Rectangle and Square Coverings of Tolerance Spaces and their Direct Product

Christian Jäkel and Stefan Schmidt

Dresden University of Technology
FCA4AI, 13.07.2018, Stockholm, Sweden

Tolerance Spaces

- tolerance relation: reflexive and symmetric relation $\tau \subseteq V \times V$
- tolerance space: $\mathbb{T}:=(V, \tau)$
- formal context (V, V, τ)
maximal rectangles and squares:

set of all maximal squares: $\mathrm{Sq}(\mathbb{T}) \subseteq \mathfrak{B}(\mathbb{T})$

Tolerance Spaces

- tolerance relation: reflexive and symmetric relation $\tau \subseteq V \times V$
- tolerance space: $\mathbb{T}:=(V, \tau)$
- formal context (V, V, τ)
- maximal rectangles and squares:

$I:$	m_{1}	m_{2}	m_{3}	m_{4}
g_{1}	0	0	1	0
g_{2}	0	0	0	1
g_{3}	1	0	0	1
g_{4}	0	1	1	1

$\tau:$	a	b	c	d
a	1	1	1	0
b	1	1	0	1
c	1	0	1	1
d	0	1	1	1

- set of all maximal squares: $\operatorname{Sq}(\mathbb{T}) \subseteq \mathfrak{B}(\mathbb{T})$

Square and Rectangle Cover Number

- $I=\bigcup\{A \times B \mid(A, B) \in \mathfrak{B}(\mathbb{K})\}$
- $\tau=\bigcup\{S \mid S \in \operatorname{Sq}(\mathbb{T})\}$
- the rectangle cover number of \mathbb{K} :

$$
\operatorname{rc}(\mathbb{K}):=\min \{\# \mathcal{F} \mid \mathcal{F} \subseteq \mathfrak{B}(\mathbb{T}), I=\bigcup \mathcal{F}\}
$$

the square cover number of \mathbb{T} :

$$
\operatorname{sc}(\mathbb{T}):=\min \{\# \mathcal{S} \mid \mathcal{S} \subseteq \operatorname{Sq}(\mathbb{T}), \tau=\bigcup S\}
$$

Square and Rectangle Cover Number

- $I=\bigcup\{A \times B \mid(A, B) \in \mathfrak{B}(\mathbb{K})\}$
- $\tau=\bigcup\{S \mid S \in \operatorname{Sq}(\mathbb{T})\}$
- the rectangle cover number of \mathbb{K} :

$$
\operatorname{rc}(\mathbb{K}):=\min \{\# \mathcal{F} \mid \mathcal{F} \subseteq \mathfrak{B}(\mathbb{T}), I=\bigcup \mathcal{F}\}
$$

- the square cover number of \mathbb{T} :

$$
\operatorname{sc}(\mathbb{T}):=\min \{\# \mathcal{S} \mid \mathcal{S} \subseteq \mathrm{Sq}(\mathbb{T}), \tau=\bigcup \mathcal{S}\}
$$

Table of Contents

(1) Introduction
(2) Basic Definitions and Facts
(3) Rectangle Covers of the Direct Product of Formal Contexts
(4) Rectangle Cover Number vs. Square Cover Number
(5) Square Cover Number of the Direct Product of Tolerance Spaces
(6) Summary

Definitions and Facts I

- $\mathbb{K}=(G, M, I), \mathfrak{B}(\mathbb{K})$ and $\mathfrak{\mathfrak { B }}(\mathbb{K}):=(\mathfrak{B}(\mathbb{K}), \leq)$
complementary context:
$\mathbb{K}^{c}=\left(G, M, I^{c}\right):=(G, M,(G \times M)-I)$
crossed and co-crossed contexts:

I	m_{1}	m_{2}	m_{3}
g_{1}	0	1	0
g_{2}	1	1	1
g_{3}	0	1	0

\mathbb{K} is crossed $\Longleftrightarrow \mathbb{K}^{c}$ is co-crossed

Definitions and Facts I

- $\mathbb{K}=(G, M, I), \mathfrak{B}(\mathbb{K})$ and $\underline{\mathfrak{B}}(\mathbb{K}):=(\mathfrak{B}(\mathbb{K}), \leq)$
- complementary context: $\mathbb{K}^{c}=\left(G, M, I^{c}\right):=(G, M,(G \times M)-I)$
- crossed and co-crossed contexts:

\mathbb{K} is crossed $\Longleftrightarrow \mathbb{K}^{c}$ is co-crossed

Definitions and Facts I

- $\mathbb{K}=(G, M, I), \mathfrak{B}(\mathbb{K})$ and $\underline{\mathfrak{B}}(\mathbb{K}):=(\mathfrak{B}(\mathbb{K}), \leq)$
- complementary context:

$$
\mathbb{K}^{c}=\left(G, M, I^{c}\right):=(G, M,(G \times M)-I)
$$

- crossed and co-crossed contexts:

I	m_{1}	m_{2}	m_{3}
g_{1}	0	1	0
g_{2}	1	1	1
g_{3}	0	1	0

I	m_{1}	m_{2}	m_{3}
g_{1}	0	0	0
g_{2}	0	1	1
g_{3}	0	1	1

- \mathbb{K} is crossed $\Longleftrightarrow \mathbb{K}^{c}$ is co-crossed

Definitions and Facts II

- direct sum $\mathbb{K}_{1} \oplus \mathbb{K}_{2}:=\left(G_{1} \dot{\cup} G_{2}, M_{1} \dot{\cup} M_{2}, I_{1} \oplus I_{2}\right)$

$I_{1} \oplus I_{2}:$	M_{1}	M_{2}
G_{1}	I_{1}	$G_{1} \times M_{2}$
G_{2}	$G_{2} \times M_{1}$	I_{2}

$-\underline{\mathfrak{B}}\left(\mathbb{K}_{1} \oplus \mathbb{K}_{2}\right) \cong \underline{\mathfrak{B}}\left(\mathbb{K}_{1}\right) \times \underline{\mathfrak{B}}\left(\mathbb{K}_{2}\right)$

Definitions and Facts III

- direct product: $\mathbb{K}_{1} \check{\times} \mathbb{K}_{2}:=\left(G_{1} \times G_{2}, M_{1} \times M_{2}, I_{1} \check{\times} I_{2}\right)$

$$
((g, h),(m, n)) \in I_{1} \check{\times} I_{2}: \Longleftrightarrow(g, m) \in I_{1} \text { or }(h, n) \in I_{2}
$$

Definitions and Facts III

- direct product: $\mathbb{K}_{1} \check{\times} \mathbb{K}_{2}:=\left(G_{1} \times G_{2}, M_{1} \times M_{2}, I_{1} \check{\times} I_{2}\right)$

$$
((g, h),(m, n)) \in I_{1} \check{\times} I_{2}: \Longleftrightarrow(g, m) \in I_{1} \text { or }(h, n) \in I_{2}
$$

- cardinal product $\mathbb{K}_{1} \hat{\times} \mathbb{K}_{2}:=\left(G_{1} \times G_{2}, M_{1} \times M_{2}, I_{1} \hat{\times} I_{2}\right)$,

$$
((g, h),(m, n)) \in I_{1} \hat{\times} I_{2}: \Longleftrightarrow(g, m) \in I_{1} \text { and }(h, n) \in I_{2}
$$

Definitions and Facts III

- direct product: $\mathbb{K}_{1} \check{\times} \mathbb{K}_{2}:=\left(G_{1} \times G_{2}, M_{1} \times M_{2}, I_{1} \check{\times} I_{2}\right)$

$$
((g, h),(m, n)) \in I_{1} \check{\times} I_{2}: \Longleftrightarrow(g, m) \in I_{1} \text { or }(h, n) \in I_{2}
$$

- cardinal product $\mathbb{K}_{1} \hat{\times} \mathbb{K}_{2}:=\left(G_{1} \times G_{2}, M_{1} \times M_{2}, I_{1} \hat{\times} I_{2}\right)$,

$$
((g, h),(m, n)) \in I_{1} \hat{\times} I_{2}: \Longleftrightarrow(g, m) \in I_{1} \text { and }(h, n) \in I_{2}
$$

$-\left(\mathbb{K}_{1} \check{\times} \mathbb{K}_{2}\right)^{c}=\mathbb{K}_{1}^{c} \hat{\times} \mathbb{K}_{2}^{c}$

Definitions and Facts III

- direct product: $\mathbb{K}_{1} \check{\times} \mathbb{K}_{2}:=\left(G_{1} \times G_{2}, M_{1} \times M_{2}, I_{1} \check{\times} I_{2}\right)$

$$
((g, h),(m, n)) \in I_{1} \check{\times} I_{2}: \Longleftrightarrow(g, m) \in I_{1} \text { or }(h, n) \in I_{2}
$$

- cardinal product $\mathbb{K}_{1} \hat{\times} \mathbb{K}_{2}:=\left(G_{1} \times G_{2}, M_{1} \times M_{2}, I_{1} \hat{\times} I_{2}\right)$,

$$
((g, h),(m, n)) \in I_{1} \hat{\times} I_{2}: \Longleftrightarrow(g, m) \in I_{1} \text { and }(h, n) \in I_{2}
$$

$-\left(\mathbb{K}_{1} \check{\times} \mathbb{K}_{2}\right)^{c}=\mathbb{K}_{1}^{c} \hat{x} \mathbb{K}_{2}^{c}$

- \mathbb{K}_{1} and \mathbb{K}_{2} crossed: $\underline{\mathfrak{B}}\left(\mathbb{K}_{1} \hat{\times} \mathbb{K}_{2}\right) \cong \underline{\mathfrak{B}}\left(\mathbb{K}_{1}\right) \times \underline{\mathfrak{B}}\left(\mathbb{K}_{2}\right)$

Rectangle Cover Number

- it holds that:

$$
I_{1} \check{\times} I_{2}=\left(G_{1} \times M_{1}\right) \hat{\times} I_{2} \cup I_{1} \hat{\times}\left(G_{2} \times M_{2}\right)
$$

- it follows that:

$$
\operatorname{rc}\left(\mathbb{K}_{1} \check{\times} \mathbb{K}_{2}\right) \leq \operatorname{rc}\left(\mathbb{K}_{1}\right)+\operatorname{rc}\left(\mathbb{K}_{2}\right)
$$

Rectangle Cover Number

- it holds that:

$$
I_{1} \check{\times} I_{2}=\left(G_{1} \times M_{1}\right) \hat{\times} I_{2} \cup I_{1} \hat{\times}\left(G_{2} \times M_{2}\right)
$$

- it follows that:

$$
\operatorname{rc}\left(\mathbb{K}_{1} \check{\times} \mathbb{K}_{2}\right) \leq \operatorname{rc}\left(\mathbb{K}_{1}\right)+\operatorname{rc}\left(\mathbb{K}_{2}\right)
$$

cover problem \Longleftrightarrow intersection prob. \Longleftrightarrow lattice dimension

$$
\operatorname{rc}(\mathbb{K})=\operatorname{fdim}_{2}\left(\mathbb{K}^{c}\right)=\operatorname{dim}_{2}\left(\underline{\mathfrak{B}}\left(\mathbb{K}^{c}\right)\right)
$$

Theorem

Theorem

Let \mathbb{K}_{1} and \mathbb{K}_{2} be co-crossed contexts. For the rectangle cover number of their direct product it holds that:

$$
\operatorname{rc}\left(\mathbb{K}_{1} \check{\times} \mathbb{K}_{2}\right)=\operatorname{rc}\left(\mathbb{K}_{1}\right)+\operatorname{rc}\left(\mathbb{K}_{2}\right)
$$

Theorem

Theorem

Let \mathbb{K}_{1} and \mathbb{K}_{2} be co-crossed contexts. For the rectangle cover number of their direct product it holds that:

$$
\operatorname{rc}\left(\mathbb{K}_{1} \check{\times} \mathbb{K}_{2}\right)=\operatorname{rc}\left(\mathbb{K}_{1}\right)+\operatorname{rc}\left(\mathbb{K}_{2}\right)
$$

$$
\operatorname{rc}\left(\mathbb{K}_{1} \check{\times} \mathbb{K}_{2}\right)=\operatorname{fdim}_{2}\left(\left(\mathbb{K}_{1} \check{\times} \mathbb{K}_{2}\right)^{c}\right)
$$

Theorem

Theorem

Let \mathbb{K}_{1} and \mathbb{K}_{2} be co-crossed contexts. For the rectangle cover number of their direct product it holds that:

$$
\operatorname{rc}\left(\mathbb{K}_{1} \check{\times} \mathbb{K}_{2}\right)=\operatorname{rc}\left(\mathbb{K}_{1}\right)+\operatorname{rc}\left(\mathbb{K}_{2}\right)
$$

$$
\begin{aligned}
\operatorname{rc}\left(\mathbb{K}_{1} \check{\times} \mathbb{K}_{2}\right) & =\operatorname{fdim}_{2}\left(\left(\mathbb{K}_{1} \check{\times} \mathbb{K}_{2}\right)^{c}\right) \\
& =\operatorname{fdim}_{2}\left(\mathbb{K}_{1}^{c} \hat{\times} \mathbb{K}_{2}^{c}\right)
\end{aligned}
$$

Theorem

Theorem

Let \mathbb{K}_{1} and \mathbb{K}_{2} be co-crossed contexts. For the rectangle cover number of their direct product it holds that:

$$
\operatorname{rc}\left(\mathbb{K}_{1} \check{\times} \mathbb{K}_{2}\right)=\operatorname{rc}\left(\mathbb{K}_{1}\right)+\operatorname{rc}\left(\mathbb{K}_{2}\right)
$$

Theorem

Theorem

Let \mathbb{K}_{1} and \mathbb{K}_{2} be co-crossed contexts. For the rectangle cover number of their direct product it holds that:

$$
\operatorname{rc}\left(\mathbb{K}_{1} \check{\times} \mathbb{K}_{2}\right)=\operatorname{rc}\left(\mathbb{K}_{1}\right)+\operatorname{rc}\left(\mathbb{K}_{2}\right)
$$

$$
\begin{aligned}
\operatorname{rc}\left(\mathbb{K}_{1} \check{\times} \mathbb{K}_{2}\right) & =\operatorname{fim}_{2}\left(\left(\mathbb{K}_{1} \check{\times} \mathbb{K}_{2}\right)^{c}\right) \\
& =\operatorname{fim}_{2}\left(\mathbb{K}_{1}^{c} \hat{\times} \mathbb{K}_{2}^{c}\right) \\
& =\operatorname{dim}_{2}\left(\underline{\mathfrak{B}}\left(\mathbb{K}_{1}^{c} \hat{\times} \mathbb{K}_{2}^{c}\right)\right) \\
& =\operatorname{dim}_{2}\left(\underline{\mathfrak{B}}\left(\mathbb{K}_{1}^{c}\right) \times \underline{\mathfrak{B}}\left(\mathbb{K}_{2}^{c}\right)\right)
\end{aligned}
$$

$=\operatorname{dim}_{2}\left(\underline{B}\left(\mathbb{K}_{1}^{c} \oplus \mathbb{K}_{2}^{c}\right)\right)$
$=\operatorname{fdim}_{2}\left(\mathbb{K}_{1}^{c} \oplus \mathbb{K}_{2}^{c}\right)$
$=\operatorname{fdim}_{2}\left(\mathbb{K}_{1}^{c}\right)+\operatorname{fdim}_{2}\left(\mathbb{K}_{2}^{c}\right)=\operatorname{rc}\left(\mathbb{K}_{1}\right)+\operatorname{rc}\left(\mathbb{K}_{2}\right)$.

Theorem

Theorem

Let \mathbb{K}_{1} and \mathbb{K}_{2} be co-crossed contexts. For the rectangle cover number of their direct product it holds that:

$$
\operatorname{rc}\left(\mathbb{K}_{1} \check{\times} \mathbb{K}_{2}\right)=\operatorname{rc}\left(\mathbb{K}_{1}\right)+\operatorname{rc}\left(\mathbb{K}_{2}\right)
$$

$$
\begin{aligned}
\operatorname{rc}\left(\mathbb{K}_{1} \check{\times} \mathbb{K}_{2}\right) & =\operatorname{fdim}_{2}\left(\left(\mathbb{K}_{1} \check{\times} \mathbb{K}_{2}\right)^{c}\right) \\
& =\operatorname{fdim}_{2}\left(\mathbb{K}_{1}^{c} \hat{\times} \mathbb{K}_{2}^{c}\right) \\
& =\operatorname{dim}_{2}\left(\underline{\mathfrak{B}}\left(\mathbb{K}_{1}^{c} \hat{\times} \mathbb{K}_{2}^{c}\right)\right) \\
& =\operatorname{dim}_{2}\left(\underline{\mathfrak{B}}\left(\mathbb{K}_{1}^{c}\right) \times \underline{\mathfrak{B}}\left(\mathbb{K}_{2}^{c}\right)\right) \\
& =\operatorname{dim}_{2}\left(\underline{\mathfrak{B}}\left(\mathbb{K}_{1}^{c} \oplus \mathbb{K}_{2}^{c}\right)\right) \\
& =\operatorname{fdim}_{2}\left(\mathbb{K}_{1}^{c} \oplus \mathbb{K}_{2}^{c}\right) \\
& =\operatorname{fdim}_{2}\left(\mathbb{K}_{1}^{c}\right)+\operatorname{fdim}_{2}\left(\mathbb{K}_{2}^{c}\right)=\operatorname{rc}\left(\mathbb{K}_{1}\right)+\operatorname{rc}\left(\mathbb{K}_{2}\right)
\end{aligned}
$$

Theorem

Theorem

Let \mathbb{K}_{1} and \mathbb{K}_{2} be co-crossed contexts. For the rectangle cover number of their direct product it holds that:

$$
\operatorname{rc}\left(\mathbb{K}_{1} \check{\times} \mathbb{K}_{2}\right)=\operatorname{rc}\left(\mathbb{K}_{1}\right)+\operatorname{rc}\left(\mathbb{K}_{2}\right)
$$

$$
\begin{aligned}
\operatorname{rc}\left(\mathbb{K}_{1} \check{\times} \mathbb{K}_{2}\right) & =\operatorname{fdim}_{2}\left(\left(\mathbb{K}_{1} \check{\times} \mathbb{K}_{2}\right)^{c}\right) \\
& =\operatorname{fdim}_{2}\left(\mathbb{K}_{1}^{c} \hat{\times} \mathbb{K}_{2}^{c}\right) \\
& =\operatorname{dim}_{2}\left(\underline{\mathfrak{B}}\left(\mathbb{K}_{1}^{c} \hat{\times} \mathbb{K}_{2}^{c}\right)\right) \\
& =\operatorname{dim}_{2}\left(\underline{\mathfrak{B}}\left(\mathbb{K}_{1}^{c}\right) \times \underline{\mathfrak{B}}\left(\mathbb{K}_{2}^{c}\right)\right) \\
& =\operatorname{dim}_{2}\left(\underline{\mathfrak{B}}\left(\mathbb{K}_{1}^{c} \oplus \mathbb{K}_{2}^{c}\right)\right) \\
& =\operatorname{fdim}_{2}\left(\mathbb{K}_{1}^{c} \oplus \mathbb{K}_{2}^{c}\right)
\end{aligned}
$$

Theorem

Theorem

Let \mathbb{K}_{1} and \mathbb{K}_{2} be co-crossed contexts. For the rectangle cover number of their direct product it holds that:

$$
\operatorname{rc}\left(\mathbb{K}_{1} \check{\times} \mathbb{K}_{2}\right)=\operatorname{rc}\left(\mathbb{K}_{1}\right)+\operatorname{rc}\left(\mathbb{K}_{2}\right)
$$

$$
\begin{aligned}
\operatorname{rc}\left(\mathbb{K}_{1} \check{\times} \mathbb{K}_{2}\right) & =\operatorname{fdim}_{2}\left(\left(\mathbb{K}_{1} \check{\times} \mathbb{K}_{2}\right)^{c}\right) \\
& =\operatorname{fdim}_{2}\left(\mathbb{K}_{1}^{c} \hat{\times} \mathbb{K}_{2}^{c}\right) \\
& =\operatorname{dim}_{2}\left(\underline{\mathfrak{B}}\left(\mathbb{K}_{1}^{c} \hat{\times} \mathbb{K}_{2}^{c}\right)\right) \\
& =\operatorname{dim}_{2}\left(\underline{\mathfrak{B}}\left(\mathbb{K}_{1}^{c}\right) \times \mathfrak{B}\left(\mathbb{K}_{2}^{c}\right)\right) \\
& =\operatorname{dim}_{2}\left(\underline{\mathfrak{B}}\left(\mathbb{K}_{1}^{c} \oplus \mathbb{K}_{2}^{c}\right)\right) \\
& =\operatorname{fdim}_{2}\left(\mathbb{K}_{1}^{c} \oplus \mathbb{K}_{2}^{c}\right) \\
& =\operatorname{fdim}_{2}\left(\mathbb{K}_{1}^{c}\right)+\operatorname{fdim}_{2}\left(\mathbb{K}_{2}^{c}\right)=\operatorname{rc}\left(\mathbb{K}_{1}\right)+\operatorname{rc}\left(\mathbb{K}_{2}\right) .
\end{aligned}
$$

Upper Bounds

$-\mathrm{rc}(\mathbb{K}) \leq \min (|G|,|M|) \Longrightarrow \mathrm{rc}(\mathbb{T}) \leq|V|$ $-\mathrm{rc}(\mathbb{T}) \leq \mathrm{sc}(\mathbb{T})$
 for $|V| \geq 4$: $\operatorname{sc}(\mathbb{T}) \leq\left\lfloor|V|^{2} / 4\right\rfloor$

Upper Bounds

$-\mathrm{rc}(\mathbb{K}) \leq \min (|G|,|M|) \Longrightarrow \mathrm{rc}(\mathbb{T}) \leq|V|$
$-\operatorname{rc}(\mathbb{T}) \leq \operatorname{sc}(\mathbb{T})$

Upper Bounds

$-\mathrm{rc}(\mathbb{K}) \leq \min (|G|,|M|) \Longrightarrow \mathrm{rc}(\mathbb{T}) \leq|V|$

- $\operatorname{rc}(\mathbb{T}) \leq \operatorname{sc}(\mathbb{T})$
- for $|V|=1,2,3,4: \quad \operatorname{sc}(\mathbb{T}) \leq|V|$

Upper Bounds

$-\mathrm{rc}(\mathbb{K}) \leq \min (|G|,|M|) \Longrightarrow \mathrm{rc}(\mathbb{T}) \leq|V|$

- $\operatorname{rc}(\mathbb{T}) \leq \operatorname{sc}(\mathbb{T})$
- for $|V|=1,2,3,4: \quad \operatorname{sc}(\mathbb{T}) \leq|V|$
- for $|V| \geq 4: \quad \operatorname{sc}(\mathbb{T}) \leq\left\lfloor|V|^{2} / 4\right\rfloor$

Example

$-6=\operatorname{sc}\left(K_{2,3}^{\mathrm{ref}}\right)>\operatorname{rc}\left(K_{2,3}^{\mathrm{ref}}\right)=5$

Balanced Covering Property

```
Definition
We say that a tolerance space \(\mathbb{T}\) has the balanced covering property (in short \(B C P\) ) if \(\operatorname{sc}(\mathbb{T})=\operatorname{rc}(\mathbb{T})\).
```

computational experiments:
non-isomorphic tolerance spaces with $|V| \leq 10: 12.293 .433$
tolerance spaces with $|V| \leq 10$ and $\mathrm{BCP}: 2.553 .962$

Balanced Covering Property

Definition

We say that a tolerance space \mathbb{T} has the balanced covering property (in short $B C P$) if $\operatorname{sc}(\mathbb{T})=\operatorname{rc}(\mathbb{T})$.
computational experiments:

- non-isomorphic tolerance spaces with $|V| \leq 10$: 12.293.433
- tolerance spaces with $|V| \leq 10$ and BCP: 2.553.962

Balanced Covering Property

Definition

We say that a tolerance space \mathbb{T} has the balanced covering property (in short $B C P$) if $\operatorname{sc}(\mathbb{T})=\operatorname{rc}(\mathbb{T})$.
computational experiments:

- non-isomorphic tolerance spaces with $|V| \leq 10$: 12.293.433
- tolerance spaces with $|V| \leq 10$ and BCP: 2.553.962

Tolerance Spaces induced by irredundant
 Coverings

$\tau:$	a	b	c	d	e
1		1	1	0	0

Tolerance Spaces with the BCP

$\tau:$	a	b	c	d
a	1	0	1	1
b	0	1	1	1
c	1	1	1	0
d	1	1	0	1

Tolerance Spaces with the BCP

- $\mathbb{T}:=\left(\mathbb{K} \dot{\cup} \mathbb{K}^{d}\right)^{\text {ref }}$ with $\mathbb{K}=(G, M, I)$

$\left(I \dot{\cup} I^{-1}\right)^{\mathrm{ref}}:$	G	M
G	E_{G}	I
M	I^{-1}	E_{M}

$\{a\}, A \subseteq G$ and $\{b\}, B \subseteq M$
$\left(\{a\},\{a\} \cup A^{I}\right),\left(\{b\}, B_{I} \cup\{b\}\right),(\{a\} \cup B,\{a\}),(A \cup\{b\},\{b\})$ - $\left(A, A^{I}\right),\left(B, B_{I}\right)$ and $(\{a\} \cup\{b\},\{a\} \cup\{b\})$ $|G|+|M|<|I| \Rightarrow \operatorname{rc}(\mathbb{T})=|G|+|M|<\operatorname{sc}(\mathbb{T})=|I|$ $|G|+|M| \geq|I| \Rightarrow \operatorname{rc}(\mathbb{T})=\operatorname{sc}(\mathbb{T}) \leq|G|+|M|$

Tolerance Spaces with the BCP

- $\mathbb{T}:=\left(\mathbb{K} \dot{\cup} \mathbb{K}^{d}\right)^{\text {ref }}$ with $\mathbb{K}=(G, M, I)$

$\left(I \dot{\cup} I^{-1}\right)^{\mathrm{ref}}:$	G	M
G	E_{G}	I
M	I^{-1}	E_{M}

- $\{a\}, A \subseteq G$ and $\{b\}, B \subseteq M$
- $\left(\{a\},\{a\} \cup A^{I}\right),\left(\{b\}, B_{I} \cup\{b\}\right),(\{a\} \cup B,\{a\}),(A \cup\{b\},\{b\})$
- $\left(A, A^{I}\right),\left(B, B_{I}\right)$ and $(\{a\} \cup\{b\},\{a\} \cup\{b\})$

Tolerance Spaces with the BCP

- $\mathbb{T}:=\left(\mathbb{K} \dot{\cup} \mathbb{K}^{d}\right)^{\text {ref }}$ with $\mathbb{K}=(G, M, I)$

$\left(I \dot{\cup} I^{-1}\right)^{\mathrm{ref}}:$	G	M
G	E_{G}	I
M	I^{-1}	E_{M}

- $\{a\}, A \subseteq G$ and $\{b\}, B \subseteq M$
- $\left(\{a\},\{a\} \cup A^{I}\right),\left(\{b\}, B_{I} \cup\{b\}\right),(\{a\} \cup B,\{a\}),(A \cup\{b\},\{b\})$
- $\left(A, A^{I}\right),\left(B, B_{I}\right)$ and $(\{a\} \cup\{b\},\{a\} \cup\{b\})$
$-|G|+|M|<|I| \Rightarrow \operatorname{rc}(\mathbb{T})=|G|+|M|<\operatorname{sc}(\mathbb{T})=|I|$
$-|G|+|M| \geq|I| \Rightarrow \operatorname{rc}(\mathbb{T})=\operatorname{sc}(\mathbb{T}) \leq|G|+|M|$

Theorem

Theorem
Let \mathbb{T}_{1} and \mathbb{T}_{2} be tolerance spaces with the BCP, such that $\operatorname{rc}\left(\mathbb{T}_{1} \check{\times} \mathbb{T}_{2}\right)=\operatorname{rc}\left(\mathbb{T}_{1}\right)+\operatorname{rc}\left(\mathbb{T}_{2}\right)$. It follows that:

$$
\operatorname{sc}\left(\mathbb{T}_{1} \check{\times} \mathbb{T}_{2}\right)=\operatorname{sc}\left(\mathbb{T}_{1}\right)+\operatorname{sc}\left(\mathbb{T}_{2}\right)
$$

Theorem

Theorem
Let \mathbb{T}_{1} and \mathbb{T}_{2} be tolerance spaces with the $B C P$, such that $\operatorname{rc}\left(\mathbb{T}_{1} \check{\times} \mathbb{T}_{2}\right)=\operatorname{rc}\left(\mathbb{T}_{1}\right)+\operatorname{rc}\left(\mathbb{T}_{2}\right)$. It follows that:

$$
\operatorname{sc}\left(\mathbb{T}_{1} \check{\times} \mathbb{T}_{2}\right)=\operatorname{sc}\left(\mathbb{T}_{1}\right)+\operatorname{sc}\left(\mathbb{T}_{2}\right)
$$

$-\operatorname{sc}\left(\mathbb{T}_{1} \check{\times} \mathbb{T}_{2}\right) \leq \operatorname{sc}\left(\mathbb{T}_{1}\right)+\operatorname{sc}\left(\mathbb{T}_{2}\right)$

Theorem

Theorem

Let \mathbb{T}_{1} and \mathbb{T}_{2} be tolerance spaces with the $B C P$, such that $\operatorname{rc}\left(\mathbb{T}_{1} \check{\times} \mathbb{T}_{2}\right)=\operatorname{rc}\left(\mathbb{T}_{1}\right)+\operatorname{rc}\left(\mathbb{T}_{2}\right)$. It follows that:

$$
\operatorname{sc}\left(\mathbb{T}_{1} \check{\times} \mathbb{T}_{2}\right)=\operatorname{sc}\left(\mathbb{T}_{1}\right)+\operatorname{sc}\left(\mathbb{T}_{2}\right)
$$

$-\operatorname{sc}\left(\mathbb{T}_{1} \check{\times} \mathbb{T}_{2}\right) \leq \operatorname{sc}\left(\mathbb{T}_{1}\right)+\operatorname{sc}\left(\mathbb{T}_{2}\right)$
$-\operatorname{sc}\left(\mathbb{T}_{1}\right)+\operatorname{sc}\left(\mathbb{T}_{2}\right)=\operatorname{rc}\left(\mathbb{T}_{1}\right)+\operatorname{rc}\left(\mathbb{T}_{2}\right)=\operatorname{rc}\left(\mathbb{T}_{1} \check{\times} \mathbb{T}_{2}\right) \leq$ $\operatorname{sc}\left(\mathbb{T}_{1} \times \mathbb{T}_{2}\right)$

Summary

- sufficient condition for additivity of the rectangle cover number with respect to the direct product of formal contexts

Thank you for your attention!

Summary

- sufficient condition for additivity of the rectangle cover number with respect to the direct product of formal contexts
- square cover number and rectangle cover number of tolerance spaces
> example classes for tolerance spaces with the balanced covering property
> sufficient condition for additivity of the square cover number with respect to the direct product of tolerance spaces

Thank you for your attention!

Summary

- sufficient condition for additivity of the rectangle cover number with respect to the direct product of formal contexts
- square cover number and rectangle cover number of tolerance spaces
- example classes for tolerance spaces with the balanced covering property
sufficient condition for additivity of the square cover number with respect to the direct product of tolerance spaces

Thank you for your attention!

Summary

- sufficient condition for additivity of the rectangle cover number with respect to the direct product of formal contexts
- square cover number and rectangle cover number of tolerance spaces
- example classes for tolerance spaces with the balanced covering property
- sufficient condition for additivity of the square cover number with respect to the direct product of tolerance spaces

Thank you for your attention!

Summary

- sufficient condition for additivity of the rectangle cover number with respect to the direct product of formal contexts
- square cover number and rectangle cover number of tolerance spaces
- example classes for tolerance spaces with the balanced covering property
- sufficient condition for additivity of the square cover number with respect to the direct product of tolerance spaces

Thank you for your attention!

