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Motivation

I A wide range of application in Data Mining and Machine
Learning.

I The exponential explosion of the number of concepts.
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Concept Filtering. What Do We Want?
Requirements to the Filtering

I Interpretability. Why the concept has been selected?

I Flexibility. Is it easy to compute a new subset with the
adjusted requirements?

I Low complexity. To get the result in an affordable time
frames.

I Background knowledge embedding. Is it easy to incorporate
our assumption on interestingness?



3/27

Concept Filtering. What Do We Want?
Requirements to the Filtering

I Interpretability. Why the concept has been selected?

I Flexibility. Is it easy to compute a new subset with the
adjusted requirements?

I Low complexity. To get the result in an affordable time
frames.

I Background knowledge embedding. Is it easy to incorporate
our assumption on interestingness?



3/27

Concept Filtering. What Do We Want?
Requirements to the Filtering

I Interpretability. Why the concept has been selected?

I Flexibility. Is it easy to compute a new subset with the
adjusted requirements?

I Low complexity. To get the result in an affordable time
frames.

I Background knowledge embedding. Is it easy to incorporate
our assumption on interestingness?



3/27

Concept Filtering. What Do We Want?
Requirements to the Filtering

I Interpretability. Why the concept has been selected?

I Flexibility. Is it easy to compute a new subset with the
adjusted requirements?

I Low complexity. To get the result in an affordable time
frames.

I Background knowledge embedding. Is it easy to incorporate
our assumption on interestingness?



4/27

Measure-Based Pattern Selection

I Meets requirements (e.g., well-separable, stable to noise, etc).

I Provides localized subsets of concepts:

long paths concept neighborhoods
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Formal Context and Its Coverings
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Minimal Description Length. Basic Notions

The main principle: the best set of patterns is the set that best
compresses the database [Vreeken et al., 2011].
Objective:

L(D,CT ) = L(D | CT ) + L(CT | D),

where L(D | CT ) is the length of the dataset encoded with the
code table CT and L(CT | D) is the length of the code table CT
computed w.r.t. D.
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MDL. Basic Notions

I Code table: a set of selected patterns
with their encoding lengths.

I Encoding length: new length that
“compresses”, i.e. the most frequently
used ones have the shortest encoding
length.

I Disjoint covering: principle of
compression by patterns.
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m4m5
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m1m2m3

m3m4m5
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MDL. Basic Notions
Example

CT

i len
usage
(freq.)

m3 4
m1 3
m2 2
m4 1
m6 1
m7 1
m8 1
m9 1
m5

Data with
covering

Encoded
data

(m1)(m2)(m3)(m6) , , ,
(m1)(m2)(m3)(m7) , , ,
(m1)(m3)(m8) , ,
(m3)(m4)(m9) , ,

L(D,CT ) = L(CT | D) + L(D | CT );

L(CT | D) =
∑
i∈CT

code(i)+len(i); L(D | CT ) =
∑
d∈D

∑
i∈cover(d)

len(i)
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MDL. Unsupervised Settings
Main Steps

I Compute ordered candidate set.

I Cover greedily the given data.

Example. All frequent patterns sorted by length, frequency

Step 0
CT Data with

covering
Candidate
set, areai u

m3 4 (m1)(m2)(m3)(m6) m1m2m3, 6
m1 3 (m1)(m2)(m3)(m7) m1m3, 6
m2 2 (m1)(m3)(m8) m1m2m3m6, 4
m4 1 (m3)(m4)(m9) m1m2m3m7, 4
m6-m9 1 m1m3m8, 3
m5 0 m3m4m9, 3
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MDL. Unsupervised Settings
Main Steps

I Compute ordered candidate set.

I Cover greedily the given data.

Example. Try to cover by disjoint patterns:

Step 1
CT Data with

covering
Candidate
set, areai u

m1m2m3 2 (m1m2m3)(m6) m1m3m8,3
m3 2 (m1m2m3)(m7) m3m4m9, 3
m1,m4 1 (m1)(m3)(m8) m1m3, 2
m6-m9 1 (m3)(m4)(m9)
m2,m5 0
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I Compute ordered candidate set.

I Cover greedily the given data.

Example. Try to cover by disjoint patterns:

Step 2
CT Data with

covering
Candidate
set, areai u

m1m2m3 2 (m1m2m3)(m6) m3m4m9, 3
m1m3m8 1 (m1m2m3)(m7)
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Step 2
CT Data with

covering
Candidate
set, areai u

m1m2m3 2 (m1m2m3)(m6) m3m4m9, 3
m1m3m8 1 (m1m2m3)(m7)
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MDL. Unsupervised Settings
Main Steps

I Compute ordered candidate set.

I Cover greedily the given data.

Example. Try to cover by disjoint patterns:

Step 3
CT Data with

covering
Candidate
set, areai u

m1m2m3 2 (m1m2m3)(m6)
m1m3m8 1 (m1m2m3)(m7)
m3m4m9 1 (m1m3m8)
m6,m7 1 (m3m4m9)
m1-m5 0
m8-m9 0
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MDL. Unsupervised Settings
From the candidate set to the code table
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MDL in Practice: Compression under Constraints

MDL:

I threshold-free selection;

I variable patterns.

Measure-based selection:

I background knowledge (constraints) embedding.
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MDL in Practice: Compression under Constraints
Proposed Approach: MDL Perspective

Original Krimp

Compute
(frequent) patterns

Reorder patterns w.r.t.

length and frequency

Apply greedy strategy
to cover data

Adapted Krimp

Compute closed
(frequent) patterns

Reorder patterns w.r.t.

an interest. measure

Apply greedy strategy
to cover data

Figure: The workflow for pattern mining by the original Krimp and its adapted version.
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MDL in Practice: Compression under Constraints
Proposed Approach: Measure-Based Selection Perspective

B1

B2

B3

B4

B5

Bk

. . .

B1

B2

B3

B4

B5

Bk

. . .

Step 2
count its
number, n

Step 3
select top-n itemsets
form the list of Step 1

B1

B4

B5

. . .

B4

. . .

keep n
(the number
of MDL-optimal
itemsets)

B1

Bn

Step 1
compute
MDL-optimal

Figure: The principle of computing MDL-optimal and top-n sets of
patterns
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Compression
Reduction in The Number of Concepts

dataset
nmb.
of
obj.

nmb.
of

attr.

nmb.
of

concepts

Number of MDL-optimal
area
fr lift

area
len fr

area
len lift

len
fr

len
lift

lift
len

breast 699 16 702 36.0 32.2 20.4 37.3 37.3 33.5

car 1 728 25 12 420 868.4 849.2 138.6 714.6 847.7 698.3

ecoli 336 29 690 58.8 55.9 16.4 64.9 65.6 55.9

iris 150 19 183 31.1 28.9 12.9 34.8 34.6 26.3

led7 3 200 24 3 808 108.0 118.3 64.2 108.7 108.7 130.3

pima 768 38 2 769 110.1 106.3 35.9 120.6 112.1 101.7
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Non-redundancy
Distance to the 1st nearest neighbor

S3

binary
representation
(abcde)

nearest
neighbor

Euclidean
distance

bc 01100 ac
√

2

de 00011 bc(ac) 2

ac 10100 bc
√

2

The average distance is
(2 + 2

√
2)/3.

S2

binary
representation

(abcde)

nearest
neighbor

Euclidean
distance

bcde 01111 cde
√

2

cde 00111 bcde (de)
√

2

abc 11100 ac
√

2

ac 10100 abc
√

2

de 00011 cde
√

2

The average distance is
√

2.

Euclidean distances to the 1st nearest neighbors. The average distance

for S3 is longer then for S2, thus S3 contains more diverse patterns.
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Non-redundancy

Distance to the 1NN
On the X -axis is different orderings of patterns, on the Y -axis is the

values of the listed above non-redundancy parameters for MDL-optimal

set (blue) and top-n (green) set of the same size.
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Non-redundancy
Average length of the longest paths built from partially ordered itemsets

ac acde

The average length
of the longest paths is 1.

ac

abc

de

cde

bcde

The average length
of the longest paths is 2.5.

The longest paths built on partially ordered patterns (by inclusion).
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Non-redundancy

The average path lengths
On the X -axis is different orderings of patterns, on the Y -axis is the

values of the listed above non-redundancy parameters for MDL-optimal

set (blue) and top-n (green) set of the same size.
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Non-redundancy
Average number of itemsets with parents (more general itemsets)

−− −
bcdeac

The rate of pattern with chil-
dren is 0.

−− + ++

abc

ac

cde

de

deac

cde, de

bcde

The rate of pattern with chil-
dren is 3/5.
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Non-redundancy

Rate of children with parents.
On the X -axis is different orderings of patterns, on the Y -axis is the

values of the listed above non-redundancy parameters for MDL-optimal

set (blue) and top-n (green) set of the same size.
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Data Coverage

the average rate of crosses covered by patterns
On the X -axis is different orderings of patterns, on the Y -axis is the

values of the listed above non-redundancy parameters for MDL-optimal

set (blue) and top-n (green) set of the same size.
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Conclusion

A new approach “implementation of the MDL principle under
constrains” or “embedding of background knowledge (on
interestingness) into MDL” has been proposed.
The approach:

I threshold-free;

I allows for selection of a small set of patterns having desired
properties;

I patterns are diverse and varied, they cover almost all
attributes of objects.
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Thank you for your attention.
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