Relational proportions between objects and attributes

Nelly Barbot¹ Laurent Miclet¹ Henri Prade²

¹Univ. Rennes, CNRS, IRISA, F-22305 Lannion, France ² IRIT, CNRS & Univ. Paul Sabatier, Toulouse, France

FCA4AI'2018

Barbot / Miclet / Prade

Relational proportions

Stockholm, July 13, 2018 1 / 20

Analogical proportion

- analogical proportions:
 statements of the form "A is to B as C is to D"
- when A, B, C, D are represented in terms of the **same** features, in the setting of *Boolean logic*:
 - "A differs from B as C differs from D and B differs from A as D differs from C"

"the veal is to the cow as the lamb is to the sheep"

 extended using *multiple-valued logic* for handling numerical features

Barbot / Miclet / Prade

Relational proportion

- Statement "Carlsen is to chess as Mozart is to music" relates 2 types of items, here people and activities
- a special case of analogical proportion
- "object A has the same relationship with attribute a as object B with attribute b"
- the nature of relational proportions suggests to handle them in the setting of *formal concept analysis*
- defining analogical proportions

between formal concepts

(日) (周) (三) (三)

- 3

Contents

- Background
 - Analogical proportions
 - Formal concept analysis
- Analogical proportions in FCA
- Relational proportions

Analogical proportions

Definition (1)

An analogical proportion (AP) on a set X is a quaternary relation on X, *i.e.* a subset of X^4 . An element of this subset, written (x : y :: z : t), which reads 'x is to y as z is to t', must obey the following axioms: 1. Reflexivity of 'as': (x : y :: x : y)2. Symmetry of 'as': $(x : y :: z : t) \Leftrightarrow (z : t :: x : y)$ 3. Central permut.: $(x : y :: z : t) \Leftrightarrow (x : z :: y : t)$

8 equivalent forms : (x : y :: z : t), (z : t :: x : y), (y : x :: t : z), (t : z :: y : x), (z : x :: t : y),(t : y :: z : x), (x : z :: y : t) and (y : t :: x : z)

Barbot / Miclet / Prade

Analogical proportions in lattices (ECAI-2014)

Definition (2)

A 4-tuple (x, y, z, t) of a lattice $(L, \lor, \land, \le)^4$ is a Factorial Analogical Proportion (**FAP**) (x : y :: z : t) iff:

Definition (3)

A 4-tuple (x, y, z, t) of $(L, \lor, \land, \le)^4$ is a Weak Analogical Proportion (WAP) when $x \land t = y \land z$ and $x \lor t = y \lor z$. It is denoted x : y WAP z : t.

Example of FAP

a FAP is a WAP and the converse is false

۲

۲

Proposition (1)

Let y and z be two elements of a lattice, the proportion

 $y : y \lor z :: y \land z : z$

is a FAP.

Barbot / Miclet / Prade

7 / 20

くほと くほと くほと

Formal concept analysis

- a set \mathcal{O} of objects a set \mathcal{A} of attributes The tuple $(\mathcal{O}, \mathcal{A}, R)$ is called a *formal context*.
- $(o, a) \in R$ or oRa means object o has attribute a.
 - $o^{\uparrow} = \{a \in \mathcal{A} | (o, a) \in R\}$ the attribute set of object o $a^{\downarrow} = \{o \in \mathcal{O} | (o, a) \in R\}$ object set having attribute a.
- for any subset **o** of objects, $\mathbf{o}^{\uparrow} = \{ a \in \mathcal{A} | a^{\downarrow} \supseteq \mathbf{o} \}$ for any subset **a** of attribures, $\mathbf{a}^{\downarrow} = \{ o \in \mathcal{O} | o^{\uparrow} \supseteq \mathbf{a} \}$
- Then a *formal concept* is defined as a pair (o, a), such that a[↓] = o and o[↑] = a. o is the *extension* of the concept and a its *intension*.
- The set of all formal concepts is equipped with a partial order \leq : $(\mathbf{o}_1, \mathbf{a}_1) \leq (\mathbf{o}_2, \mathbf{a}_2)$ iff $\mathbf{o}_1 \subseteq \mathbf{o}_2$ (or, equivalently, $\mathbf{a}_2 \subseteq \mathbf{a}_1$) \Rightarrow the *concept lattice* of R_{\sim}

Preliminaries

- 1. Given two concepts $x = (\mathbf{o}_x, \mathbf{a}_x)$ and $y = (\mathbf{o}_y, \mathbf{a}_y)$, one has $(\mathbf{o}_x \cup \mathbf{o}_y)^{\uparrow} = \mathbf{a}_x \cap \mathbf{a}_y$ and $(\mathbf{a}_x \cup \mathbf{a}_y)^{\downarrow} = \mathbf{o}_x \cap \mathbf{o}_y$.
- 2. Given two concepts x = (o_x, a_x) and y = (o_y, a_y), one has o_x ∪ o_y ⊆ o_{x∨y}, o_x ∩ o_y = o_{x∧y}, a_x ∪ a_y ⊆ a_{x∧y} and a_x ∩ a_y = a_{x∨y}.
- 3. Let o (resp. a) be a subset of O (resp. A), there exists at most one concept x such that o_x = o (resp. a_x = a).

WAP proportions and FCA

Proposition (2) Let x, y, z and t be four concepts, one has: $(x \lor t = y \lor z \text{ iff } \mathbf{a}_x \cap \mathbf{a}_t = \mathbf{a}_y \cap \mathbf{a}_z)$ and $(x \wedge t = y \wedge z \text{ iff } \mathbf{o}_x \cap \mathbf{o}_t = \mathbf{o}_y \cap \mathbf{o}_z).$ As consequence, (x : y WAP z : t)iff $\mathbf{a}_x \cap \mathbf{a}_t = \mathbf{a}_v \cap \mathbf{a}_z$ and $\mathbf{o}_x \cap \mathbf{o}_t = \mathbf{o}_v \cap \mathbf{o}_z$.

۲

Proposition (3)

Let x, y, z and t be four concepts, if $(\mathbf{a}_x : \mathbf{a}_y :: \mathbf{a}_z : \mathbf{a}_t)$ or $\mathbf{o}_x : \mathbf{o}_y :: \mathbf{o}_z : \mathbf{o}_t$) then x : y WAP z : t.

The converse is false

Barbot / Miclet / Prade

Relational proportions

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの Stockholm, July 13, 2018

FAP proportions and FCA Proposition (4)

Let x, y, z and t be four concepts, if $(\mathbf{a}_x \cup \mathbf{a}_t = \mathbf{a}_y \cup \mathbf{a}_z)$ and $\mathbf{o}_x \cup \mathbf{o}_t = \mathbf{o}_y \cup \mathbf{o}_z)$ then the FAP x : y :: z : t holds.

Corollary Let x, y, z and t be four concepts, the following two conjunctions are equivalent:

 $\mathbf{a}_x \cup \mathbf{a}_t = \mathbf{a}_y \cup \mathbf{a}_z$ and $\mathbf{o}_x \cup \mathbf{o}_t = \mathbf{o}_y \cup \mathbf{o}_z$

 $\mathbf{a}_x : \mathbf{a}_y :: \mathbf{a}_z : \mathbf{a}_t \text{ and } \mathbf{o}_x : \mathbf{o}_y :: \mathbf{o}_z : \mathbf{o}_t$

A particular case of FAP between concepts called Strong Analogical Proportion: x : y SAP z : t, where 4 concepts are in analogical proportion on attributes and on objects. If $\mathbf{a}_x : \mathbf{a}_y :: \mathbf{a}_z : \mathbf{a}_t$ and $\mathbf{o}_x : \mathbf{o}_y :: \mathbf{o}_z : \mathbf{o}_t$ then x : y FAP z : t. the reciprocal is false

Barbot / Miclet / Prade

Relational proportions

From a RP to concepts in AP -1 "Massimiliano Alajmo is the Mozart of Italian cooking" background knowledge : music and Italian cooking are disciplines practiced by humans,

with different levels of ability,

Mozart is a musician and is a genius in music discipline. Since everybody is not "a genius", there exist many "ordinary gifted" musicians. leading to the following formal context:

	a_1	a_2	a ₃
o_1	×	×	
<i>o</i> ₂	×		\times

where o_1 stands for Mozart, o_2 for one of "ordinary" gifted" musicians, a_1 is the attribute "practices music", a_2 "is a genius" and a₃ "has an ordinary ability"

From a RP to concepts in AP - 2 "Massimiliano Alajmo is the Mozart of Italian cooking"

	a_1	a_2	a 3	a ₄
o_1	×	×		
<i>o</i> ₂	×		×	
<i>o</i> 3		\times		\times
<i>o</i> 4			×	\times

where o_3 stands for Alaimo, o_4 an ordinary gifted Italian cook and a_4 Italian cooking. This context is called the analogical context. Considering the associated concept lattice, the closest analogical proportion to "Alajmo is the Mozart of Italian cooking" is $(\{o_3\}, \{a_2, a_4\})$: $(\{o_4\}, \{a_3, a_4\}) WAP (\{o_1\}, \{a_1, a_2\}) : (\{o_2\}, \{a_1, a_3\})$ which translates into "Mozart is to some ordinary musician as Alajmo is to some ordinary cook"

Barbot / Miclet / Prade

Relational proportions

Analogical complex It is a subcontext of a formal context described by:

			×	X		0	T	1
				according to d with matrix AC -	0	T	0	T
		×		\times associated with matrix $AS =$	1	0	1	0
	×		×		\backslash_1	1	0	0
	×	\times			1		•	-/
Def	initi	on (4	4)					

 $(0 \ 0 \ 1 \ 1)$

Given $(\mathcal{O}, \mathcal{A}, R)$, a set of objects $\mathbf{o} \subseteq \mathcal{O}$, $\mathbf{o} = \mathbf{o}_1 \cup \mathbf{o}_2 \cup \mathbf{o}_3 \cup \mathbf{o}_4$, a set of attributes $\mathbf{a} \subseteq \mathcal{A}$, $\mathbf{a} = \mathbf{a}_1 \cup \mathbf{a}_2 \cup \mathbf{a}_3 \cup \mathbf{a}_4$, and a binary relation R, the subcontext (\mathbf{o}, \mathbf{a}) forms an analogical complex $(\mathbf{o}_{1,4}, \mathbf{a}_{1,4})$ iff

- the binary relation is compatible with the analogical schema AS: $\forall i \in [1,4], \forall o \in \mathbf{o}_i, \forall j \in [1,4], \forall a \in \mathbf{a}_j, ((o,a) \in R) \Leftrightarrow AS(i,j).$
- The context is *maximal* with respect to the first property (⊕ denotes the exclusive or and \ the set-theoretic difference):
 ∀o ∈ O \ o, ∀i ∈ [1,4], ∃j ∈ [1,4], ∃a ∈ a_j, ((o, a) ∈ R) ⊕ AS(i,j).
 ∀a ∈ A \ a, ∀j ∈ [1,4], ∃i ∈ [1,4], ∃o ∈ o_i, ((o, a) ∈ R) ⊕ AS(i,j).

An analogical complex is complete if none of $a_1, \ldots, a_4, o_1, \ldots, o_4$ is empty Barbot / Miclet / Prade Relational proportions Stockholm, July 13, 2018 14 / 20

Example

Let us consider a subcontext, called SmallZoo, extracted from Zoo data base, it has been shown that 24 analogical complexes (18 complete ones) can be derived, like the following complete one:

SmallZoo		hair	feathers	eggs	milk	airborne	aquatic	predator	toothed	
		a_0	a_1	<i>a</i> ₂	a ₃	a_4	a_5	a_6	a_7	_
<i>o</i> 0	aardvark	×			×			×	×	
o_1	chicken		×	×		×				
<i>o</i> ₂	crow		×	\times		\times		\times		
<i>0</i> 3	dolphin				×		×	×	×	
04	duck		\times	\times		\times	×			
<i>0</i> 5	fruitbat	×			×	×			×	
<i>0</i> 6	kiwi		\times	×				×		
07	mink	×			×		\times	×	×	
<i>0</i> 8	penguin		\times	\times			\times	×		
<i>0</i> 9	platypus	×		\times	\times		\times	\times		

Barbot / Miclet / Prade

		a_1	a ₂			a 3		\mathbf{a}_4
		a 5	a 0	a 3	a ₇	a_1	a ₂	a ₄
o ₁	<i>o</i> ₁					Х	Х	×
	<i>o</i> ₂					Х	×	\times
0 ₂	<i>0</i> 5		Х	Х	Х			\times
O ₃	<i>0</i> 8	×				×	Х	
O ₄	07	\times	\times	\times	\times			

Definition (5)

Let $(\mathbf{o}_{1,4}, \mathbf{a}_{1,4})$ be a *complete analogical complex* in a formal context, the following sets of objects and attributes are said to be in the *formal relational proportion* (\mathbf{o}_1 is to \mathbf{a}_3 as \mathbf{o}_2 is to \mathbf{a}_2), and we write: ($\mathbf{o}_1 \ddagger \mathbf{a}_3 \ddagger \mathbf{o}_2 \ddagger \mathbf{a}_2$).

WAP and analogical complex

Definition (6)

Let us consider (x : y WAP z : t), this WAP is complete when

- either $(\mathbf{a}_x \cap \mathbf{a}_y) \setminus \mathbf{a}_{\cap}$, $(\mathbf{a}_x \cap \mathbf{a}_z) \setminus \mathbf{a}_{\cap}$, $(\mathbf{a}_y \cap \mathbf{a}_t) \setminus \mathbf{a}_{\cap}$ and $(\mathbf{a}_z \cap \mathbf{a}_t) \setminus \mathbf{a}_{\cap}$ are *nonempty* (called complete WAP through attributes),
- or $(\mathbf{o}_x \cap \mathbf{o}_y) \setminus \mathbf{o}_{\cap}$, $(\mathbf{o}_x \cap \mathbf{o}_z) \setminus \mathbf{o}_{\cap}$, $(\mathbf{o}_y \cap \mathbf{o}_t) \setminus \mathbf{o}_{\cap}$ and $(\mathbf{o}_z \cap \mathbf{o}_t) \setminus \mathbf{o}_{\cap}$ are *nonempty* (called complete WAP through objects).

where $\mathbf{a}_{\cap} = \mathbf{a}_x \cap \mathbf{a}_y \cap \mathbf{a}_z \cap \mathbf{a}_t$ and $\mathbf{o}_{\cap} = \mathbf{o}_x \cap \mathbf{o}_y \cap \mathbf{o}_z \cap \mathbf{o}_t$.

Proposition (5)

- A complete WAP is an antichain of concepts.
- For a complete WAP through attributes, (x ∨ y), (x ∨ z), (y ∨ t) and (z ∨ t) are in antichain. Similarly, for a complete WAP through objects, (x ∧ y), (x ∧ z), (y ∧ t) and (z ∧ t) are in antichain.
- A FAP in antichain forms a complete WAP through attributes and objects, and reciprocally.

イロト 不得下 イヨト イヨト

3

Example

In SmallZoo, $x = (\{o_1, o_2, o_4\}, \{a_1, a_2, a_4\}),$ $y = (\{o_5\}, \{a_0, a_3, a_4, a_7\}), z = (\{o_4, o_8\}, \{a_1, a_2, a_5\}),$ $t = (\{o_7, o_9\}, \{a_0, a_3, a_5, a_6\})$ are concepts in complete WAP through attributes. At the beginning, $\mathbf{o}_1 = \{o_1, o_2\},$ $\mathbf{o}_2 = \{o_5\}, \mathbf{o}_3 = \{o_8\}, \mathbf{o}_4 = \{o_7, o_9\}, \mathbf{a}_1 = \{a_5\},$ $\mathbf{a}_2 = \{a_0, a_3\}, \mathbf{a}_3 = \{a_1, a_2\}$ and $\mathbf{a}_4 = \{a_4\}$ the first postprocessing can remove (either o_9 or) a_2 :

										a	а		a	a
	a_5	a_0	a ₃	a_1	a_2	a_4				a	u	2	u3	4
01		-	-	×	×	×	-			a_5	a_0	a ₃	a_1	a ₄
01				~	~	~			<i>o</i> ₁				\times	\times
<i>o</i> ₂				\times	×	\times		\mathbf{o}_1	0				\times	×
05		\times	\times			\times			02				~	~
0	\sim			×	×			0 2	<i>0</i> 5		×	\times		×
08				~	~			O 3	0 8	\times			\times	
07	$ \times$	×	\times							\sim	\sim	\sim		
<i>0</i> 9	×	×	\times		×			O 4	07	^	^	^		
5	I								<i>0</i> 9	\times	\times	\times		_
									< □			E ► . 4 3	ē ▶ - 3	
	Barbo	ot / Mic	let / Pr	ade			Relational pro	portions		Sto	kholm.	July 13	2018	19 /

Concluding remarks

- two cognitive capabilities, *conceptual categorization* and *analogical reasoning* can be handled together in the setting of formal concept analysis
- relational proportions offer a basis

for concise forms of explanations "object A is to attribute a as object B is to attribute b"

provides an argument for stating that

"object A is the B of a"

when A possesses the same well-known features

- connection a recent proposal based on *antichains* (M. Ojeda-Aciego et al.)
- bridging the gap with computational linguistics works