MDL for FCA: is there a place for background knowledge?

T. Makhalova^{1,2} S. O. Kuznetsov¹ A. Napoli²

National Research University Higher School of Economics, 3 Kochnovsky Proezd, Moscow, Russia

LORIA, (CNRS – Inria – U. of Lorraine), BP 239 Vandœuvre-lès-Nancy, France

July 13, 2018

Introduction. Pattern Mining Problem

Minimal Description Length. Basic Notions

MDL in Practice: Compression under Constraints

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Experiments

Motivation

- A wide range of application in Data Mining and Machine Learning.
- The exponential explosion of the number of concepts.

Requirements to the Filtering

Interpretability. Why the concept has been selected?

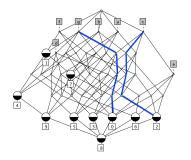
Requirements to the Filtering

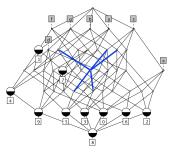
- Interpretability. Why the concept has been selected?
- Flexibility. Is it easy to compute a new subset with the adjusted requirements?

<□ > < @ > < E > < E > E のQ 3/27

Requirements to the Filtering

- Interpretability. Why the concept has been selected?
- Flexibility. Is it easy to compute a new subset with the adjusted requirements?
- Low complexity. To get the result in an affordable time frames.


<□ ▶ < @ ▶ < E ▶ < E ▶ E のQ @ 3/27


Requirements to the Filtering

- Interpretability. Why the concept has been selected?
- Flexibility. Is it easy to compute a new subset with the adjusted requirements?
- Low complexity. To get the result in an affordable time frames.
- Background knowledge embedding. Is it easy to incorporate our assumption on interestingness?

Measure-Based Pattern Selection

- Meets requirements (e.g., well-separable, stable to noise, etc).
- Provides localized subsets of concepts:

long paths

concept neighborhoods

Formal Context and Its Coverings

	а	b	С	d	e
1	x	х	х		
2		х	х	х	X
3				х	X
4	x		х	х	X
5	X		х		

A formal

context

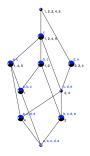
	а	b	с	d	e			
1	х	х	х					
2		х	х	х	х			
3				х	x			
4	х		х	х	х			
5	х		х					
(2) Covering of								
objects with S_2								

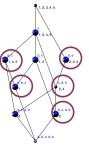
 $= \{ \{ abc \},$

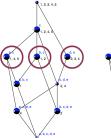
RCR = 1.

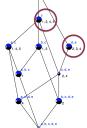
{bcde}, {de}, {cde}, {ac}}.

	d	D	C	u	e		
1	х	х	х				
2		х	х	х	х		
3				х	х		
4	х		х	х	х		
5	х		х				
(3) Covering of							


h


a d


objects with S_3 = {{bc}, {de}, {ac}}. RCR =


	а	b	с	d	е
1	х	х	х		
2		х	х	х	х
3				х	x
4	х		х	х	х
5	х		х		

(4) Covering of objects with S_4 = {{c}, {de}}. RCR = 10/15.

1.2.3.4.5

Introduction. Pattern Mining Problem

Minimal Description Length. Basic Notions

MDL in Practice: Compression under Constraints

Experiments

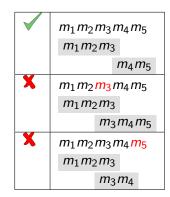
< □ ▶ < @ ▶ < \ = ▶ < \ = ♪ ♡ < ♡ < 0/27

The main principle: the best set of patterns is the set that best compresses the database [Vreeken et al., 2011]. Objective:

$$L(D, CT) = L(D \mid CT) + L(CT \mid D),$$

where L(D | CT) is the length of the dataset encoded with the code table CT and L(CT | D) is the length of the code table CT computed w.r.t. D.

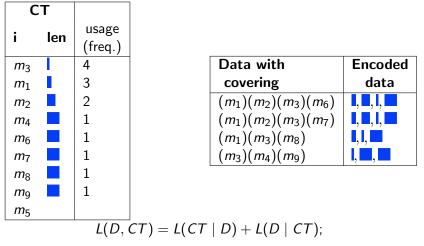
MDL. Basic Notions


- Code table: a set of selected patterns with their encoding lengths.
- Encoding length: new length that "compresses", i.e. the most frequently used ones have the shortest encoding length.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで 8/27

 Disjoint covering: principle of compression by patterns.

MDL. Basic Notions


- Code table: a set of selected patterns with their encoding lengths.
- Encoding length: new length that "compresses", i.e. the most frequently used ones have the shortest encoding length.
- Disjoint covering: principle of compression by patterns.

< □ > < @ > < E > < E > E の Q @ 8/27

MDL. Basic Notions

Example

 $L(CT \mid D) = \sum_{i \in CT} code(i) + len(i); \qquad L(D \mid CT) = \sum_{d \in D} \sum_{i \in cover(d)} len(i)$

Compute ordered candidate set.

Example. All frequent patterns sorted by length, frequency

Step 0					
СТ		Data with	Candidate		
i	u	covering	set, area		
<i>m</i> ₃	4	$(m_1)(m_2)(m_3)(m_6)$	$m_1 m_2 m_3, 6$		
m_1	3	$(m_1)(m_2)(m_3)(m_7)$	$m_1 m_3, 6$		
<i>m</i> ₂	2	$(m_1)(m_3)(m_8)$	$m_1 m_2 m_3 m_6, 4$		
m_4	1	$(m_3)(m_4)(m_9)$	$m_1 m_2 m_3 m_7, 4$		
<i>m</i> ₆ - <i>m</i> ₉	1		$m_1 m_3 m_8, 3$		
<i>m</i> 5	0		$m_3 m_4 m_9, 3$		

- Compute ordered candidate set.
- Cover greedily the given data.

Example. All frequent patterns sorted by length, frequency

Step 0					
СТ		Data with	Candidate		
i	u	covering	set, area		
<i>m</i> ₃	4	$(m_1)(m_2)(m_3)(m_6)$	$m_1 m_2 m_3, 6$		
m_1	3	$(m_1)(m_2)(m_3)(m_7)$	$m_1 m_3, 6$		
<i>m</i> ₂	2	$(m_1)(m_3)(m_8)$	$m_1 m_2 m_3 m_6, 4$		
m_4	1	$(m_3)(m_4)(m_9)$	$m_1 m_2 m_3 m_7, 4$		
<i>m</i> ₆ - <i>m</i> ₉	1		$m_1 m_3 m_8, 3$		
<i>m</i> 5	0		$m_3 m_4 m_9, 3$		

- Compute ordered candidate set.
- Cover greedily the given data.

Step 1			
СТ		Data with	Candidate
i	u	covering	set, area
$m_1 m_2 m_3$	2	$(m_1m_2m_3)(m_6)$	$m_1 m_3 m_8, 3$
<i>m</i> 3	2	$(m_1m_2m_3)(m_7)$	$m_3 m_4 m_9, 3$
m_1, m_4	1	$(m_1)(m_3)(m_8)$	$m_1 m_3, 2$
т ₆ -т ₉	1	$(m_3)(m_4)(m_9)$	
m_2, m_5	0		

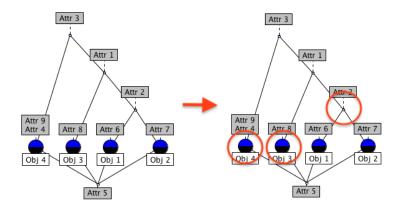
- Compute ordered candidate set.
- Cover greedily the given data.

Step 1			
СТ		Data with	Candidate
i	u	covering	set, area
$m_1 m_2 m_3$	2	$(m_1m_2m_3)(m_6)$	$m_1 m_3 m_8, 3$
<i>m</i> 3	2	$(m_1m_2m_3)(m_7)$	$m_3 m_4 m_9, 3$
m_1, m_4	1	$(m_1)(m_3)(m_8)$	$m_1 m_3, 2$
т ₆ -т ₉	1	$(m_3)(m_4)(m_9)$	
m_2, m_5	0		

- Compute ordered candidate set.
- Cover greedily the given data.

Step 2			
СТ		Data with	Candidate
i	u	covering	set, area
$m_1 m_2 m_3$	2	$(m_1m_2m_3)(m_6)$	$m_3m_4m_9$, 3
$m_1 m_3 m_8$	1	$(m_1m_2m_3)(m_7)$	
m_3, m_4	1	$(m_1 m_3 m_8)$	
m_1, m_2, m_5, m_8	0	$(m_3)(m_4)(m_9)$	

- Compute ordered candidate set.
- Cover greedily the given data.


Step 2			
СТ		Data with	Candidate
i	u	covering	set, area
$m_1 m_2 m_3$	2	$(m_1m_2m_3)(m_6)$	$m_3 m_4 m_9, 3$
$m_1 m_3 m_8$	1	$(m_1m_2m_3)(m_7)$	
m_3, m_4	1	$(m_1 m_3 m_8)$	
m_1, m_2, m_5, m_8	0	$(m_3)(m_4)(m_9)$	

- Compute ordered candidate set.
- Cover greedily the given data.

Step 3			
СТ		Data with	Candidate
i	u	covering	set, area
$m_1 m_2 m_3$	2	$(m_1m_2m_3)(m_6)$	
$m_1 m_3 m_8$	1	$(m_1m_2m_3)(m_7)$	
$m_3 m_4 m_9$	1	$(m_1 m_3 m_8)$	
m_{6}, m_{7}	1	$(m_3 m_4 m_9)$	
<i>m</i> ₁ - <i>m</i> ₅	0		
<i>m</i> 8- <i>m</i> 9	0		

MDL. Unsupervised Settings

From the candidate set to the code table

< □ ▶ < @ ▶ < ≧ ▶ < ≧ ▶ E の Q @ 14/27

MDL in Practice: Compression under Constraints

MDL:

- threshold-free selection;
- variable patterns.

Measure-based selection:

background knowledge (constraints) embedding.

<□ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ = の < ? 15/27

MDL in Practice: Compression under Constraints Proposed Approach: MDL Perspective

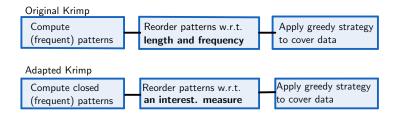


Figure: The workflow for pattern mining by the original Krimp and its adapted version.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - 釣�☆ 16/27

MDL in Practice: Compression under Constraints

Proposed Approach: Measure-Based Selection Perspective

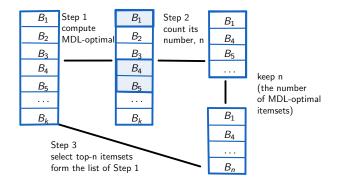
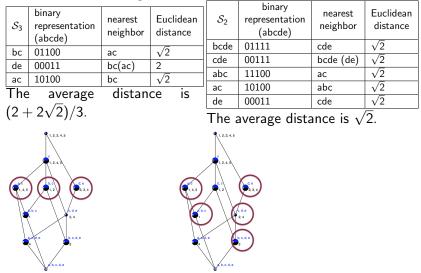
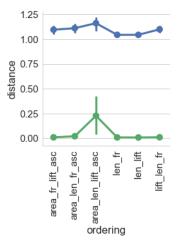


Figure: The principle of computing MDL-optimal and top-n sets of patterns

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

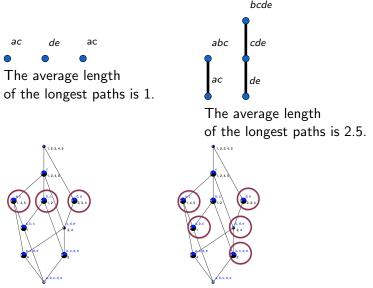

Compression

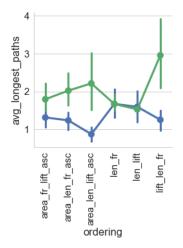
Reduction in The Number of Concepts


dataset	nmb.	nmb.	nmb.	Number of MDL-optimal					
ualasel	of	of	of	area	area	area	len	len	lift
	obj.	attr.	concepts	fr_lift	len_fr	len₋lift	fr	lift	len
breast	699	16	702	36.0	32.2	20.4	37.3	37.3	33.5
car	1 728	25	12 420	868.4	849.2	138.6	714.6	847.7	698.3
ecoli	336	29	690	58.8	55.9	16.4	64.9	65.6	55.9
iris	150	19	183	31.1	28.9	12.9	34.8	34.6	26.3
led7	3 200	24	3 808	108.0	118.3	64.2	108.7	108.7	130.3
pima	768	38	2 769	110.1	106.3	35.9	120.6	112.1	101.7

<ロ > < 部 > < 言 > < 言 > こ 多 へ つ > 3 (27)

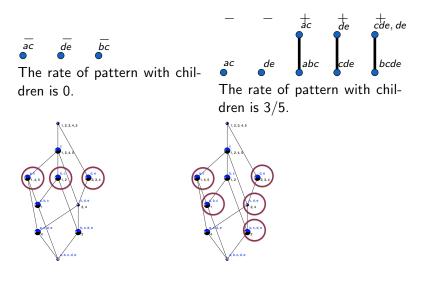
Distance to the 1st nearest neighbor

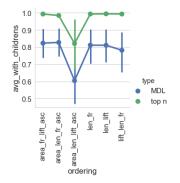

Euclidean distances to the 1st nearest neighbors. The average distance for S_3 is longer then for S_2 , thus S_3 contains more diverse patterns.


Distance to the 1NN

On the X-axis is different orderings of patterns, on the Y-axis is the values of the listed above non-redundancy parameters for MDL-optimal set (blue) and top-n (green) set of the same size.

Average length of the longest paths built from partially ordered itemsets

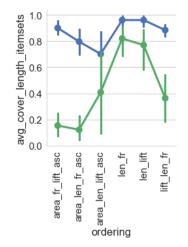

The longest paths built on partially ordered patterns (by inclusion),



The average path lengths

On the X-axis is different orderings of patterns, on the Y-axis is the values of the listed above non-redundancy parameters for MDL-optimal set (blue) and top-n (green) set of the same size.

Average number of itemsets with parents (more general itemsets)



Rate of children with parents.

On the X-axis is different orderings of patterns, on the Y-axis is the values of the listed above non-redundancy parameters for MDL-optimal set (blue) and top-n (green) set of the same size.

Data Coverage

the average rate of crosses covered by patterns On the X-axis is different orderings of patterns, on the Y-axis is the values of the listed above non-redundancy parameters for MDL-optimal set (blue) and top-n (green) set of the same size.

Conclusion

A new approach "implementation of the MDL principle under constrains" or "embedding of background knowledge (on interestingness) into MDL" has been proposed.

The approach:

- threshold-free;
- allows for selection of a small set of patterns having desired properties;

<□ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ = の Q @ 26/27

 patterns are diverse and varied, they cover almost all attributes of objects. Thank you for your attention.

< □ ▶ < 圖 ▶ < ≣ ▶ < ≣ ▶ ■ ● ○ Q ^Q 27/27