Three approaches to find definitions in RDF data

Justine Reynaud, Yannick Toussaint and Amedeo Napoli LORIA (Université de Lorraine, INRIA, CNRS), Vandœuvre-les-Nancy, France

FCA4AI — July 14, 2018

Introduction

From RDF assertions, such as

Nancy in France	Paris in France
Nancy a City	Paris a City
Rome in Italy	Le_Louvre in France
Rome a City	Le_Louvre a Museum

French_Cities = {Paris, Nancy}

How to infer *definitions* in order to *complete* web of data ?

French_Cities \equiv (a, City) \sqcap (in, France)

We compare three algorithms with different approaches.

Data representation

Nancy in France	Paris in France
Nancy a City	Paris a City
Rome in Italy	Le_Louvre in France
Rome a City	Le_Louvre a Museum

	(10.) (10.)	in the	من الل	8. Museum
	ĊĽ,	Ç.	Ś	ۆ ^ن
Nancy	×		×	
Rome		×	×	
Paris	×		×	
Le_Louvre	×			×

Data representation

Nancy in France Nancy a City Rome in Italy Rome a City	Paris Paris Le_Lou Le_Lou	a City vre in vre a	France Museum	9	European	_in_Pa _Capita	ris = {Le I = {Par	e_Louvre} is, Rome}
	in tran	e in the	(3 [°] . (12)	, V	usenth french	Museum	European	Cantal (
Nancy	×		X		×			
Rome		×	×				×	
Paris	×		×		×		×	
Le_Louvre	×			×		×		

Data representation

Nancy in France Nancy a City Rome in Italy Rome a City	-	a City wre ir			Museum	s_in_Pa		lancy} e_Louvre} ris, Rome}
	in tra	ee in the	ي. ريما م	(s) M	useum French	Cities Museur	European	Caital
Nancy	×		Х		×			
Rome		×	×				×	
Paris	×		×		×		×	
Le_Louvre	×			×		×		

 $\label{eq:nancy} $$ \{Nancy\}' = \{(in, France), (a, City), French_Cities\} $$ \{(in, France), (a, City)\}' = \{Nancy, Paris\} $$$

Association rules – Eclat [Zaki, 2000]

- Searching for dependencies between sets of attributes
- Quality measure based on confidence

$$conf(X \to Y) = \frac{\mid X' \cap Y' \mid}{\mid X' \mid}$$

- Rules are unidirectional
- Post-processing in order to select rules satisfying criteria

Quasi-definition

A quasi-definition $X \leftrightarrow Y$ holds with a confidence θ iff

$$min(conf(X \rightarrow Y), conf(Y \rightarrow X)) = \theta$$

Searching for two sets of attributes that occurs in the same objectsQuality measure based on Jaccard coefficient

$$Jacc(X \leftrightarrow Y) = \frac{\mid X' \cap Y' \mid}{\mid X' \cup Y' \mid}$$

Rules are bidirectional

- Searching for two sets of attributes that occurs in the same objects
- Quality measure based on Jaccard coefficient

$$Jacc(X \leftrightarrow Y) = \frac{\mid X' \cap Y' \mid}{\mid X' \cup Y' \mid}$$

Rules are bidirectional

	FR	IT	City	Museum	FC	MP	EC
Nancy	×		Х		×		
Rome		×	×				Х
Paris	×		Х		×		×
Le_Louvre	×			×		×	

(in, France) \leftrightarrow French_Cities

- Searching for two sets of attributes that occurs in the same objects
- Quality measure based on Jaccard coefficient

$$Jacc(X \leftrightarrow Y) = \frac{\mid X' \cap Y' \mid}{\mid X' \cup Y' \mid}$$

Rules are bidirectional

	FR	IT	City	Museum	FC	MP	EC
Nancy	×		X		×		
Rome		×	×				Х
Paris	×		×		×		Х
Le_Louvre	×			×		×	
(in	, Fran	ice),	(a, Cit <u>y</u>	y) \leftrightarrow Frencl	h_Cit	ies	

- Searching for rules that allow to construct one context from the other
- Rules may be unidirectional or bidirectional

- Searching for rules that allow to construct one context from the other
- Rules may be unidirectional or bidirectional

- Searching for rules that allow to construct one context from the other
- Rules may be unidirectional or bidirectional

- Searching for rules that allow to construct one context from the other
- Rules may be unidirectional or bidirectional
- Adds the best rule at each step
- Quality metric inspired from *minimum description length* (MDL)

$$\Delta(X \to Y) = \underbrace{L(Mask^{-}) - L(Mask^{+})}_{\text{Information gain}} - \underbrace{L(X \cup Y)}_{\text{Rule length}} \qquad L(X) = -\sum_{x \in X} \log_2 P(x \mid \mathcal{K})$$

	Eclat	ReReMi	Translator
Data	Bool.	Bool., Num., Cat.	Bool.
Quality measure	Confidence $\frac{ X' \cap Y' }{ X' }$	$\frac{ X' \cap Y' }{ X' \cup Y' }$	Compression based on MDL
Symmetric rule	No	Yes	Both

- Eclat needs a post-process to build bi-directional rules
- ReReMi and Eclat compute confidence in a very similar way ReReMi should return a subset of the rules found by Eclat
- Translator aims to mine a good set of rules instead of a set of good rules

From Wikipedia to DBpedia

Resource name

The Nokia 3210 is a GSM cellular phone, announced by Nokia on March 18.

Contents [show]

Design (off)

a on the luxury phone 8810 in

Datasets Triples from four domains of DBpedia

Turing_Award_laureates, Smartphones, Sports_cars, French_Films Objects Subjects of the triples Categories Pairs (subject, C) from the categories Descriptions Pairs (p, o) from the other triples

Results

- R Samsung_Galaxy (manufacturer Samsung_Electronics), (operatingSystem Android_(operating_system))
- ET Samsung_Galaxy, Samsung_mobile_phones, Smartphones (a Device), (manufacturer Samsung_Electronics), (operatingSystem Android_(operating_system))

Smar	tphon	es	
X	Е	R	Т
$ \mathcal{R}^X $	810	98	41
$ \mathcal{D}^X $	521	57	31
Précision	.64	.58	.76
$\overline{ C_i } - \overline{ D_i }$	4.3	1.6	3.1
$ C_i - D_i $	7.8	1.8	3.1

Results

- R Samsung_Galaxy (manufacturer Samsung_Electronics), (operatingSystem Android_(operating_system))
- ET Samsung_Galaxy, Samsung_mobile_phones, Smartphones (a Device), (manufacturer Samsung_Electronics), (operatingSystem Android_(operating_system))

How to include domain knowledge like classes and/or predicates hierarchy? i.e. dealing with a partial order on the attributes Can we find class disjointness instead of definitions? i.e. searching for rules with a very low quality measure How to deal with scalability? i.e. evaluating a huge amount of rules

Thanks. Questions ?

Eclat

I want to be exhaustive, no matter if they're is a lot of equivalent rules.

ReReMi

I want a few rules easy to interpret and it's important they're valid.

Translator

I want a small set of rules representing the whole set of data, even if it's more difficult to interpret.

References

Galbrun, E. and Miettinen, P. (2012). From Black and White to Full Color: Extending Redescription Mining Outside the Boolean World. *Statistical Analysis and Data Mining*, 5(4):284–303.

van Leeuwen, M. and Galbrun, E. (2015). Association Discovery in Two-View Data. *TKDE*, 27(12):3190–3202.

📄 Zaki, M. J. (2000).

Scalable algorithms for association mining. *TKDE*, 12(3):372–390.

SPARQL Query

```
SELECT DISTINCT ?s ?p ?o WHERE {
    ?s ?p ?o .
    ?s dct:subject dbc:Smartphones .
    ?p a owl:ObjectProperty .
    FILTER (isURI(?o))
    FILTER (!STRSTARTS(STR(?o), "http://www.wikidata.org/"))
    FILTER (!STRSTARTS(STR(?o), "http://dbpedia.org/class/yago/"))
    FILTER (!STRSTARTS(STR(?p), "http://xmlns.com/foaf/0.1/"))
    FILTER (
        (?p != dbp:wordnet_type) AND (?p != dbp:website)
        AND (?p != prov:wasDerivedFrom) AND (?p != dbo:thumbnail)
        AND (?p != rdfs:comment) AND (?p != rdfs:label)
        AND (?p != rdfs:seeAlso) AND (?p != owl:sameAs)
        AND (?p != owl:differentFrom) AND (?p != foaf:depiction)
        AND (?p != dbo:wikiPageExternalLink)
    )
}
```

The query was run on DBpedia 2016-04.

Translator

- Searching for a set of rules that enable to construct one context from the other
- Greedy approach : adds the better rule at each step
- Quality measure based on *minimum description length* :

$$\Delta(X \to Y) = \underbrace{L(Mask^{-}) - L(Mask^{+})}_{\text{Information gain}} - \underbrace{L(X \cup Y)}_{\text{Rule length}}$$

$$L(X) = -\sum_{x \in X} \log_2 P(x \mid \mathcal{K})$$

Rules may be unidirectional or bidirectional

	Triplata	Ohiata	Attı	ributs
	Triplets	Objets	Cat.	Descr.
Turing_Award	2 642	65	503	857
Smartphones	8 418	598	359	1 730
Sports_cars	9 047	604	435	2 295
French_films	121 496	6 039	6 028	19 459

Results

Turing_Awa	ard_la	aureat	es
X	Е	R	Т
$\begin{array}{c c} & \mathcal{R}^{X} \\ & \mathcal{D}^{X} \\ \end{array}$	47	12	11
$ \mathcal{D}^X $	30	9	9
Précision	.64	.75	.85
$\overline{ C_i } - \overline{ D_i }$	2	1	35
$ C_i - D_i $	4	1	5

Spoi	Sports_cars						
X	Е	R	Т				
$ \mathcal{R}^X $	132	52	31				
$ \mathcal{D}^X $	95	30	23				
Précision	.72	.68	.74				
$\overline{ C_i } - \overline{ D_i }$	2.8	1.3	2.6				
$\overline{ C_i } - \overline{ D_i }$	4.5	1.4	4.1				

reates			Smartphones			
R	Т	Г	X	Е	R	Т
12	11	1	$ \mathcal{R}^X $	810	98	4
9	9	9	$ \mathcal{D}^X $	521	57	3
75	.85	35	Précision	.64	.58	.7
1	35	5	$\overline{ C_i } - \overline{ D_i }$	4.3	1.6	3.
1	5	5	$\overline{ C_i } - \overline{ D_i }$	7.8	1.8	3.

Fren	French_films					
X	Е	R	Т			
$ \mathcal{R}^X $	546	36	93			
$ \mathcal{D}^X $	371	12	89			
Précision	.68	.33	.96			
$\overline{ C_i } - \overline{ D_i }$	2.8	1.2	2.3			
$\overline{ C_i } - \overline{ D_i }$	4.4	1.1	4.2			

Three expert evaluated each rule as True or False.

From the rules evaluated True, we build a rules base D of 20 rules.

We say that $X \leftrightarrow Y$ covers $A \leftrightarrow B$ iff $A \subseteq X$ and $Y \subseteq B$.

Given a set of k rules returned by the algorithm X, we can compute the precision and the recall of those rules wrt the rule base :

$$\operatorname{recall}(X) = \frac{\left|\operatorname{cov}(\mathcal{D}, \mathcal{R}_X)\right|}{|\mathcal{D}|}$$
$$\operatorname{precision}(X) = \frac{\left|\{R \in \mathcal{R}_X \mid \exists D \in \mathcal{D}, R \text{ covers } D\}\right|}{|\mathcal{R}_X|}$$
where $\left|\operatorname{cov}(\mathcal{D}, \mathcal{R}_X)\right|$ is the number of rules from D covered by a rule of

R.