Three approaches to find definitions in RDF data

Justine Reynaud, Yannick Toussaint and Amedeo Napoli
LORIA (Université de Lorraine, INRIA, CNRS), Vandœuvre-les-Nancy, France

FCA4AI — July 14, 2018

Grand Est
ALSACE CHAMPAGNE-ARDENNE LORRAINE

Introduction

From RDF assertions, such as

$$
\begin{array}{ll}
\begin{array}{l}
\text { Nancy in France } \\
\text { Nancy a City }
\end{array} & \begin{array}{l}
\text { Paris in France } \\
\text { Paris a City }
\end{array} \\
\text { Rome in Italy } & \text { Le_Louvre in France } \\
\text { Rome a City } & \text { Le_Louvre a Museum } \\
\text { French_Cities }=\{\text { Paris, Nancy }\}
\end{array}
$$

How to infer definitions in order to complete web of data ?

$$
\text { French_Cities } \equiv(a, \text { City }) \sqcap(i n, \text { France })
$$

We compare three algorithms with different approaches.

Data representation

Nancy in France	Paris in France
Nancy a City	Paris a City
Rome in Italy	Le_Louvre in France
Rome a City	Le_Louvre a Museum

Data representation

Nancy in France	Paris in France	French_Cities =\{Paris, Nancy $\}$
Nancy a City	Paris a City	Museums_in_Paris =\{Le_Louvre $\}$
Rome in Italy	Le_Louvre in France	European_Capital =\{Paris, Rome $\}$
Rome a City	Le_Louvre a Museum	

Data representation

Nancy in France Nancy a City Rome in Italy Rome a City

Paris in France Paris a City Le_Louvre in France Le_Louvre a Museum

French_Cities $=\{$ Paris, Nancy $\}$ Museums_in_Paris = \{Le_Louvre $\}$ European_Capital $=\{$ Paris, Rome $\}$

$\{\text { Nancy }\}^{\prime}=\{($ in, France), (a, City), French_Cities $\}$

$$
\{(\text { in, France }),(\text { a, City })\}^{\prime}=\{\text { Nancy, Paris }\}
$$

Association rules - Eclat [Zaki, 2000]

■ Searching for dependencies between sets of attributes

- Quality measure based on confidence

$$
\operatorname{conf}(X \rightarrow Y)=\frac{\left|X^{\prime} \cap Y^{\prime}\right|}{\left|X^{\prime}\right|}
$$

- Rules are unidirectional

■ Post-processing in order to select rules satisfying criteria

Quasi-definition

A quasi-definition $X \leftrightarrow Y$ holds with a confidence θ iff

$$
\min (\operatorname{conf}(X \rightarrow Y), \operatorname{conf}(Y \rightarrow X))=\theta
$$

Redescriptions - ReReMi [Galbrun and Miettinen, 2012]

- Searching for two sets of attributes that occurs in the same objects
- Quality measure based on Jaccard coefficient

$$
\operatorname{Jacc}(X \leftrightarrow Y)=\frac{\left|X^{\prime} \cap Y^{\prime}\right|}{\left|X^{\prime} \cup Y^{\prime}\right|}
$$

- Rules are bidirectional

Redescriptions - ReReMi [Galbrun and Miettinen, 2012]

- Searching for two sets of attributes that occurs in the same objects
- Quality measure based on Jaccard coefficient

$$
\operatorname{Jacc}(X \leftrightarrow Y)=\frac{\left|X^{\prime} \cap Y^{\prime}\right|}{\left|X^{\prime} \cup Y^{\prime}\right|}
$$

- Rules are bidirectional

(in, France) \leftrightarrow French_Cities

Redescriptions - ReReMi [Galbrun and Miettinen, 2012]

- Searching for two sets of attributes that occurs in the same objects
- Quality measure based on Jaccard coefficient

$$
\operatorname{Jacc}(X \leftrightarrow Y)=\frac{\left|X^{\prime} \cap Y^{\prime}\right|}{\left|X^{\prime} \cup Y^{\prime}\right|}
$$

- Rules are bidirectional

(in, France), (a, City) \leftrightarrow French_Cities

Translation rules - Translator [van Leeuwen and Galbrun, 2015]

- Searching for rules that allow to construct one context from the other

■ Rules may be unidirectional or bidirectional

Translation rules - Translator [van Leeuwen and Galbrun, 2015]

- Searching for rules that allow to construct one context from the other

■ Rules may be unidirectional or bidirectional

Translation rules - Translator [van Leeuwen and Galbrun, 2015]

- Searching for rules that allow to construct one context from the other

■ Rules may be unidirectional or bidirectional

Translation rules - Translator [van Leeuwen and Galbrun, 2015]

- Searching for rules that allow to construct one context from the other

■ Rules may be unidirectional or bidirectional

- Adds the best rule at each step

■ Quality metric inspired from minimum description length (MDL)

Algorithms: Comparison

	Eclat	ReReMi	Translator
Data	Bool.	Bool., Num., Cat.	Bool.
Quality measure	Confidence	Jaccard	Compression
	$\frac{\left\|X^{\prime} \cap Y^{\prime}\right\|}{\left\|X^{\prime}\right\|}$	$\frac{\left\|X^{\prime} \cap Y^{\prime}\right\|}{\left\|X^{\prime} \cup Y^{\prime}\right\|}$	based on MDL
Symmetric rule	No	Yes	Both

■ Eclat needs a post-process to build bi-directional rules

- ReReMi and Eclat compute confidence in a very similar way ReReMi should return a subset of the rules found by Eclat
- Translator aims to mine a good set of rules instead of a set of good rules

From Wikipedia to DBpedia

Experiment

Datasets Triples from four domains of DBpedia Turing_Award_laureates, Smartphones, Sports_cars, French_Films
Objects Subjects of the triples
Categories Pairs (subject, C) from the categories Descriptions Pairs (p, o) from the other triples

Smartphones

8500 Triples 600 Resources 400 Categories 1800 Descriptions

Results

R Samsung_Galaxy (manufacturer Samsung_Electronics), (operatingSystem Android_(operating_system))
ET Samsung_Galaxy, Samsung_mobile_phones, Smartphones (a Device), (manufacturer Samsung_Electronics), (operatingSystem Android_(operating_system))

Smartphones

X	E	R	T
$\left\|\mathcal{R}^{X}\right\|$	810	98	41
$\left\|\mathcal{D}^{X}\right\|$	521	57	31
Précision	.64	.58	.76
$\overline{\left\|C_{i}\right\|}-\overline{\left\|D_{i}\right\|}$	4.3	1.6	3.1
$\overline{\left\|C_{i}\right\|}-\overline{\left\|D_{i}\right\|}$	7.8	1.8	3.1

Results

R Samsung_Galaxy (manufacturer Samsung_Electronics), (operatingSystem Android_(operating_system))
ET Samsung_Galaxy, Samsung_mobile_phones, Smartphones (a Device), (manufacturer Samsung_Electronics), (operatingSystem Android_(operating_system))

Définitions

Catégories

Triplets

Future Work

How to include domain knowledge like classes and/or predicates hierarchy?
i.e. dealing with a partial order on the attributes

Can we find class disjointness instead of definitions?
i.e. searching for rules with a very low quality measure

How to deal with scalability?
i.e. evaluating a huge amount of rules

Thanks. Questions?

Eclat

I want to be exhaustive, no matter if they're is a lot of equivalent rules.

ReReMi

I want a few rules easy to interpret and it's important they're valid.

Translator

I want a small set of rules representing the whole set of data, even if it's more difficult to interpret.

References

(1) Galbrun, E. and Miettinen, P. (2012).

From Black and White to Full Color: Extending Redescription Mining Outside the Boolean World.
Statistical Analysis and Data Mining, 5(4):284-303.
國 van Leeuwen, M. and Galbrun, E. (2015).
Association Discovery in Two-View Data.
TKDE, 27(12):3190-3202.
直 Zaki, M. J. (2000).
Scalable algorithms for association mining.
TKDE, 12(3):372-390.

SPARQL Query

SELECT DISTINCT ?s ?p ?o WHERE \{

?s ?p ?o .
?s dct:subject dbc:Smartphones .
?p a owl:ObjectProperty .
FILTER (isURI(?o))
FILTER (!STRSTARTS(STR(?o), "http://www.wikidata.org/"))
FILTER (!STRSTARTS (STR(?o), "http://dbpedia.org/class/yago/"))
FILTER (!STRSTARTS (STR(?p), "http://xmlns.com/foaf/0.1/"))
FILTER (
(?p != dbp:wordnet_type) AND (?p != dbp:website)
AND (?p != prov:wasDerivedFrom) AND (?p != dbo:thumbnail)
AND (?p != rdfs:comment) AND (?p != rdfs:label)
AND (?p != rdfs:seeAlso) AND (?p != owl:sameAs)
AND (?p != owl:differentFrom) AND (?p != foaf:depiction)
AND (?p != dbo:wikiPageExternalLink)
)
\}
The query was run on DBpedia 2016-04.

Translator

- Searching for a set of rules that enable to construct one context from the other
- Greedy approach: adds the better rule at each step
- Quality measure based on minimum description length :

$$
\begin{gathered}
\Delta(X \rightarrow Y)=\underbrace{L\left(\text { Mask }^{-}\right)-L\left(\text { Mask }^{+}\right)}_{\text {Information gain }}-\underbrace{L(X \cup Y)}_{\text {Rule length }} \\
L(X)=-\sum_{x \in X} \log _{2} P(x \mid \mathcal{K})
\end{gathered}
$$

■ Rules may be unidirectional or bidirectional

Statistiques sur les jeux de données extraits

	Triplets	Objets	Attributs	
			Cat.	Descr.
Turing_Award	2642	65	503	857
Smartphones	8418	598	359	1730
Sports_cars	9047	604	435	2295
French_films	121496	6039	6028	19459

Results

Turing_Award_laureates

X	E	R	T
$\left\|\mathcal{R}^{X}\right\|$	47	12	11
$\left\|\mathcal{D}^{X}\right\|$	30	9	9
Précision	.64	.75	.85
$\mid \overline{\left\|C_{i}\right\|}-\overline{\left\|D_{i}\right\|}$	2	1	35
$\overline{\left\|C_{i}\right\|}-\overline{\left\|D_{i}\right\|}$	4	1	5

Sports_cars

X	E	R	T
$\left\|\mathcal{R}^{X}\right\|$	132	52	31
$\left\|\mathcal{D}^{X}\right\|$	95	30	23
Précision	.72	.68	.74
$\overline{\left\|C_{i}\right\|}-\overline{\left\|D_{i}\right\|}$	2.8	1.3	2.6
$\overline{\left\|C_{i}\right\|}-\overline{\left\|D_{i}\right\|}$	4.5	1.4	4.1

Smartphones

X	E	R	T
$\left\|\mathcal{R}^{X}\right\|$	810	98	41
$\left\|\mathcal{D}^{X}\right\|$	521	57	31
Précision	.64	.58	.76
$\overline{\left\|C_{i}\right\|}-\overline{\left\|D_{i}\right\|}$	4.3	1.6	3.1
$\overline{\left\|C_{i}\right\|}-\overline{\left\|D_{i}\right\|}$	7.8	1.8	3.1

French_films

X	E	R	T
$\left\|\mathcal{R}^{X}\right\|$	546	36	93
$\left\|\mathcal{D}^{X}\right\|$	371	12	89
Précision	.68	.33	.96
$\overline{\left\|C_{i}\right\|}-\overline{\left\|D_{i}\right\|}$	2.8	1.2	2.3
$\overline{\left\|C_{i}\right\|}-\overline{\left\|D_{i}\right\|}$	4.4	1.1	4.2

Evaluation

Three expert evaluated each rule as True or False.
From the rules evaluated True, we build a rules base \mathcal{D} of 20 rules.
We say that $X \leftrightarrow Y$ covers $A \leftrightarrow B$ iff $A \subseteq X$ and $Y \subseteq B$.
Given a set of k rules returned by the algorithm X, we can compute the precision and the recall of those rules wrt the rule base :

$$
\begin{aligned}
\operatorname{recall}(X) & =\frac{\left|\operatorname{cov}\left(\mathcal{D}, \mathcal{R}_{X}\right)\right|}{|\mathcal{D}|} \\
\operatorname{precision}(X) & =\frac{\mid\left\{R \in \mathcal{R}_{X} \mid \exists D \in \mathcal{D}, R \text { covers } D\right\} \mid}{\left|\mathcal{R}_{X}\right|}
\end{aligned}
$$

where $\left|\operatorname{cov}\left(\mathcal{D}, \mathcal{R}_{X}\right)\right|$ is the number of rules from D covered by a rule of R.

