarding the value of m1, whereas δ(m4) = {{g1, g2},
{g1, g3, g4}}. This partition overlaps on g1 since this object has a missing value
on m4. Intuitively, g1 can be grouped with either {g2} or {g3, g4} w.r.t. m4.

Table 3. A dataset with 4 objects and 5 attributes

m1 m2 m3 m4 m5
g1 1 5 3 ? 7

g2 1 1 4 2 7

g3 2 5 4 5 3

g4 2 5 4 5 7

The space D of all partitions over G is a complete lattice, where the meet and
join of two partitions d1 = {pi} and d2 = {pj} are defined as:

d1 u d2 =


⋃

i,j

pi ∩ pj




+

(2)

d1 t d2 =


 ⋃

pi∩pj 6=∅
pi ∪ pj




+

(3)

where (.)+ is a closure that preserves only the maximal components in d. For
example, δ(m1) u δ(m4) = {{g1, g2}, {g1}, {g3, g4}}+ = {{g1, g2}, {g3, g4}}, and
δ(m1) t δ(m4) = {{g1, g2}, {g1, g2, g3, g4}, {g1, g3, g4}}+ = {{g1, g2, g3, g4}}.

The order between any two partitions is given by the subsumption relation:

d1 v d2 ⇐⇒ d1 u d2 = d1 (4)

Given a set of attributes M, a partition space D, and a mapping δ, a partition
pattern structures for constant-column biclustering is determined by the triple
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(M, (D,u), δ). A pair (A, d) is then called a partition pattern concept (pp-concept)
iff A� = d and d� = A, where:

A� = ⊔

m∈A
δ(m) A ⊆ M (5)

d� = {m ∈ M|d v δ(m)} d ∈ D (6)

For any partition component p ∈ d, each pair (p, A) corresponds to a constant-
column bicluster. For example, from the concept ({m1, m4}, {{g1, g2}, {g3, g4}}),
two biclusters can be obtained: ({g1, g2}, {m1, m4}) and ({g3, g4}, {m1, m4}).

4.2 Biclustering with Coherent Evolution on the Columns

In a dataset of movie ratings, bicluster with constant columns is useful to identify
a set of users with the same taste regarding a set of movies. Another interesting
problem arises, e.g. when the dataset contains watching order. In that case, we
may be interested in finding a set of users who watch a set of movies in the
same order. This problem corresponds to CEC biclustering, where the objective
is to find a set of rows which has coherent evolution over a set of columns, as
previously described in Section 3. In the current section, we will explain the
possible application of partition pattern structures to discover CEC biclusters.

Table 4. A dataset with 5 objects and 5 attributes

m1 m2 m3 m4 m5
g1 1 2 3 4 5

g2 4 2 1 ? 3

g3 2 3 4 1 1

g4 5 4 2 3 1

g5 2 1 5 4 3

Consider the dataset given by Table 4, with the set of attributes G = {g1, g2, g3,
g4, g5}. First, we have to list each pair of attributes and the partition according
to the pair’s evolution. For the pair p1,2 = (m1, m2), the partition is {{g1, g3},
{g2, g4, g5}} because in g1 and g3, m1 is less than m2, whereas in g2, g4, and
g5, m1 is greater. As in Subsection 4.1, missing values generate an overlapping
partition. For instance, the pair p1,4 gives rise to the partition is {{g1, g2, g5},
{g2, g3, g4}}. Furthermore, two columns with the same value (e.g. g3 in m4 and
m5) can also produce an overlapping partition because, by our definition of CEC
bicluster in Section 3, they satisfy m4 ≤ m5 and m5 ≤ m4. Therefore, the parti-
tion for p4,5 is {{g1, g2, g3}, {g2, g3, g4, g5}}. Some pairs and their partitions are
listed in Table 5.

Since a CEC partition is defined by at least two attributes, the partition
mapping becomes γ : P→ D. For instance, γ(p1,2) = {{g1, g3}, {g2, g4, g5}}.
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Table 5. Some examples of partitions over Table 4

Pair Partition

p1,2 {{g1, g3}, {g2, g4, g5}}
p1,3 {{g1, g3, g5}, {g2, g4}}
p1,4 {{g1, g2, g5}, {g2, g3, g4}}
p2,3 {{g1, g3, g5}, {g2, g4}}
p2,5 {{g1, g2, g5}, {g3, g4}}

As in Subsection 4.1, given a set of attribute pairs P, a partition space D, and
the mapping function γ, a partition pattern structures for coherent-evolution
biclustering is determined by the triple (P, (D,u), γ). A pp-concept is a pair
(B, d) such that B� = d and d� = B, where:

B� = ⊔

p∈B
γ(p) B ⊆ P (7)

d� = {p ∈ P|d v γ(p)} d ∈ D (8)

Here, the extent of a pp-concept is a set of attribute pairs. We can obtain
a CEC bicluster in a pp-concept if there is a clique among the attributes in the
pairs. For example, consider the pp-concept ppc1 with extent {p1,2, p1,3, p2,3}
and intent {{g1, g3}, {g5}, {g2, g4}}. Its extent forms a clique among m1, m2, and
m3, since all pairings of any two of those attributes are included.

If a pp-concept (B, d) contains a set of attributes A that forms a clique,
then each pair (p, A), for any partition component p ∈ d, corresponds to a CEC

bicluster. For example, from ppc1, we can obtain bicluster ({g1, g3}, {m1, m2, m3}).

4.3 Comparison with Sequential Pattern Mining

A sequence is an ordered list 〈s1s2 . . . sm〉, where si is an itemset {i1, . . . , in}.
A sequence s = 〈s1s2 . . . sm〉 is a subsequence of s′ = 〈s′1s′2 . . . s′n〉, denoted by
s � s′, if there exist indices 1 ≤ i1 < i2 < . . . < im ≤ n such that sj ⊆ s′ij for all

j = 1 . . .m and m ≤ n. For example, the sequence 〈{a}{d}〉 is a subsequence of
〈{a, b}{a, c, d}〉, while sequence 〈{c}{d}〉 is not.

Notice that the problem of retrieving CEC biclusters can be thought of as a
particular type of sequential pattern mining where each itemset is composed by
only one item, i.e. the sequences are an ordered list of items. Mining sequen-
tial patterns means retrieving frequent subsequences (i.e., subsequences that are
present in more than n sequences) and for which there exist many efficient al-
gorithms [16,15].

The CEC biclustering differs from sequential pattern mining when we allow
overlaps in the partitions. Consider Table 4 as a sequential dataset. Each num-
ber in row x column y corresponds to the itemset when item y appears in the
sequence x. For example, the sequence of object g3 is 〈{m4, m5}{m1}{m2}{m3}〉.

Let us consider items m1, m4, and m5. According to sequential pattern mining,
g3 is different from g4, because m4 and m5 appear in the same itemset in g3. On
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the other hand, according to CEC biclustering with overlaps, g3 is similar to g4,
because in both objects m5 ≤ m4 ≤ m1.

5 Recommendation

In the context of CrossCult, we are working on a visitor dataset that comprises
several trajectories in a museum. Within this project, our main objective is to
build a dynamic recommendation system for new visitors. This system should
be able to suggest a museum item to visitors based on their trajectories and by
looking at the trajectories of previous visitors. Also, it should be able to update
the suggestion as they move inside the museum.

5.1 Matrix as order of interest

For each item in the museum, we can measure (e.g. by rating, duration of visit,
etc.) their level of interestingness from a set of visitors. An example is shown
in Table 6, where the number in cell xy is the ranking of item y according to
visitor x. Here we have 3 visitors (v1, v2, and v3) in the database and 1 target
visitor (va). Among the existing visitors, only v1 has complete values over all
five items. According to this visitor i1 is the best, followed by i2, i3, i4, and
the worst i5. For v2 (v3), the order of interest of i2 (i4 resp.) is not known.

The target visitor (va) has visited only three items, with the same order of
preference in i1 and i2. This visitor will be included in the bicluster ({v1, v2, va},
{i1, i2, i3}). The other two members of this bicluster do not agree on the order
of interest of i4 and i5. Hence, we should suggest i5 to him/her, since one visitor
(v2) similar to him/her ranked it first.

Table 6. Order of interest of 5 items, observed from certain visitors

i1 i2 i3 i4 i5
v1 1 2 3 4 5

v2 3 ? 4 2 1

v3 2 4 3 ? 1

va 1 1 2 ? ?

5.2 Matrix as order of visit

Consider the dataset given by Table 7 about 4 visitors in a museum with 7
items. As explained in Subsection 4.3, this table can be regarded as a sequential
dataset. The numbers in row x indicate the path of visitor vx. For example, the
path of v2 is i6 → i1 → i4 → i2 → i3 → i7 → i5.

Now we have a new visitor va who recently arrives to the museum. He/She
visits i3, followed by i4. Our task is to recommend a new item to her, by studying
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Table 7. Order of visit of 7 items, observed from certain visitors

i1 i2 i3 i4 i5 i6 i7
v1 1 2 3 4 5 6 7

v2 2 4 5 3 7 1 6

v3 4 2 1 5 6 3 7

v4 7 3 1 4 2 6 5

va ? ? 1 2 ? ? ?

the CEC biclusters over the first four visitors. Some of those biclusters are listed
in Table 8. From B7, we can see that all four visitors visit i7 after i2. In B3, v1
and v3 follow the same order w.r.t. {i3, i4, i5, i7}: i3 → i4 → i5 → i7. These
two visitors also agree in the order of items {i1, i4, i5, i7}, as seen in B4.

Table 8. Some CEC biclusters in Table 7

# Visitors Items (in order)

B1 v1 i1, i2, i3, i4, i5, i6, i7
B2 v2 i6, i1, i4, i2, i3, i7, i5
B3 v1, v3 i3, i4, i5, i7
B4 v1, v3 i1, i4, i5, i7
B5 v1, v4 i3, i5, i6
B6 v2, v3 i6, i1, i4, i5
B7 v1, v2, v3, v4 i2, i7

Those CEC biclusters can be studied to give a recommendation to va by
focusing on those visitors that are similar to him/her. Thus, we can propose a
recommendation strategy that follows sequential patterns in the dataset. The
idea behind is the following: if many visitors have the path ia → ib → ic, then
we should recommend item ic to a visitor who has done ia → ib.

Since va has path i3 → i4, we focus on the CEC biclusters that have those two
items, i.e. B1, B2, and B3. One of those biclusters (B2) has a different ordering
(i3 after i4), and thus we filter it out. Then, in B3 for example, the path is i3 →
i4 → i5 → i7. Therefore, we can recommend i5 to va.

6 Conclusion

In this work, we have explored an approach to build collaborative recommen-
dation strategy for visitors in a museum. This strategy takes into account the
order of interest or the order of visit for each visitor, and we showed how to use
CEC biclustering to obtain a set of similar visitors. We also presented a technique
for mining CEC biclusters based on FCA using partition pattern structures. This
recommendation strategy can be applied to any dataset where the order of items
is relevant.
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As future work, we intend to explore recommendations based on the order of
visit. The problem to be solved is how to model visitors who visit a single item
multiple times (for example, i1, i2, and back to i1).

Another noteworthy question is how to measure the “score” of each bicluster
in order to rank recommendations for a new visitor. Ranking candidate items
was studied in [3] for constant-value biclusters, and it is possible to extend this
work to CEC biclusters. Moreover, further comparisons of CEC biclustering and
sequential pattern mining should be investigated, in particular, regarding their
complexities and their results. Finally, an implementation of the CEC biclustering
using partition pattern structures and an empirical study on real-world data
should be performed to measure its complexity and efficiency.
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Abstract. Formal Concept Analysis (FCA) is a mathematical frame-
work classifying in formal concepts a set of objects w.r.t. their common
attributes. To this aim, FCA relies on a binary incidence relationship
indicating whether an object has an attribute. On one hand, in order to
consider more complex descriptions for objects (e.g., intervals, graphs),
FCA has been extended with Pattern Structures. On the other hand,
in a previous work, we introduced the notion of Concept Annotation,
adding a third dimension to formal concepts, computed over the extent,
without modifying the original classification. In this paper, we combine
Concept Annotation with the formalism of Pattern Structures and we
consider multiple annotation possibilities, i.e., multiple annotations for
one concept and computing the annotation over the intent. We illustrate
our approach and its interest with two use cases: (i) suggesting map-
pings between ontology classes and (ii) finding specific classes frequently
associated as domain and range of a predicate.

Keywords: Concept Annotation · Pattern Structures · Formal Con-
cept Analysis

1 Introduction

An ontology is a formal representation of a particular domain [8], consisting
of two parts: an assertion component (ABox) and a terminological component
(TBox). In the TBox, classes and predicates between classes are defined while in
the ABox, individuals instantiate classes and predicates. For example, the drug
codein can be considered as an individual instantiating the class Analgesics.

Nevertheless, there is a need for structure between ontologies. Indeed, indi-
viduals of an ABox may instantiate classes from several ontologies. For example,
in the medical domain, individuals representing diseases may instantiate classes
of several ontologies of diseases, such as MeSH (Medical Subject Headings), ICD-
9-CM and ICD-10-CM (International Classification of Diseases version 9 and
10, Clinical Modification). Corresponding classes from distinct ontologies may be
mapped thanks to equivalence relationships resulting from an alignment process
[5]. This alignment may be either a manual review by an expert or a semi-
automatic process.
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On the other hand, within an ontology, additional knowledge and structur-
ing may be discovered. Thus, the ABox of an ontology may also contains predi-
cate assertions, i.e., relations between individuals. For example, in DrugBank, a
database of drug information, a drug can be associated with a gene, indicating
an interaction between them. Thereby, the gene VKORC1 is indicated to be an
inhibitor of the drug warfarin. Genes and drugs instantiate classes of ontologies,
such as ATC (Anatomical Therapeutic Chemical Classification System) for drugs
and GO (Gene Ontology) for genes. Therefore, from the predicate assertions, we
could discover classes of drugs and genes frequently associated as domain and
range of a predicate. Such domain and range associations could be interesting
as they may indicate common properties of the gene class or the drug class.

In this article, we aim at addressing both of the aforementioned use cases, (i)
suggesting equivalence relationships between ontology classes and (ii) discover-
ing classes frequently associated in domain and range of a predicate, with Formal
Concept Analysis (FCA) [7]. FCA is a well-founded mathematical framework
adapted to knowledge engineering purposes [1, 3, 4] that groups objects w.r.t.
their common attributes in formal concepts. The association of an attribute to
an object is expressed thanks to a binary relationship. Formal concepts are orga-
nized by a partial order in a hierarchical structure called a lattice. In a previous
work [9], we introduced an extension of FCA, called Concept Annotation, allow-
ing to compare the hierarchical structure of the lattice with the class hierarchy of
an ontology for possible refactoring. The main interest of Concept Annotation
resides in adding a third dimension to a previously generated lattice without
changing its structure. The main contribution of the present article is to extend
the initial definition of Concept Annotation by (i) associating multiple Concept
Annotations with formal concepts, and (ii) using a formalism similar to Pattern
Structures [6] to express the annotations. Pattern Structures are another exten-
sion of FCA dealing with objects having complex (non binary) descriptions (e.g.,
graphs, numerical values, classes of an ontology). In the following, we assume
that the reader is familiar with the basics of FCA and Pattern Structures.

This article is organized as follows. In Section 2, necessary basics about on-
tologies are recalled. In Section 3, we present the initial definition of Concept
Annotation as well as our proposed extension. Then, in Sections 4 and 5, we
illustrate the combination of Concept Annotation and Pattern Structures by,
respectively, suggesting equivalence relationships between classes and discover-
ing classes frequently associated as domain and range of a predicate. Finally,
in Sections 6 and 7, we discuss the results we obtain on the two considered use
cases as well as the next challenges to tackle.

2 Basics about Ontologies

An ontology is a formal representation of a particular domain [8]. It is composed
of two parts, the TBox and the ABox. The TBox defines classes and relationships
between them. We denote C(O) the set of classes of the ontology O. Classes of an
ontology are instantiated by individuals of the ABox. These individuals can also
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be involved in instantiation of relationships (such as the drug-gene relationship
in DrugBank previously explained).

Classes of an ontology are organized in a partial order by a subsumption
relation denoted by ⊑. Considering two classes C and D, C ⊑ D states that every
instance of C is also an instance of D. The least common subsumer (sometimes
named the lowest common ancestor) of two classes C1 and C2 of an ontology is
the most specific class subsuming both C1 and C2. It is denoted by lcs(C1, C2).
In EL ontologies where no cycle appears, the lcs of two classes always exists [2].
Considering a set of classes Cn = {C1, C2, . . . , Cn}, we define the set of the most
specific classes of Cn as min Cn = {C ∈ Cn | ̸ ∃ D ∈ Cn, D ⊑ C}.

3 Concept Annotation

Concept Annotation is an extension of FCA that we introduced in a previous
work [9]. In this section, we first recall basics about our initial work and then
present the proposed extension.

3.1 Basics about Concept Annotation

In Concept Annotation, standard FCA is applied on a formal context to build
a concept lattice. Then, for each formal concept, an annotation is computed,
adding a third dimension to each concept.

For example, in [9], a lattice is built from a formal context (G,M, I) where
G is a set of individuals from the ABox of an ontology O and M is a set of
predicates of this ontology. (g,m) ∈ I indicates that the individual g is involved
in a relationship whose predicate is m. Then, classes of the TBox instantiated
by the individuals in G are added as annotation. The resulting hierarchy formed
by the lattice and the annotations is compared to the class hierarchy of the
ontology. To compute the annotation, we defined a derivation operator (·)⋄ :
2G → 2C(O), where 2C(O) corresponds to the powerset of the set of classes of the
ontology. Considering a formal concept (A,B) where A is a set of individuals,
the annotation is defined thanks to the derivation operator as follows: A⋄ =∩

g∈A {C | O |= C(g)}3. Intuitively, it corresponds to the set of all classes of O
instantiated by all individuals in A.

3.2 Combining Concept Annotation and Pattern Structures

In this paper, we propose to combine Concept Annotation with Pattern Struc-
tures. Indeed, such combination will allow us to only keep as annotation the
most specific classes instantiated by all individuals.

To do so, we define a function δ : 2G → 2C(O) that associates an individual
from G with the set of the most specific classes of the ontology O that this indi-
vidual instantiates. Formally, given g ∈ G, δ(g) = min {C ∈ C(O) | O |= C(g)}.
3 C(g) indicates that g is an instance of C in the Description Logics formalism
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δ(g) is considered as the description of the individual g. Given two individuals,
g1, g2 ∈ G, we define a similarity operator ⊓ to compare their two descriptions
as follows:

δ(g1) ⊓ δ(g2) = min {lcs(C1, C2) | ∀ (C1, C2) ∈ δ(g1)× δ(g2)}
The use of the least common subsumer allows to compute the most specific classes
of the ontology that both g1 and g2 instantiates. Finally, given a formal concept
(A,B), we annotate it thanks to the new derivation operator (·)◦ : 2G → 2C(O)

defined as A◦ =
d

g∈A δ(g).
In the following sections, the defined functions and operators will be restricted

to specific ontologies. Thus, δi, ⊓i and (·)◦i will only be applicable to classes of
an ontology Oi.

4 Suggesting Mappings between Classes of Ontologies

In this section, we illustrate the combination of Concept Annotation and Pattern
Structures with the use case of suggesting equivalence relationships between
classes of two ontologies, denoted by O1 and O2. To generate these mappings,
we consider individuals that instantiate classes of both O1 and O2. They also
instantiate classes of another ontology, denoted by Oref , that is considered in this
setting as the reference ontology, i.e. the feature we consider to build the original
classification of the set of instances. In order to avoid complexity problems, we
keep Oref of a small size.

4.1 Classifying Individuals w.r.t. Oref in a Concept Lattice

The first step is to build a concept lattice classifying the individuals w.r.t. the
classes of Oref they instantiate. To this aim, we use the pattern structure
(G, (2C(Oref ),⊓ref ), δref ). G is the set of individuals and 2C(Oref ) is the pow-
erset of the set of classes of Oref . δref and ⊓ref are defined as in Subsection
3.2 w.r.t. the classes of Oref . From this pattern structure definition, we obtain
pattern concepts (A,D) organized in a concept lattice, where A ⊆ G is a set of
individuals and D ∈ 2C(Oref ) is a set of the most specific classes of Oref that all
individuals in A instantiate.

4.2 Annotating the Concept Lattice with O1 and O2

In this next step, classes from O1 and O2 are considered for annotating the
concept lattice. To this aim, we define two annotations (one per ontology) using
the formalism defined in Subsection 3.2. Thereby, we use two functions δ1 and δ2
to associate an individual g with the set of the most specific classes from O1 and
O2 that this individual instantiates. ⊓1 and ⊓2 are used to compute the similarity
between descriptions of two individuals w.r.t. the two considered ontologies O1

and O2. Finally, to compute the two annotations for each pattern concept (A,D),
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two derivation operators (·)◦1 : 2G → 2C(O1) and (·)◦2 : 2G → 2C(O2) are defined
as follows:

A◦1 =
d

1
g∈A

δ1(g) A◦2 =
d

2
g∈A

δ2(g)

As a result, for each pattern concept (A,D), an annotated pattern concept
(A,D,A◦1 , A◦2) is obtained where A◦1 (resp. A◦2) is the set of the most specific
classes of O1 (resp. O2) that all individuals in A instantiate.

4.3 Reading Mappings from the Lattice

Let us consider an annotated pattern concept (A,D,A◦1 , A◦2). From the previ-
ous definitions, we know that A◦1 ⊆ C(O1) contains the set of the most specific
classes of O1 that all individuals in A instantiate. Similarly, A◦2 ⊆ C(O2) con-
tains the set of the most specific classes of O2 that all individuals in A instantiate.
Therefore, considering each pair of classes (C1, C2) ∈ A◦1 × A◦2 , we know that
they are instantiated by the same set of individuals, i.e., individuals in A. There-
fore, an equivalence relationship is suggested between C1 and C2, based on the
instances of the two classes.

5 Discovering Associated Classes as Domain and Range
of a Predicate

In this section, we illustrate how Concept Annotation and Pattern Structures
could be used to discover the most specific classes frequently associated as do-
main and range of a predicate from its instantiations in an ABox. Such domain
and range characterization could indeed indicate common behavior at the class
level. For example, considering DrugBank, a gene can be involved with a drug
in a relationship whose action is specified (e.g., inhibitor, antagonist). Such rela-
tionships correspond to assertions of a predicate. As drugs instantiate classes of
ATC and genes instantiate classes of GO, we could discover that instances of a
GO class, considered as a family of genes, are frequently indicated as inhibitors
of instances of an ATC class, considered as a family of drugs.

In the following paragraphs, we consider individuals, instantiating classes
of an ontology O1, that are involved in relationships with other individuals,
instantiating classes of an ontology O2

4.

5.1 Classifying Relationships in a Concept Lattice

First, a classification of relationships is established. To this aim, we consider the
formal context (G,M, I) where G is the set of individuals instantiating classes
from O1 and M is the set of individuals instantiating classes from O2. Given
g ∈ G, and m ∈ M , (g,m) ∈ I if and only if a relationship between g and
4 It is not necessary for O1 and O2 to be distinct.
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m exists. Standard binary FCA is applied on this formal context to generate
the associated formal concepts organized in a concept lattice. In the DrugBank
example, G is the set of genes and M is the set of drugs. Considering g ∈ G and
m ∈ M , we have (g,m) ∈ I if and only if a relationship between the gene g and
the drug m exists in DrugBank.

5.2 Annotating the Concept Lattice with O1 and O2

Consider a formal concept (A,B) from the concept lattice. A ⊆ G is a set
of individuals instantiating classes of O1 and B ⊆ M is a set of individuals
instantiating classes of O2. From the definition of the derivation operators in
FCA, we know that every individual in A is in relationship with every individual
in B. To find the most specific ontology classes involved as domain and range of
the predicate, two annotations for formal concepts are defined (one per ontology)
using the formalism defined in Subsection 3.2. We use two functions δ1 and δ2
to associate an individual with the set of the most specific classes from O1 and
O2 that this individual instantiates. δ1 is applied on individuals g ∈ A and δ2
is applied on individuals m ∈ B. ⊓1 and ⊓2 are used to compute the similarity
between descriptions of two individuals w.r.t. the two considered ontologies O1

and O2. Finally, to compute the two annotations for each formal concept (A,B),
two derivation operators (·)◦1 : 2G → 2C(O1) and (·)◦2 : 2M → 2C(O2) are defined
as follows:

A◦1 =
d

1
g∈A

δ1(g) B◦2 =
d

2
m∈B

δ2(m)

It is noteworthy that (·)◦2 is applied on the intent of the formal concept.
As a result, each formal concept (A,B) is replaced by the annotated concept
(A,B,A◦1 , B◦2) where A◦1 (resp. B◦2) is the set of the most specific classes of
O1 (resp. O2) that all individuals in A (resp. in B) instantiate.

5.3 Reading the Domain and Range of a Relation from the
Annotated Lattice

Let us consider an annotated concept (A,B,A◦1 , B◦2). Every individual in A is
in a relationship with every individual in B. Furthermore, A◦1 is the set of the
most specific classes of O1 that all individuals in A instantiate. Similarly, B◦2

is the set of the most specific classes of O2 that all individuals in B instantiate.
Therefore, from this annotated concept, for the considered predicate, classes
from A◦1 as domain are associated with classes from B◦2 as range.

Along the hierarchy of the lattice, the two annotations A◦1 and B◦2 behave
in the opposite way. Indeed, A◦1 , computed on the extent, contains more spe-
cific classes when the number of individuals in the extent decreases, i.e., when
browsing the lattice top to bottom. On the contrary, B◦2 , computed on the in-
tent, contains more specific classes when the number of individuals in the intent
decreases, i.e., when browsing the lattice bottom to top. Consequently, in an-
notated concepts at the top of the lattice, general classes of O1 will be involved
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in domains and specific classes of O2 will be involved in ranges. In annotated
concepts at the bottom of the lattice, specific classes of O1 will act as domain
and general classes of O2 will act as ranges. Therefore, this structure could be
of interest in an interactive setting with an expert. Indeed by browsing the lat-
tice depending on her specific constraints on the domains or ranges to discover,
the expert could leverage on the lattice order to obtain more general or specific
classes involved.

6 Discussion

Regarding the suggestion of equivalence relationships between classes of two on-
tologies, the approach needs to be validated on a real dataset where mappings
already exist. One main identified drawback is that the current annotation pro-
cess works under the Closed World Assumption. Thus, mappings are suggested
considering that all instantiations are correct and none is missing. As many
datasets are under the Open World Assumption, the suggested mappings may
only be applicable on the considered set of individuals but may not be applied
to other sets of individuals. Therefore, there is a need to validate the suggested
mappings with an expert. One next challenge would be to define a new derivation
operator to compute an annotation working under the Open World Assumption.

The original lattice is built from the set of individuals and the classes of a ref-
erence ontology Oref . However, other features could be considered for this origi-
nal classification, such as the relationships involving the individuals, similarly to
our previous work [9]. The choice of the features to consider are of importance
as they impact the original lattice, which is the the “pivot” structure from which
equivalence relationships are suggested. One user can then choose the specific
features to consider to guide the generated mappings. In the proposed approach,
equivalence relationships are suggested by considering annotated concepts sepa-
rately. Nevertheless, the subsumption relations between concepts could be con-
sidered to suggest mappings of the form of subsumption relations between classes
of the two considered ontologies. Such setting could therefore be used to align
and structure folksonomies of various users in a social network.

Finally, the suggestion of mappings may not be the only use case of interest
for the proposed setting. Indeed, by annotating the original lattice with classes
of different versions of the same ontology, concept drift could be highlighted.
For example, a semantic change in the classes between two versions of an ontol-
ogy would be indicated by discovering in the annotations that the same set of
individuals does not instantiate the same classes between the two versions.

Regarding the use case of discovering classes frequently associated as domain
and range of a predicate, we could also benefit from an experiment on a real
dataset. In this setting, as previously mentioned, there is an issue in selecting
the interesting domains and ranges. Additionally to the interactive discovery
process previously mentioned, various metrics could be considered to highlight
interesting annotated concepts. For example, notions of support or confidence
based on the cardinal number of the extent and / or intent could be of interest
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here. Similarly to the suggestion of equivalence relationships, this work does not
benefit from the subsumption relations between formal concepts. Such relations
could be used to build a hierarchical organization of associations of domains and
ranges. However, as the two annotations behave in opposite ways, this hierarchy
should not be read as an order.

7 Conclusion

In this paper, we combine Concept Annotation with the formalism of Pattern
Structures. To illustrate our approach and its interest, we consider two use cases:
suggesting equivalence relationships between classes of two ontologies and dis-
covering classes frequently associated as domain and range of a predicate. The
formalism of Pattern Structures is an advantage compared to our original work
on Concept Annotation as it enables more complex annotations, using descrip-
tions of objects and similarity operations. Moreover, we illustrate some other
annotation possibilities: multiple annotations for one concept and annotations
computed on the intent instead of the extent. As a result, starting from a con-
cept lattice considered as a “pivot” structure, it is possible to obtain a complex
structure representing or highlighting several relations between its components.
The next challenges lies in experimenting our approach on real datasets and
formalizing the properties of the annotation.
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Abstract. In this paper, we explain how Galois connection and related
operators between sets of users and items naturally arise in user-item
data for forming neighbourhoods of a target user or item for Collabora-
tive Filtering. We compare the properties of these operators and their ap-
plicability in simple collaborative user-to-user and item-to-item setting.
Moreover, we propose a new neighbourhood-forming operator based on
pair-wise similarity ranking of users, which takes intermediate place be-
tween the studied closure operators and its relaxations in terms of neigh-
bourhood size and demonstrates comparatively good Precision-Recall
trade-off. In addition, we compare the studied neighbourhood-forming
operators in the collaborative filtering setting against simple but strong
benchmark, the SlopeOne algorithm, over bimodal cross-validation on
MovieLens dataset.

Keywords: Collaborative Filtering · Galois Connection · Recommender
Systems · Neighbourhood-forming operators

1 Introduction

Galois connections of different types as well as closure and kernel operators
play important role not only in mathematics [14] but also in analysis of re-
lational data, for example, object-attribute tables also known as transactional
databases [13,40,39], information systems [16,38], formal contexts [18,33], user-
item rating matrices [9,28], etc.

Thus, it has been shown that Boolean matrix factorisation performed by
means of Galois operators on user-item binary matrix (obtained from user-item
rating matrix under proper scaling) is not worse than ordinary SVD to cap-
ture similarity between users and items in terms of MAE, Precision and Recall
[28]. The so called concept lattice, an ordered hierarchy of maximal submatri-
ces (users, items) generated by Galois operators, has been proposed as a global
search space for nearest neighbours of users and items [9]; however, such a lat-
tice might be huge even for sparse input rating matrices and its generating is
costly in terms of time and storage memory. An interesting attempt to scale this
approach and form only necessary relevant neighbourhoods of users and items
via Galois operators has been done in [5].
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However, a systematic study of those useful connections and operators as
well as their variants suitable for Collaborative filtering has not been performed
yet. In this study, we introduce and discuss Galois operators for collaborative
filtering setting to form neighbourhoods of users and items (as well as their sets
in group recommendation scenario) and sets of prospective relevant items to
rank by means of ordinary user-based (or item-based) approaches.

The remainder of the paper consists of five sections. In Section 2, we re-
call several definitions of Galois or derivation operators from Formal Concept
Analysis and the associated closure operators. In Section 3, we explain how the
existing operators can be used to form neighbourhoods of users (items) for a
target user (item) as well as sets of prospective relevant items to recommend.
Section 6 presents several simple experiments with user-based and item-based
approaches where the formed neighbourhoods and sets of items used as param-
eters. Section 7 discusses related work and Section 8 concludes the paper.

2 Galois connections and related operators

First, we give the definition of Galois connection.
Let ϕ : P → Q and ψ : Q→ P
be maps between two ordered sets (P,≤) and (Q,≤). The pair of such maps

is called a Galois connection between the ordered sets if:

a. p1 ≤ p2 ⇒ ϕp1 ≥ ϕp2;
b. q1 ≤ q2 ⇒ ϕq1 ≥ ϕq2;
c. p ≤ ψϕp and q ≤ ϕψq.

The operators ϕ and ψ are called Galois operators.
Let us define concrete version of Galois operators as it is done in Formal

Concept Analysis (FCA) [18] over relational object-attribute tables but in col-
laborative filtering setting. Here, the role of objects is played by users and the
role of attributes by items.

Let us consider a triple (U, I,R) called formal context in FCA, where U is a
set of users, I is a set of items, and R ⊆ U × I. A pair (u, i) ∈ R iff user u ∈ U
rated (liked or browsed) item i ∈ I.

In this case, for a subset of users X ⊆ U and a subset of items Y ⊆ I Galois
operators (prime or derivation operators), (·)′ : 2U → 2I and (·)′ : 2I → 2U , are
defined as follows:

X ′ = {i | uRi for all u ∈ X},
Y ′ = {u | uRi for all i ∈ Y }.
In fact, X ′ is the set of items that every user from X rated and Y ′ are those

users, who rated every item from Y .
One may check that two operators (·)′ form a Galois connection between

(2U ,⊆) and (2I ,⊆).
Moreover, one may prove that (·)′′ is a closure operator, i.e. for X,Z ⊆ U

(or for X,Z ⊆ I).
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1. X ⊆ Z ⇒ X ′′ ⊆ Z ′′ (monotony);
2. X ⊆ X ′′ (extensity);
3. X ′ = X ′′′ (idempotency).

A monotone and idempotent operator op(·) on 2U is called a kernel operator
iff for X ⊆ U : op(X) ⊆ X (intensity). Operators with intensity property play
important role in Social Choice Theory since they help to select relevant alter-
natives from their input set [4]. We provide an example of kernel operator in
section 3.

Let us discuss the meaning of several important properties of the introduced
Galois operators in terms of Collaborative Filtering domain.

For X,X1, X2 ⊆ U (similarly for Y, Y1, Y2 ⊆ I):

4. X1 ⊆ X2 ⇒ X ′2 ⊆ X ′1 (antitony);
5. X ′ = X ′′′.

The fourth property means that the more users we add to the initial set X1,
the less is the number of their co-rated items (this property have been exploited
in classic itemset mining algorithm, Apriori, in [2]). To understand the meaning
of the remaining properties we need to discuss the interpretation of the result
of (·)′′ to X ⊆ U . The first prime returns the set X ′ of all co-rated items for
users from X, the second prime returns the set X ′′ of all users who rated all
items from X ′. In fact, this set X ′′ may become larger than X or remain the
same (Property 2). If we have a group of users Z and its subgroup X, then after
looking at the items that X and Z rated, i.e. X ′ and Z ′, we obtain by Property
4 that the set of items X ′ is larger or equal to Z ′. By applying Property 4 one
more time, we obtain that X ′′ is a subgroup of Z ′′ or equal to it. Property 2 says
that by passing through items X ′ co-rated by X, we may obtain some more users
who rated all items X ′ as well, i.e. our overlooked neighbours at the beginning.
The third property says that it is not necessary to look at the co-rated items
of the group X ′′ since everyone who rated all items from X ′ is in X ′′. That is
X ′′ is a fixed point of operator (·)′′. These fixed points correspond to the called
formal concepts in FCA, i.e. pairs (X ′′, X ′) for X ⊆ U (for itemsets they are
defined similarly).

In collaborative filtering setting, for a particular target user u from U we are
mainly interested in {u}′, the items rated by u, and {u}′′, all users from U , who
rated all items {u}′. However, if we would require to show new items that those
users also rated, applying the prime operator one more time, we would obtain
{u}′′′ = {u}′, i.e. nothing to potentially recommend. One of the remedies would
be to delete u from {u}′′ and obtain ({u}′′ \ {u})′ \ {u}′, however we prefer to
examine a richer set of possible alternatives and study their properties.

3 Connections for Collaborative Filtering

Let (U, I,R) be a formal context, then for a subset of users X ⊆ U and a subset
of items Y ⊆ I then neighbourhood-forming operators, (·)� : 2U → 2I and
(·)� : 2I → 2U , are defined as follows:
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X� = {i | uRi for some u ∈ X},
Y � = {u | uRi for some i ∈ I}.
In fact, X� can be considered as a query “show me all that have been bought

by at least some user from X for X ⊆ U ; Y � is interpreted as all users that
bought at least one item from Y for Y ⊆ I.

Property 1. X� =
⋃

x∈X
x′ and Y � =

⋃
y∈Y

y′.

Property 2. X,Z ⊆ U ⇒ X� ⊆ Z� (monotony of (·)�) (similarly for X,Z ⊆ I).

Now we have 22 combinations of operators (·)′ and (·)� to form neighbours,
and 23 operator combinations to list potentially relevant items. Let us figure it
out theoretically which of the proposed combinations are relevant for collabora-
tive filtering.

Theorem 1. For X,Z ⊆ U (similarly for X,Z ⊆ I) the following properties
fulfil:

– If X ⊆ Z then

1. X ′� ⊇ Z ′� (antitony);
2. X�′ ⊇ Z�′ (antitony);
3. X�� ⊆ Z�� (monotony);

– 4. X ⊆ X ′� (extensity);
5. X ⊇ X�′ (intensity);
6. X ⊆ X�� (extensity);

– 7. X ′� = X ′�′� (idempotency);
8. X�′ = X�′�′ (idempotency);
9. (·)�� is not idempotent.

Corollary 1. Operator (·)�′ is a kernel operator (antitone, extensive, and idem-
potent).

In what follows, we mainly concentrate on one target user u, its neighbours
founded by double combination of the derivation and neighbourhood forming
operators, and items potentially relevant for that user obtained by triple combi-
nations of those operators.

Lemma 1. For u ∈ U : u′ = u� (similarly for i ∈ I).

Theorem 2. For u ∈ U the following inclusions hold:
u′�′ = u��′ ⊆ u′′′ = u�′′ = u′ = u�′� = u′′� ⊆ u′�� = u���.

Thus, every triple operator on the left hand side from u′ does not bring new
items in comparison to those that u is rated. So, potentially we are interested in
those from the right hand side, namely, u′′� and u′��.

Since we should eliminate the target user u from the set of his neighbours
and his rated items from the set of potentially relevant items. Let us introduce
two final neighbourhood forming operators:
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Nij(u) = uij \ u and Nijk(u) = uijk \ ui, where i, j, k ∈ {�, ′}.
There is also an option to subtract u from its neighbourhood as soon as

possible in the chain of operators applied to u. So, there is one more variant for
forming potentially relevant items:

N−uijk (u) = (uij \ u)k \ ui, where i, j, k ∈ {�, ′}.

4 Similarity measure inspired by Galois operators

Given two users u, ũ ∈ U , define for them a measure of similarity as ρ : U2 → N,
ρ(u, ũ) = |{u, ũ}′|. For each user, we will reorder all users in ascending order:
ρ(u, u1) ≤ ρ(u, u2) ≤ · · · ≤ ρ(u, un). So, each user u generates its renumbering
of the set U . Let us define the neighbourhood-forming operator (.)4m : U → 2U

as follows: {u}4m =
⋃m

i=1{ui}.

Property 3. ∀u ∈ U |{u}′′| ≤ m ≤ |{u}��| ⇔ {u}′′ ⊆ {u}4m ⊆ {u}��

The neighbours of the target user will be considered as {u}4m \ {u} for a
given operator. This operator is useful because we exactly specify the number
of neighbours, thereby solving the problem of the lack of neighbours or presence
of too many of them. Then, we take the k nearest of these neighbours by the
other measure (e.g. cossim). Since we will look for new items for the prediction
in the set ({u}4m \ {u})′ \ {u}′, we may need to solve the optimisation problem
in this case for m and k choice w.r.t. MAE or Precision and Recall.

5 Algorithm

1. Find neighbours to the target user u using one of the following methods:

– {u}′′ \ {u}
– {u}′� \ {u}
– {u}4m \ {u}.

2. Find the set of top k nearest neighbours to the target user u among the
neighbours found at the previous step using a measure of similarity sim.
Denote this set by Nk

3. Find new items for the user u using the method:

(Nk \ {u})′ \ {u}′

4. Make a prediction of the rating for each items found in the previous step.
Choose top n of them, if necessary.

Since steps 1 and 3 have been considered, let us discuss steps 2 and 4.
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5.1 Similarity measure

Note that this step is not necessary, but useful. The number of neighbours found
at the first step can be large, which leads to fewer items for the recommendation.
For our experiments, we will use the cosine measure of similarities. This measure
is recognised as one of the best estimators of users’ similarity [19]. Let u, ũ ∈ U ,
ru,i and rũ,i be the ratings of item i ∈ I by users u and ũ, respectively, and the
vector ru = (ru,1, ru,2, . . . , ru,n) be the vector of user ratings u. Then we define
the cosine measure of users’ similarity cossim : U2 → [0, 1] as follows1:

cossim(u, ũ) =
ru · rũ
‖ru‖ ‖rũ‖

=

∑
i∈I ru,irũ,i√(∑

i∈I(ru,i)2
) (∑

i∈I(rũ,i)2
).

5.2 Rating prediction

The predicted rating r̂u,i for an item i ∈ I by a user u ∈ U is a weighted
combination of selected neighbours ratings, which is calculated as a weighted
deviation from the average ratings of the neighbours. The general prediction
formula is below:

r̂u,i = r̄u +

∑
ũ∈U (rũ,i − r̄ũ) sim(u, ũ)∑

ũ∈U | sim(u, ũ) | .

6 Experiments

6.1 Data

For test the model, we used data from the GroupLens2 web site [20]. The data
was collected through the MovieLens3 recommender service during the seven-
month period from September 19th, 1997 through April 22nd, 1998. This data
has been cleaned up – users who had less than 20 ratings were removed from
this data set.

This data set consists of:

– 100 000 ratings (1-5) from 943 users on 1682 movies.

– Each user has rated at least 20 movies.

The data represents 100 000 lines of the form:

| user id | item id | rating | timestep |.
1 the formula should be adjusted by considering only commonly rated items in the

numerator in case of missing ratings by u or ũ
2 https://grouplens.org/datasets/movielens/
3 https://movielens.umn.edu
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6.2 Training/test set split procedure

We will partially imitate online testing when only a part of information on
ratings for test users is known, as our operators are more focused on building
recommendations than on forecasting ratings. We will follow the bimodal cross-
validation procedure from [29]. To do this, we first find the sets Uhidden and
Ihidden, where:

– Uhidden is a randomly selected 20% of all users U ,
– Ihidden is a randomly selected 20% of all items I.

Then we hide all the information about the ratings at the intersection (Uhidden,
Ihidden) as shown below and call this matrix trainset

Ihidden
r1,1 r1,2 · · · r1,n
r2,1 r2,2 · · · r2,n

...
...

. . .
...

rm,1 rm,2 · · · rm,n

r1,n+1 · · · r1,l
r1,n+1 · · · r2,l

...
. . .

...
r1,n+1 · · · rm,l

Uhidden

rm+1,1 rm+1,2 · · · rm+1,n

...
...

. . .
...

rk,1 rk,2 · · · rk,n

∗ · · · ∗
...

. . .
...

∗ · · · ∗
where ru,i is the rating item i by users u or ∗ if this user did not rate this item
yet.
Similarly, testset is a matrix containing all the hidden information.
Each experiment will be carried out 100 times to eliminate the dependence on
random partitioning.

6.3 Adjusted Precision and Recall

We used standard measures to compare studied models: Precision and Recall.
They can be defined as follows:

Precision =
|{relevant} ∩ {retrieved} ∩ Ihidden|

|{retrieved} ∩ Ihidden|
,

Recall =
|{relevant} ∩ {retrieved} ∩ Ihidden|

|{relevant} ∩ Ihidden|
,

where for user u ∈ Uhidden:

– {relevant} is the set of all items that the user u rated,
– {retrieved} is the set of all items that we recommended to the user u.

Note special cases:

– Precision = 1, if {retrieved} ∩ Ihidden = ∅,
– Recall = 1, if {relevant} ∩ Ihidden = ∅.
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6.4 Testing models

We will test the models based on the algorithm described in Section 5. Since
these algorithms different only in the initial obtaining of the neighbours of the
target user, we denote them as ′′, ′�, and 4m.

Model ′′ For this experiment, after applying all the operators, we took topk = 5
of the nearest neighbours by the cosine similarity measure. The result can be
observed in table 1:

Table 1. Precision and Recall for the model ′′ over 100K MovieLens dataset

top n recommendation Precision Recall time, sec

1 1.8% 0.01% 6.28
2 0.8% 0.06% 6.28
3 0.7% 0.08% 6.28
...

...
...

...
all 7.2% 99% 6.28

Further studies of this model were not carried out since unacceptable trade-
off between such low values of Precision and Recall. The problem with this
model is that we have neighbours only for < 3% users, and according to our
Galois operator we have {∅}′ = I. Thus, we get the same predicted rating for
all available movies, equals the average rating of the target user. Therefore we
obtain low values of Precision and Recall.

Model ′� For this experiment, after applying all the operators, we took topk = 5
of the nearest neighbours by the cosine measure. The result can be observed in
table 2:

Table 2. Precision and Recall for the model ′� over 100K MovieLens dataset

top n recommendation Precision Recall time, sec

1 97.6% 0.5% 1.51
2 97.4% 0.6% 1.51
3 97.6% 0.7% 1.51
...

...
...

...
all 97.1% 0.9% 1.51

Further studies of this model were not carried out. In this model, we have a
very good Precision, but its Recall does not suit us. This is due to the fact that
in this case we have too many neighbours. The average number of neighbours
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is more than half of the total number of users U . Therefore, the cosine measure
does not correctly give us topk nearest neighbours, e.g., 100% of similarity for
the only one commonly rated item. After applying our Galois operator, we get
that for ≈ 93% users we have nothing to recommend.

Model 4m For this experiment, topm = 50 of the nearest neighbours by mea-
sure based on the Galois connection was taken and then topk = 5 of the nearest
neighbours by the cosine measure were selected.The result can be observed in
table 3:

Table 3. Precision and Recall for the model 4m over 100K MovieLens dataset

top n recommendation Precision Recall time, sec

1 72.8% 4.9% 1.44
3 69.5% 10.4% 1.44
5 67.5% 13.3% 1.44
10 67.0% 16.3% 1.44
...

...
...

...
all 65.8% 17.7% 1.44

This model produced acceptable results, and thus we can work with it. We
have at least one recommendation for ≈ 87.3% users. It can be considered nor-
mal for our model. The maximum possible number of recommendations for the
user on average is 3-4 movies. So we do not have high recall for all of recommen-
dations. Possibly, this problem should be solved in the transition to larger data
(like 10M ratings) or its portion with moderately large profiles of users. Also note
that Precision is not greatly reduced by recommending a large number of movies.
This is unusual for most recommendation systems. So we can immediately rec-
ommend to the user u all the movies that fall into the set (Nk \ {u})′ \ {u}′ and
do not predict the ratings for these movies.

Now we need to understand whether it is necessary to solve the optimisation
problem. To do this, we first look at how the values of Precision, Recall, and
F1 score change, fixing k, where F1 score is considered according as follows:
F1 = 2 Precision·Recall

Precision+Recall .
Then fixing m and see how the Precision and Recall change in depending on

k.
We can see from figures 1, 2, 3, and 4 that the Precision is directly propor-

tional to m and k, and the Recall is inversely proportional to m and k. Therefore,
it is not necessary to solve an optimisation problem for any of the parameters.

Next, we experimented with the MovieLens dataset composed by 1M rat-
ings and look at the results. For this experiment, topm = 100 of the nearest
neighbours by measure based on the Galois operators and then topk = 10 of
the nearest neighbours by the cosine measure were taken. We have found out
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Fig. 1. Precision and Recall by m for the model 4m

that the Precision is not greatly reduced by recommending a larger number of
movies. Therefore, we made an estimate of Prediction and Recall only for all
possible recommendations. The result can be observed in table 4:

Table 4. Precision and Recall for the model 4m over 1M MovieLens dataset

top n recommendation Precision Recall time, sec

all 61.4% 13.1% 25.7

From this experiment we can conclude that Precision varies slightly and
Recall has a small increase in the larger sample. However, we have at least one
recommendation for ≈ 97.3% users. That can be considered as an acceptable
result since in most cases even a few recommendations is enough.

6.5 Slope One

For comparison, we took a well-known model Slope One [34]. In a reputed sur-
vey [10] it was shown that this model is one of the best for offline predicting
the rating of items, while in our test we see how this model works for making
recommendations.The result can be observed in table 5.

This model works worse than ours. This is due to the fact that we do not
limit the set of items for prediction.

We can see in figure 5, that sorting by the top n predicted ratings does not
give strong effect on the precision of the recommendation by SlopeOne.
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Table 5. Precision and Recall for SlopeOne over 100K MovieLens dataset

top n recommendation Precision Recall time, sec

1 3.5% 0.2% 7.66
3 8.1% 1.2% 7.66
5 10.2% 2.5% 7.66
10 13.1% 6.8% 7.66
...

...
...

...
all 7.7% 100% 7.66

7 Related Work

To the best of our knowledge, the first paper that uses Formal Concept Analysis
(FCA) and Galois Connections for Collaborative Filtering was [9]. Later on, a pa-
per on concept-based biclustering for making recommendations over firms-terms
contextual advertising problem appeared [25] based on a prior study on the same
datset from Yahoo! (former Overture) with spectral clustering techniques [41];
its latest version with revisited experiments and study of biclustering properties
is presented in [26]. In parallel, maximal-inclusion biclusters (in fact, formal con-
cepts) were used in similar collaborative filtering scenario [37] based on BiMax
algorithm from [36]. A reincarnated study in explicit FCA-terms was done in [6]
with large real commercial datasets like PayPal. FCA-based biclusters were also
used [21] for recommender system to facilitate educational orientation of Rus-
sian school graduates. In [27,23], the authors used concept-based biclustering for
making recommendations for crowdsourcing platform Witology to find similar
user’s ideas and the so-called users-antagonists for stronger team building.

As for interval-like ratings ranges, recommendations based on pattern struc-
tures [17] (an extension of FCA-approach for complex data) were firstly intro-
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Fig. 3. Precision and Recall by k for the model 4m

duced and compared with SlopeOne approach in [24]. Another attempt to build
interval-based biclusters on MovieLens data was done in [11].

Since after its success in the NetflixPrize competition, a widely accepted
method for Recommender Systems is matrix factorization [32], the question on
whether Boolean Matrix Factorisation (BMF) provides a competitive approach
here emerged. The first answer was received in two works [35,28], where BMF-
based solution was compared with Singular Value Decomposition for Collabora-
tive Filtering in terms of MAE and demonstrated equal quality. In the subsequent
paper [3], BMF was studied against SVD (compared in terms of MAE, Precision
and Recall) over matrices extended by user’s and item’s features representing the
so-called context-aware approach. The main advantages of BMF lie in its high in-
terpretability and promising efficiency of bit-wise Boolean operations whereas its
main drawback resides in higher complexity due to combinatorial nature of the
optimal number of factors determination (the cover or dimension problem) [8,7].

A separate venue is recommendation for Folksonomies based on higher order
extenstions of FCA; let us cite only one recent paper with a detailed introduction
of the problem [30].

As an unexpected example, FCA-based collaborative filtering can be also
used as an ensemble technique to suggest a proper classifier within classification
framework [31].

An interested reader may also refer to a tutorial on FCA for Information
Retrieval (IR) [22] and related fields with examples of FCA-based recommender
systems as well as a survey on FCA for IR [12].
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8 Conclusion

The obtained results seems to be a promising attempt to rethink neighbourhood-
based methods in terms of Galois connections and see their theoretical compre-
hensiveness and limits.

The problem of finding items that the user has not yet looked at, but should
see in the near future is relevant for many models. We have managed to treat this
problem with the help of Galois operators. Thus this paper being not only an
interesting theoretical exercise, again indirectly confirmed the hypothesis: users
who rate the same items tend to rate other items similarly.
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As for possible venues of the forthcoming work one may take: 1) group rec-
ommendations by means of Galois operators; 2) explicit decomposition of 4m
operator into a combination of two operators from the set of users to the set
of items and vice versa; 3) extensive set of experiments with other large real
datasets and more recent nearest-neighbours based techniques [1]; 4) scalability
issues. A richer set of possible neighbourhood forming operators can be poten-
tially found in [15].
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