Relational proportions between objects and attributes

Nelly Barbot ${ }^{1}$ Laurent Miclet ${ }^{1}$ Henri Prade ${ }^{2}$
${ }^{1}$ Univ. Rennes, CNRS, IRISA, F-22305 Lannion, France
${ }^{2}$ IRIT, CNRS \& Univ. Paul Sabatier, Toulouse, France

FCA4AI'2018

Analogical proportion

- analogical proportions:
statements of the form " A is to B as C is to D "
- when A, B, C, D are represented
in terms of the same features, in the setting of Boolean logic:
" A differs from B as C differs from D and B differs from A as D differs from $C^{\prime \prime}$
"the veal is to the cow as the lamb is to the sheep"
- extended using multiple-valued logic for handling numerical features

Relational proportion

- Statement "Carlsen is to chess as Mozart is to music" relates 2 types of items, here people and activities
- a special case of analogical proportion
- "object A has the same relationship with attribute a as object B with attribute $b^{\prime \prime}$
- the nature of relational proportions suggests to handle them in the setting of formal concept analysis
- defining analogical proportions
between formal concepts

Contents

- Background
- Analogical proportions
- Formal concept analysis
- Analogical proportions in FCA
- Relational proportions

Analogical proportions

Definition (1)
An analogical proportion (AP) on a set X is a quaternary relation on X, i.e. a subset of X^{4}. An element of this subset, written ($x: y:: z: t$), which reads ' x is to y as z is to t^{\prime}, must obey the following axioms:

1. Reflexivity of 'as': $(x: y:: x: y)$
2. Symmetry of 'as':(x:y ::z:t) $\Leftrightarrow(z: t:: x: y)$
3. Central permit.: $(x: y:: z: t) \Leftrightarrow(x: z:: y: t)$

8 equivalent forms : $(x: y:: z: t),(z: t:: x: y)$,
($y: x:: t: z),(t: z:: y: x),(z: x:: t: y)$,
$(t: y:: z: x),(x: z:: y: t)$ and $(y: t: x: z)$

Analogical proportions in lattices (ECAI-2014)

Definition (2)

A 4-tuple (x, y, z, t) of a lattice $(L, \vee, \wedge, \leq)^{4}$ is a Factorial Analogical Proportion (FAP) $(x: y:: z: t)$ iff:

$$
\begin{array}{ll}
x=(x \wedge y) \vee(x \wedge z) & x=(x \vee y) \wedge(x \vee z) \\
y=(x \wedge y) \vee(y \wedge t) & y=(x \vee y) \wedge(y \vee t) \\
z=(z \wedge t) \vee(x \wedge z) & z=(z \vee t) \wedge(x \vee z) \\
t=(z \wedge t) \vee(y \wedge t) & t=(z \vee t) \wedge(y \vee t)
\end{array}
$$

Definition (3)
A 4-tuple (x, y, z, t) of $(L, \vee, \wedge, \leq)^{4}$ is a Weak Analogical Proportion (WAP) when $x \wedge t=y \wedge z$ and $x \vee t=y \vee z$. It is denoted $x: y$ WAP $z: t$.

Example of FAP

a FAP is a WAP and the converse is false

Proposition (1)
Let y and z be two elements of a lattice, the proportion

$$
y: y \vee z:: y \wedge z: z
$$

is a FAP.

Formal concept analysis

- a set \mathcal{O} of objects a set \mathcal{A} of attributes The tuple $(\mathcal{O}, \mathcal{A}, R)$ is called a formal context.
- $(o, a) \in R$ or oRa means object o has attribute a. $o^{\uparrow}=\{a \in \mathcal{A} \mid(o, a) \in R\}$ the attribute set of object o $a^{\downarrow}=\{o \in \mathcal{O} \mid(o, a) \in R\}$ object set having attribute a.
- for any subset \mathbf{o} of objects, $\mathbf{o}^{\uparrow}=\left\{a \in \mathcal{A} \mid a^{\downarrow} \supseteq \mathbf{o}\right\}$ for any subset a of attribures, $\mathbf{a}^{\downarrow}=\left\{o \in \mathcal{O} \mid o^{\uparrow} \supseteq \mathbf{a}\right\}$
- Then a formal concept is defined as a pair (\mathbf{o}, \mathbf{a}), such that $\mathbf{a}^{\downarrow}=\mathbf{o}$ and $\mathbf{o}^{\uparrow}=\mathbf{a}$. \mathbf{o} is the extension of the concept and a its intension.
- The set of all formal concepts is equipped with a partial order $\leq:\left(\mathbf{o}_{1}, \mathbf{a}_{1}\right) \leq\left(\mathbf{o}_{2}, \mathbf{a}_{2}\right)$ iff $\mathbf{o}_{1} \subseteq \mathbf{o}_{2}$ (or, equivalently, $\left.\mathbf{a}_{2} \subseteq \mathbf{a}_{1}\right) \quad \Rightarrow$ the concept lattice of R

Preliminaries

- 1. Given two concepts $x=\left(\mathbf{o}_{x}, \mathbf{a}_{x}\right)$ and $y=\left(\mathbf{o}_{y}, \mathbf{a}_{y}\right)$, one has $\left(\mathbf{o}_{x} \cup \mathbf{o}_{y}\right)^{\uparrow}=\mathbf{a}_{x} \cap \mathbf{a}_{y}$ and $\left(\mathbf{a}_{x} \cup \mathbf{a}_{y}\right)^{\downarrow}=\mathbf{o}_{x} \cap \mathbf{o}_{y}$.
- 2. Given two concepts $x=\left(\mathbf{o}_{x}, \mathbf{a}_{x}\right)$ and $y=\left(\mathbf{o}_{y}, \mathbf{a}_{y}\right)$, one has $\mathbf{o}_{x} \cup \mathbf{o}_{y} \subseteq \mathbf{o}_{x \vee y}, \mathbf{o}_{x} \cap \mathbf{o}_{y}=\mathbf{o}_{x \wedge y}$, $\mathbf{a}_{x} \cup \mathbf{a}_{y} \subseteq \mathbf{a}_{x \wedge y}$ and $\mathbf{a}_{x} \cap \mathbf{a}_{y}=\mathbf{a}_{x \vee y}$.
- 3. Let \mathbf{o} (resp. a) be a subset of \mathcal{O} (resp. \mathcal{A}), there exists at most one concept x such that $\mathbf{o}_{x}=\mathbf{o}$ (resp. $\mathbf{a}_{x}=\mathbf{a}$).

WAP proportions and FCA

Proposition (2)
Let x, y, z and t be four concepts, one has:
$\left(x \vee t=y \vee z\right.$ iff $\left.\mathbf{a}_{x} \cap \mathbf{a}_{t}=\mathbf{a}_{y} \cap \mathbf{a}_{z}\right)$
and $\left(x \wedge t=y \wedge z\right.$ iff $\left.\mathbf{o}_{x} \cap \mathbf{o}_{t}=\mathbf{o}_{y} \cap \mathbf{o}_{z}\right)$.
As consequence, $(x: y$ WAP $z: t)$
iff $\mathbf{a}_{x} \cap \mathbf{a}_{t}=\mathbf{a}_{y} \cap \mathbf{a}_{z}$ and $\mathbf{o}_{x} \cap \mathbf{o}_{t}=\mathbf{o}_{y} \cap \mathbf{o}_{z}$.

Proposition (3)
Let x, y, z and t be four concepts, if $\left(\mathbf{a}_{x}: \mathbf{a}_{y}:: \mathbf{a}_{z}: \mathbf{a}_{t}\right.$ or $\left.\mathbf{o}_{x}: \mathbf{o}_{y}:: \mathbf{o}_{z}: \mathbf{o}_{t}\right)$ then $x: y$ WAP $z: t$.

The converse is false

FAP proportions and FCA

Proposition (4)
Let x, y, z and t be four concepts, if $\left(\mathbf{a}_{x} \cup \mathbf{a}_{t}=\mathbf{a}_{y} \cup \mathbf{a}_{z}\right.$ and $\mathbf{o}_{x} \cup \mathbf{o}_{t}=\mathbf{o}_{y} \cup \mathbf{o}_{z}$) then the FAP $x: y:: z: t$ holds.
Corollary Let x, y, z and t be four concepts, the following two conjunctions are equivalent:

$$
\begin{aligned}
& \mathbf{a}_{x} \cup \mathbf{a}_{t}=\mathbf{a}_{y} \cup \mathbf{a}_{z} \text { and } \mathbf{o}_{x} \cup \mathbf{o}_{t}=\mathbf{o}_{y} \cup \mathbf{o}_{z} \\
& \mathbf{a}_{x}: \mathbf{a}_{y}:: \mathbf{a}_{z}: \mathbf{a}_{t} \text { and } \mathbf{o}_{x}: \mathbf{o}_{y}:: \mathbf{o}_{z}: \mathbf{o}_{t}
\end{aligned}
$$

A particular case of FAP between concepts called Strong Analogical Proportion: $x: y S A P z: t$, where 4 concepts are in analogical proportion on attributes and on objects. If $\mathbf{a}_{x}: \mathbf{a}_{y}:: \mathbf{a}_{z}: \mathbf{a}_{t}$ and $\mathbf{o}_{x}: \mathbf{o}_{y}:: \mathbf{o}_{z}: \mathbf{o}_{t}$ then $x: y$ FAP $z: t$. the reciprocal is false

From a RP to concepts in AP -1

"Massimiliano Alajmo is the Mozart of Italian cooking" background knowledge : music and Italian cooking are disciplines practiced by humans,
with different levels of ability,
Mozart is a musician and is a genius in music discipline.
Since everybody is not "a genius", there exist many "ordinary gifted" musicians. leading to the following formal context:

	a_{1}	a_{2}	a_{3}
o_{1}	\times	\times	
o_{2}	\times		\times

where o_{1} stands for Mozart, o_{2} for one of "ordinary gifted" musicians, a_{1} is the attribute "practices music", a_{2} "is a genius" and a_{3} "has an ordinary ability".

From a RP to concepts in AP - 2

"Massimiliano Alajmo is the Mozart of Italian cooking"

	a_{1}	a_{2}	a_{3}	a_{4}
O_{1}	\times	\times		
O_{2}	\times		\times	
O_{3}		\times		\times
O_{4}			\times	\times

where o_{3} stands for Alajmo, O_{4} an ordinary gifted Italian cook and a_{4} Italian cooking. This context is called the analogical context. Considering the associated concept lattice, the closest analogical proportion to "Alajmo is the Mozart of Italian cooking" is $\left(\left\{o_{3}\right\},\left\{a_{2}, a_{4}\right\}\right)$: $\left(\left\{o_{4}\right\},\left\{a_{3}, a_{4}\right\}\right)$ WAP $\left(\left\{o_{1}\right\},\left\{a_{1}, a_{2}\right\}\right):\left(\left\{o_{2}\right\},\left\{a_{1}, a_{3}\right\}\right)$ which translates into "Mozart is to some ordinary musician as Alajmo is to some ordinary cook".

Analogical complex

It is a subcontext of a formal context described by:

			\times	\times
	\times		\times associated with matrix $A S$	
\times		\times		
\times	\times			

Definition (4)

Given $(\mathcal{O}, \mathcal{A}, R)$, a set of objects $\mathbf{o} \subseteq \mathcal{O}, \mathbf{o}=\mathbf{o}_{1} \cup \mathbf{o}_{2} \cup \mathbf{o}_{3} \cup \mathbf{o}_{4}$, a set of attributes $\mathbf{a} \subseteq \mathcal{A}$, $\mathbf{a}=\mathbf{a}_{1} \cup \mathbf{a}_{2} \cup \mathbf{a}_{3} \cup \mathbf{a}_{4}$, and a binary relation R, the subcontext (\mathbf{o}, \mathbf{a}) forms an analogical complex ($\mathbf{o}_{1,4}, \mathbf{a}_{1,4}$) iff
(0) the binary relation is compatible with the analogical schema AS:

$$
\forall i \in[1,4], \forall o \in \mathbf{o}_{i}, \forall j \in[1,4], \forall a \in \mathbf{a}_{j}, \quad((o, a) \in R) \Leftrightarrow A S(i, j) .
$$

(2) The context is maximal with respect to the first property (\oplus denotes the exclusive or and \backslash the set-theoretic difference):

$$
\begin{aligned}
& \forall o \in \mathcal{O} \backslash \mathbf{o}, \forall i \in[1,4], \exists j \in[1,4], \exists a \in \mathbf{a}_{j},((o, a) \in R) \oplus A S(i, j) . \\
& \forall a \in \mathcal{A} \backslash \mathbf{a}, \forall j \in[1,4], \exists i \in[1,4], \exists o \in \mathbf{o}_{i},((o, a) \in R) \oplus A S(i, j) .
\end{aligned}
$$

An analogical complex is complete if none of $\mathbf{a}_{1}, \ldots, \mathbf{a}_{4}, \mathbf{o}_{1}, \ldots, \mathbf{o}_{4}$ is empty

Example

Let us consider a subcontext, called SmallZoo, extracted from Zoo data base, it has been shown that 24 analogical complexes (18 complete ones) can be derived, like the following complete one:

SmallZoo	$\underset{\sim}{\pi}$	$\begin{aligned} & \stackrel{\sim}{\otimes} \\ & \stackrel{+}{+} \\ & \underset{\sim}{\mathbb{U}} \end{aligned}$	$\begin{aligned} & 0 \\ & 0.0 \\ & 0 \\ & 0 \end{aligned}$	$\stackrel{Y}{\bar{E}}$			$\begin{aligned} & \overline{0} \\ & \frac{\pi}{0} \\ & \frac{1}{2} \end{aligned}$	
	a_{0}	a_{1}	a_{2}	a_{3}	a_{4}	a_{5}	a_{6}	a_{7}
o_{0} aardvark	\times			\times			\times	\times
O_{1} chicken		\times	\times		\times			
O_{2} crow		\times	\times		\times		\times	
O_{3} dolphin				\times		\times	\times	\times
O_{4} duck		\times	\times		\times	\times		
O_{5} fruitbat	\times			\times	\times			\times
$o_{6} \quad$ kiwi		\times	\times				\times	
$O_{7} \quad$ mink	\times			\times		\times	\times	\times
0_{8} penguin		\times	\times			\times	\times	
o_{9} platypus	\times		\times	\times		\times	\times	

		$\begin{aligned} & \mathbf{a}_{1} \\ & a_{5} \end{aligned}$	a_{2}			a_{3}		$\begin{aligned} & \mathbf{a}_{4} \\ & a_{4} \end{aligned}$
		a_{0}	a_{3}	a_{7}	a_{1}	a_{2}		
	O_{1}		\times					
\mathbf{O}_{1}	O_{2}	\times					\times	\times
\mathbf{O}_{2}	O_{5}							\times
O_{3}	O_{8}	\times					\times	
\mathbf{O}_{4}	O_{7}	\times	\times	\times	\times			

Definition (5)

Let $\left(\mathbf{o}_{1,4}, \mathbf{a}_{1,4}\right)$ be a complete analogical complex in a formal context, the following sets of objects and attributes are said to be in the formal relational proportion (\mathbf{o}_{1} is to \mathbf{a}_{3} as \mathbf{o}_{2} is to $\left.\mathbf{a}_{2}\right)$, and we write: $\left(\mathbf{o}_{1} \downarrow \mathbf{a}_{3} \uparrow \mathbf{o}_{2} \downarrow \mathbf{a}_{2}\right)$.

WAP and analogical complex

Definition (6)

Let us consider $(x: y$ WAP $z: t)$, this WAP is complete when
(1) either $\left(\mathbf{a}_{x} \cap \mathbf{a}_{y}\right) \backslash \mathbf{a}_{\cap},\left(\mathbf{a}_{x} \cap \mathbf{a}_{z}\right) \backslash \mathbf{a}_{\cap},\left(\mathbf{a}_{y} \cap \mathbf{a}_{t}\right) \backslash \mathbf{a}_{\cap}$ and $\left(\mathbf{a}_{z} \cap \mathbf{a}_{t}\right) \backslash \mathbf{a}_{\cap}$ are nonempty (called complete WAP through attributes),
© or $\left(\mathbf{o}_{x} \cap \mathbf{o}_{y}\right) \backslash \mathbf{o}_{\cap},\left(\mathbf{o}_{x} \cap \mathbf{o}_{z}\right) \backslash \mathbf{o}_{\cap},\left(\mathbf{o}_{y} \cap \mathbf{o}_{t}\right) \backslash \mathbf{o}_{\cap}$ and $\left(\mathbf{o}_{z} \cap \mathbf{o}_{t}\right) \backslash \mathbf{o}_{\cap}$ are nonempty (called complete WAP through objects).
where $\mathbf{a}_{\cap}=\mathbf{a}_{x} \cap \mathbf{a}_{y} \cap \mathbf{a}_{z} \cap \mathbf{a}_{t}$ and $\mathbf{o}_{\cap}=\mathbf{o}_{x} \cap \mathbf{o}_{y} \cap \mathbf{o}_{z} \cap \mathbf{o}_{t}$.

Proposition (5)

- A complete WAP is an antichain of concepts.
- For a complete WAP through attributes, $(x \vee y)$,
$(x \vee z),(y \vee t)$ and $(z \vee t)$ are in antichain. Similarly, for a complete WAP through objects, $(x \wedge y),(x \wedge z)$, $(y \wedge t)$ and $(z \wedge t)$ are in antichain.
- A FAP in antichain forms a complete WAP through attributes and objects, and reciprocally.

Example

In SmallZoo, $x=\left(\left\{o_{1}, o_{2}, o_{4}\right\},\left\{a_{1}, a_{2}, a_{4}\right\}\right)$, $y=\left(\left\{o_{5}\right\},\left\{a_{0}, a_{3}, a_{4}, a_{7}\right\}\right), z=\left(\left\{o_{4}, o_{8}\right\},\left\{a_{1}, a_{2}, a_{5}\right\}\right)$, $t=\left(\left\{o_{7}, a_{9}\right\},\left\{a_{0}, a_{3}, a_{5}, a_{6}\right\}\right)$ are concepts in complete WAP through attributes. At the beginning, $\mathbf{o}_{1}=\left\{o_{1}, o_{2}\right\}$, $\mathbf{o}_{2}=\left\{o_{5}\right\}, \mathbf{o}_{3}=\left\{o_{8}\right\}, \mathbf{o}_{4}=\left\{o_{7}, o_{9}\right\}, \mathbf{a}_{1}=\left\{a_{5}\right\}$, $\mathbf{a}_{2}=\left\{a_{0}, a_{3}\right\}, \mathbf{a}_{3}=\left\{a_{1}, a_{2}\right\}$ and $\mathbf{a}_{4}=\left\{a_{4}\right\}$ the first postprocessing can remove (either o_{9} or) a_{2} :

	a_{5}	a_{0}	a_{3}	a_{1}	a_{2}	a_{4}
O_{1}				\times	\times	\times
O_{2}				\times	\times	\times
O_{5}		\times	\times			\times
O_{8}	\times			\times	\times	
O_{7}	\times	\times	\times			
O_{9}	\times	\times	\times		\times	

		$\begin{aligned} & \mathbf{a}_{1} \\ & a_{5} \end{aligned}$			$\begin{gathered} \mathbf{a}_{3} \\ a_{1} \end{gathered}$	\mathbf{a}_{4} a_{4}
\mathbf{O}_{1}	O_{1}	\times	\times	\times	\times	\times
	O_{2}				\times	\times
O_{2}	O_{5}					\times
O_{3}	0_{8}				\times	
O_{4}	O_{7}	\times	\times	\times		
	O_{9}	\times	\times	\times		

Concluding remarks

- two cognitive capabilities, conceptual categorization and analogical reasoning can be handled together in the setting of formal concept analysis
- relational proportions offer a basis
for concise forms of explanations
"object A is to attribute a as object B is to attribute b " provides an argument for stating that "object A is the B of a "
when A possesses the same well-known features
- connection a recent proposal based on antichains (M. Ojeda-Aciego et al.)
- bridging the gap with computational linguistics works

