Rectangle and Square Coverings of Tolerance Spaces and their Direct Product

Christian Jäkel and Stefan Schmidt

Dresden University of Technology

FCA4AI, 13.07.2018, Stockholm, Sweden

Tolerance Spaces

- tolerance relation: reflexive and symmetric relation $\tau \subseteq V \times V$
- tolerance space: $\mathbb{T} := (V, \tau)$
- formal context (V, V, τ)
- maximal rectangles and squares:

- set of all maximal squares: $Sq(\mathbb{T}) \subseteq \mathfrak{B}(\mathbb{T})$

Tolerance Spaces

- tolerance relation: reflexive and symmetric relation $\tau \subseteq V \times V$
- tolerance space: $\mathbb{T} := (V, \tau)$
- formal context (V, V, τ)
- maximal rectangles and squares:

I:	$\mid m_1$	m_2	m_3	m_4		$ \tau :$	a	b	С
g_1	0	0	1	0		a	1	1	1
g_2	0	0	0	1		b	1	1	0
g_3	1	0	0	1		c	1	0	1
g_4	0	1	1	1		d	0	1	1

- set of all maximal squares: $\operatorname{Sq}(\mathbb{T})\subseteq\mathfrak{B}(\mathbb{T})$

Square and Rectangle Cover Number

- $I = \bigcup \{A \times B \mid (A, B) \in \mathfrak{B}(\mathbb{K})\}$
- $\tau = \bigcup \{ S \mid S \in \operatorname{Sq}(\mathbb{T}) \}$
- the *rectangle cover* number of K:

 $\operatorname{rc}(\mathbb{K}) := \min\{\#\mathcal{F} \mid \mathcal{F} \subseteq \mathfrak{B}(\mathbb{T}), \ I = \bigcup \mathcal{F}\}\$

- the *square cover* number of T:

 $\operatorname{sc}(\mathbb{T}) := \min\{\#\mathcal{S} \mid \mathcal{S} \subseteq \operatorname{Sq}(\mathbb{T}), \ \tau = \bigcup \mathcal{S}\}\$

Square and Rectangle Cover Number

- $I = \bigcup \{A \times B \mid (A, B) \in \mathfrak{B}(\mathbb{K})\}$
- $\tau = \bigcup \{ S \mid S \in \operatorname{Sq}(\mathbb{T}) \}$
- the rectangle cover number of $\mathbb{K}:$

$$\operatorname{rc}(\mathbb{K}) := \min\{\#\mathcal{F} \mid \mathcal{F} \subseteq \mathfrak{B}(\mathbb{T}), \ I = \bigcup \mathcal{F}\}\$$

- the square cover number of \mathbb{T} :

$$\operatorname{sc}(\mathbb{T}) := \min\{\#\mathcal{S} \mid \mathcal{S} \subseteq \operatorname{Sq}(\mathbb{T}), \ \tau = \bigcup \mathcal{S}\}$$

Table of Contents

1 Introduction

- 2 Basic Definitions and Facts
- **3** Rectangle Covers of the Direct Product of Formal Contexts
- 4 Rectangle Cover Number vs. Square Cover Number
- **5** Square Cover Number of the Direct Product of Tolerance Spaces

- $\mathbb{K} = (G, M, I)$, $\mathfrak{B}(\mathbb{K})$ and $\underline{\mathfrak{B}}(\mathbb{K}) := (\mathfrak{B}(\mathbb{K}), \leq)$
- complementary context: $\mathbb{K}^c = (G, M, I^c) := (G, M, (G \times M) I)$
- crossed and co-crossed contexts:

- \mathbb{K} is crossed $\iff \mathbb{K}^c$ is co-crossed

- $\mathbb{K} = (G, M, I)$, $\mathfrak{B}(\mathbb{K})$ and $\underline{\mathfrak{B}}(\mathbb{K}) := (\mathfrak{B}(\mathbb{K}), \leq)$
- complementary context: $\mathbb{K}^{c} = (G, M, I^{c}) := (G, M, (G \times M) - I)$
- crossed and co-crossed contexts:

- \mathbb{K} is crossed $\iff \mathbb{K}^c$ is co-crossed

- $\mathbb{K} = (G, M, I)$, $\mathfrak{B}(\mathbb{K})$ and $\underline{\mathfrak{B}}(\mathbb{K}) := (\mathfrak{B}(\mathbb{K}), \leq)$
- complementary context: $\mathbb{K}^c = (G, M, I^c) := (G, M, (G \times M) I)$
- crossed and co-crossed contexts:

Ι	m_1	m_2	m_3	I	m_1	m_2	m_3
g_1	0	1	0	g_1	0	0	0
g_2	1	1	1	g_2	0	1	1
g_3	0	1	0	g_3	0	1	1

- $\mathbb K$ is crossed $\Longleftrightarrow \mathbb K^c$ is co-crossed

- direct sum $\mathbb{K}_1 \oplus \mathbb{K}_2 := (G_1 \stackrel{.}{\cup} G_2, M_1 \stackrel{.}{\cup} M_2, I_1 \oplus I_2)$

$I_1 \oplus I_2:$	M_1	M_2
$\begin{array}{c c} & G_1 \\ & G_2 \end{array}$	$\begin{vmatrix} I_1 \\ G_2 \times M_1 \end{vmatrix}$	$G_1 \times M_2$ I_2

- $\underline{\mathfrak{B}}(\mathbb{K}_1 \oplus \mathbb{K}_2) \cong \underline{\mathfrak{B}}(\mathbb{K}_1) \times \underline{\mathfrak{B}}(\mathbb{K}_2)$

- direct product: $\mathbb{K}_1 \times \mathbb{K}_2 := (G_1 \times G_2, M_1 \times M_2, I_1 \times I_2)$ $((g, h), (m, n)) \in I_1 \times I_2 :\iff (g, m) \in I_1 \text{ or } (h, n) \in I_2$

- cardinal product $\mathbb{K}_1 \times \mathbb{K}_2 := (G_1 \times G_2, M_1 \times M_2, I_1 \times I_2),$ $((g,h), (m,n)) \in I_1 \times I_2 :\iff (g,m) \in I_1 \text{ and } (h,n) \in I_2$
- $(\mathbb{K}_1 \times \mathbb{K}_2)^c = \mathbb{K}_1^c \times \mathbb{K}_2^c$
- \mathbb{K}_1 and \mathbb{K}_2 crossed: $\underline{\mathfrak{B}}(\mathbb{K}_1 \times \mathbb{K}_2) \cong \underline{\mathfrak{B}}(\mathbb{K}_1) \times \underline{\mathfrak{B}}(\mathbb{K}_2)$

- direct product: $\mathbb{K}_1 \times \mathbb{K}_2 := (G_1 \times G_2, M_1 \times M_2, I_1 \times I_2)$

 $((g,h),(m,n)) \in I_1 \times I_2 \iff (g,m) \in I_1 \text{ or } (h,n) \in I_2$

- cardinal product $\mathbb{K}_1 \times \mathbb{K}_2 := (G_1 \times G_2, M_1 \times M_2, I_1 \times I_2),$ $((g,h), (m,n)) \in I_1 \times I_2 :\iff (g,m) \in I_1 \text{ and } (h,n) \in I_2$

- $(\mathbb{K}_1 \times \mathbb{K}_2)^c = \mathbb{K}_1^c \times \mathbb{K}_2^c$
- \mathbb{K}_1 and \mathbb{K}_2 crossed: $\underline{\mathfrak{B}}(\mathbb{K}_1 \times \mathbb{K}_2) \cong \underline{\mathfrak{B}}(\mathbb{K}_1) \times \underline{\mathfrak{B}}(\mathbb{K}_2)$

- direct product: $\mathbb{K}_1 \times \mathbb{K}_2 := (G_1 \times G_2, M_1 \times M_2, I_1 \times I_2)$

 $((g,h),(m,n)) \in I_1 \times I_2 \iff (g,m) \in I_1 \text{ or } (h,n) \in I_2$

- cardinal product $\mathbb{K}_1 \times \mathbb{K}_2 := (G_1 \times G_2, M_1 \times M_2, I_1 \times I_2),$ $((q, h), (m, n)) \in I_1 \times I_2 :\iff (q, m) \in I_1 \text{ and } (h, n) \in I_2$

- $(\mathbb{K}_1 \times \mathbb{K}_2)^c = \mathbb{K}_1^c \times \mathbb{K}_2^c$
- \mathbb{K}_1 and \mathbb{K}_2 crossed: $\underline{\mathfrak{B}}(\mathbb{K}_1 \times \mathbb{K}_2) \cong \underline{\mathfrak{B}}(\mathbb{K}_1) \times \underline{\mathfrak{B}}(\mathbb{K}_2)$

- direct product: $\mathbb{K}_1 \times \mathbb{K}_2 := (G_1 \times G_2, M_1 \times M_2, I_1 \times I_2)$

 $((g,h),(m,n)) \in I_1 \times I_2 \iff (g,m) \in I_1 \text{ or } (h,n) \in I_2$

- cardinal product $\mathbb{K}_1 \times \mathbb{K}_2 := (G_1 \times G_2, M_1 \times M_2, I_1 \times I_2),$

 $((g,h),(m,n))\in I_1 \mathbin{\hat{\times}} I_2 \iff (g,m)\in I_1 \text{ and } (h,n)\in I_2$

-
$$(\mathbb{K}_1 \times \mathbb{K}_2)^c = \mathbb{K}_1^c \times \mathbb{K}_2^c$$

- \mathbb{K}_1 and \mathbb{K}_2 crossed: $\underline{\mathfrak{B}}(\mathbb{K}_1 \times \mathbb{K}_2) \cong \underline{\mathfrak{B}}(\mathbb{K}_1) \times \underline{\mathfrak{B}}(\mathbb{K}_2)$

Rectangle Cover Number

- it holds that:

$$I_1 \stackrel{\times}{\times} I_2 = (G_1 \times M_1) \stackrel{\times}{\times} I_2 \cup I_1 \stackrel{\times}{\times} (G_2 \times M_2)$$

- it follows that:

$$\operatorname{rc}(\mathbb{K}_1 \times \mathbb{K}_2) \le \operatorname{rc}(\mathbb{K}_1) + \operatorname{rc}(\mathbb{K}_2)$$

cover problem \iff intersection prob. \iff lattice dimension

$$\operatorname{rc}(\mathbb{K}) = \operatorname{fdim}_2(\mathbb{K}^c) = \operatorname{dim}_2(\underline{\mathfrak{B}}(\mathbb{K}^c))$$

Rectangle Cover Number

- it holds that:

$$I_1 \stackrel{\times}{\times} I_2 = (G_1 \times M_1) \stackrel{\times}{\times} I_2 \cup I_1 \stackrel{\times}{\times} (G_2 \times M_2)$$

- it follows that:

$$\operatorname{rc}(\mathbb{K}_1 \times \mathbb{K}_2) \le \operatorname{rc}(\mathbb{K}_1) + \operatorname{rc}(\mathbb{K}_2)$$

 $\mathsf{cover} \ \mathsf{problem} \iff \mathsf{intersection} \ \mathsf{prob}. \iff \mathsf{lattice} \ \mathsf{dimension}$

$$\operatorname{rc}(\mathbb{K}) = \operatorname{fdim}_2(\mathbb{K}^c) = \operatorname{dim}_2(\underline{\mathfrak{B}}(\mathbb{K}^c))$$

Theorem

Let \mathbb{K}_1 and \mathbb{K}_2 be co-crossed contexts. For the rectangle cover number of their direct product it holds that:

$$\operatorname{rc}(\mathbb{K}_1 \times \mathbb{K}_2) = \operatorname{rc}(\mathbb{K}_1) + \operatorname{rc}(\mathbb{K}_2).$$

$$\operatorname{rc}(\mathbb{K}_{1} \times \mathbb{K}_{2}) = \operatorname{fdim}_{2}((\mathbb{K}_{1} \times \mathbb{K}_{2})^{c})$$

$$= \operatorname{fdim}_{2}(\mathbb{K}_{1}^{c} \times \mathbb{K}_{2}^{c})$$

$$= \operatorname{dim}_{2}(\mathfrak{B}(\mathbb{K}_{1}^{c} \times \mathbb{K}_{2}^{c}))$$

$$= \operatorname{dim}_{2}(\mathfrak{B}(\mathbb{K}_{1}^{c} \oplus \mathbb{K}_{2}^{c}))$$

$$= \operatorname{fdim}_{2}(\mathfrak{B}(\mathbb{K}_{1}^{c} \oplus \mathbb{K}_{2}^{c}))$$

$$= \operatorname{fdim}_{2}(\mathbb{K}_{1}^{c} \oplus \mathbb{K}_{2}^{c})$$

$$= \operatorname{fdim}_{2}(\mathbb{K}_{1}^{c}) + \operatorname{fdim}_{2}(\mathbb{K}_{2}^{c}) = \operatorname{rc}(\mathbb{K}_{1}) + \operatorname{rc}(\mathbb{K}_{1}^{c})$$

Theorem

Let \mathbb{K}_1 and \mathbb{K}_2 be co-crossed contexts. For the rectangle cover number of their direct product it holds that:

$$\operatorname{rc}(\mathbb{K}_1 \times \mathbb{K}_2) = \operatorname{rc}(\mathbb{K}_1) + \operatorname{rc}(\mathbb{K}_2).$$

 $\operatorname{rc}(\mathbb{K}_{1} \times \mathbb{K}_{2}) = \operatorname{fdim}_{2}((\mathbb{K}_{1} \times \mathbb{K}_{2})^{c})$ $= \operatorname{fdim}_{2}(\mathbb{K}_{1}^{c} \times \mathbb{K}_{2}^{c})$ $= \operatorname{dim}_{2}(\mathfrak{B}(\mathbb{K}_{1}^{c} \times \mathbb{K}_{2}^{c}))$ $= \operatorname{dim}_{2}(\mathfrak{B}(\mathbb{K}_{1}^{c} \oplus \mathbb{K}_{2}^{c}))$ $= \operatorname{fdim}_{2}(\mathfrak{B}(\mathbb{K}_{1}^{c} \oplus \mathbb{K}_{2}^{c}))$ $= \operatorname{fdim}_{2}(\mathbb{K}_{1}^{c} \oplus \mathbb{K}_{2}^{c})$ $= \operatorname{fdim}_{2}(\mathbb{K}_{1}^{c}) + \operatorname{fdim}_{2}(\mathbb{K}_{2}^{c}) = \operatorname{rc}(\mathbb{K}_{1}) + \operatorname{fdim}_{2}(\mathbb{K}_{2}^{c}))$

Theorem

Let \mathbb{K}_1 and \mathbb{K}_2 be co-crossed contexts. For the rectangle cover number of their direct product it holds that:

$$\operatorname{rc}(\mathbb{K}_1 \times \mathbb{K}_2) = \operatorname{rc}(\mathbb{K}_1) + \operatorname{rc}(\mathbb{K}_2).$$

 $\operatorname{rc}(\mathbb{K}_{1} \times \mathbb{K}_{2}) = \operatorname{fdim}_{2}((\mathbb{K}_{1} \times \mathbb{K}_{2})^{c})$ $= \operatorname{fdim}_{2}(\mathbb{K}_{1}^{c} \times \mathbb{K}_{2}^{c})$ $= \operatorname{dim}_{2}(\mathfrak{B}(\mathbb{K}_{1}^{c} \times \mathbb{K}_{2}^{c}))$ $= \operatorname{dim}_{2}(\mathfrak{B}(\mathbb{K}_{1}^{c}) \times \mathfrak{B}(\mathbb{K}_{2}^{c}))$ $= \operatorname{dim}_{2}(\mathfrak{B}(\mathbb{K}_{1}^{c} \oplus \mathbb{K}_{2}^{c}))$ $= \operatorname{fdim}_{2}(\mathbb{K}_{1}^{c} \oplus \mathbb{K}_{2}^{c})$ $= \operatorname{fdim}_{2}(\mathbb{K}_{1}^{c}) + \operatorname{fdim}_{2}(\mathbb{K}_{2}^{c}) = \operatorname{rc}(\mathbb{K}_{1}) + \operatorname{rc}(\mathbb{K}_{2}^{c}))$

Theorem

Let \mathbb{K}_1 and \mathbb{K}_2 be co-crossed contexts. For the rectangle cover number of their direct product it holds that:

$$\operatorname{rc}(\mathbb{K}_1 \times \mathbb{K}_2) = \operatorname{rc}(\mathbb{K}_1) + \operatorname{rc}(\mathbb{K}_2).$$

 $\operatorname{rc}(\mathbb{K}_{1} \times \mathbb{K}_{2}) = \operatorname{fdim}_{2}((\mathbb{K}_{1} \times \mathbb{K}_{2})^{c})$ $= \operatorname{fdim}_{2}(\mathbb{K}_{1}^{c} \times \mathbb{K}_{2}^{c})$ $= \operatorname{dim}_{2}(\mathfrak{B}(\mathbb{K}_{1}^{c} \times \mathbb{K}_{2}^{c}))$ $= \operatorname{dim}_{2}(\mathfrak{B}(\mathbb{K}_{1}^{c}) \times \mathfrak{B}(\mathbb{K}_{2}^{c}))$ $= \operatorname{fdim}_{2}(\mathfrak{B}(\mathbb{K}_{1}^{c} \oplus \mathbb{K}_{2}^{c}))$ $= \operatorname{fdim}_{2}(\mathbb{K}_{1}^{c} \oplus \mathbb{K}_{2}^{c})$ $= \operatorname{fdim}_{2}(\mathbb{K}_{1}^{c} \oplus \mathbb{K}_{2}^{c}) = \operatorname{rc}(\mathbb{K}_{2}^{c})$

Theorem

Let \mathbb{K}_1 and \mathbb{K}_2 be co-crossed contexts. For the rectangle cover number of their direct product it holds that:

$$\operatorname{rc}(\mathbb{K}_1 \times \mathbb{K}_2) = \operatorname{rc}(\mathbb{K}_1) + \operatorname{rc}(\mathbb{K}_2).$$

 $\operatorname{rc}(\mathbb{K}_{1} \times \mathbb{K}_{2}) = \operatorname{fdim}_{2}((\mathbb{K}_{1} \times \mathbb{K}_{2})^{c})$ $= \operatorname{fdim}_{2}(\mathbb{K}_{1}^{c} \times \mathbb{K}_{2}^{c})$ $= \operatorname{dim}_{2}(\mathfrak{B}(\mathbb{K}_{1}^{c} \times \mathbb{K}_{2}^{c}))$ $= \operatorname{dim}_{2}(\mathfrak{B}(\mathbb{K}_{1}^{c}) \times \mathfrak{B}(\mathbb{K}_{2}^{c}))$ $= \operatorname{fdim}_{2}(\mathfrak{B}(\mathbb{K}_{1}^{c} \oplus \mathbb{K}_{2}^{c}))$ $= \operatorname{fdim}_{2}(\mathbb{K}_{1}^{c} \oplus \mathbb{K}_{2}^{c})$

Theorem

Let \mathbb{K}_1 and \mathbb{K}_2 be co-crossed contexts. For the rectangle cover number of their direct product it holds that:

$$\operatorname{rc}(\mathbb{K}_1 \times \mathbb{K}_2) = \operatorname{rc}(\mathbb{K}_1) + \operatorname{rc}(\mathbb{K}_2).$$

 $\operatorname{rc}(\mathbb{K}_{1} \times \mathbb{K}_{2}) = \operatorname{fdim}_{2}((\mathbb{K}_{1} \times \mathbb{K}_{2})^{c})$ $= \operatorname{fdim}_{2}(\mathbb{K}_{1}^{c} \times \mathbb{K}_{2}^{c})$ $= \operatorname{dim}_{2}(\mathfrak{B}(\mathbb{K}_{1}^{c} \times \mathbb{K}_{2}^{c}))$ $= \operatorname{dim}_{2}(\mathfrak{B}(\mathbb{K}_{1}^{c}) \times \mathfrak{B}(\mathbb{K}_{2}^{c}))$ $= \operatorname{fdim}_{2}(\mathfrak{B}(\mathbb{K}_{1}^{c} \oplus \mathbb{K}_{2}^{c}))$ $= \operatorname{fdim}_{2}(\mathbb{K}_{1}^{c} \oplus \mathbb{K}_{2}^{c})$ $= \operatorname{fdim}_{2}(\mathbb{K}_{1}^{c}) + \operatorname{fdim}_{2}(\mathbb{K}_{2}^{c}) = \operatorname{rc}(\mathbb{K}_{1}) + \operatorname{rc}(\mathbb{K}_{2}^{c})$

Theorem

Let \mathbb{K}_1 and \mathbb{K}_2 be co-crossed contexts. For the rectangle cover number of their direct product it holds that:

$$\operatorname{rc}(\mathbb{K}_1 \times \mathbb{K}_2) = \operatorname{rc}(\mathbb{K}_1) + \operatorname{rc}(\mathbb{K}_2).$$

 $\operatorname{rc}(\mathbb{K}_{1} \times \mathbb{K}_{2}) = \operatorname{fdim}_{2}((\mathbb{K}_{1} \times \mathbb{K}_{2})^{c})$ $= \operatorname{fdim}_{2}(\mathbb{K}_{1}^{c} \times \mathbb{K}_{2}^{c})$ $= \operatorname{dim}_{2}(\mathfrak{B}(\mathbb{K}_{1}^{c} \times \mathbb{K}_{2}^{c}))$ $= \operatorname{dim}_{2}(\mathfrak{B}(\mathbb{K}_{1}^{c}) \times \mathfrak{B}(\mathbb{K}_{2}^{c}))$ $= \operatorname{fdim}_{2}(\mathfrak{B}(\mathbb{K}_{1}^{c} \oplus \mathbb{K}_{2}^{c}))$ $= \operatorname{fdim}_{2}(\mathbb{K}_{1}^{c} \oplus \mathbb{K}_{2}^{c})$ $= \operatorname{fdim}_{2}(\mathbb{K}_{1}^{c}) + \operatorname{fdim}_{2}(\mathbb{K}_{2}^{c}) = \operatorname{rc}(\mathbb{K}_{1}) + \operatorname{rc}(\mathbb{K}_{2}^{c})$

Theorem

Let \mathbb{K}_1 and \mathbb{K}_2 be co-crossed contexts. For the rectangle cover number of their direct product it holds that:

$$\operatorname{rc}(\mathbb{K}_1 \times \mathbb{K}_2) = \operatorname{rc}(\mathbb{K}_1) + \operatorname{rc}(\mathbb{K}_2).$$

 $\operatorname{rc}(\mathbb{K}_{1} \times \mathbb{K}_{2}) = \operatorname{fdim}_{2}((\mathbb{K}_{1} \times \mathbb{K}_{2})^{c})$ $= \operatorname{fdim}_{2}(\mathbb{K}_{1}^{c} \times \mathbb{K}_{2}^{c})$ $= \operatorname{dim}_{2}(\underline{\mathfrak{B}}(\mathbb{K}_{1}^{c} \times \mathbb{K}_{2}^{c}))$ $= \operatorname{dim}_{2}(\underline{\mathfrak{B}}(\mathbb{K}_{1}^{c}) \times \underline{\mathfrak{B}}(\mathbb{K}_{2}^{c}))$ $= \operatorname{dim}_{2}(\underline{\mathfrak{B}}(\mathbb{K}_{1}^{c} \oplus \mathbb{K}_{2}^{c}))$ $= \operatorname{fdim}_{2}(\mathbb{K}_{1}^{c} \oplus \mathbb{K}_{2}^{c})$ $= \operatorname{fdim}_{2}(\mathbb{K}_{1}^{c}) + \operatorname{fdim}_{2}(\mathbb{K}_{2}^{c}) = \operatorname{rc}(\mathbb{K}_{1}) + \operatorname{rc}(\mathbb{K}_{2}).$

- $\operatorname{rc}(\mathbb{K}) \leq \min(|G|, |M|) \Longrightarrow \operatorname{rc}(\mathbb{T}) \leq |V|$
- $\operatorname{rc}(\mathbb{T}) \leq \operatorname{sc}(\mathbb{T})$
- for |V| = 1, 2, 3, 4 : $\operatorname{sc}(\mathbb{T}) \le |V|$
- for $|V| \ge 4$: $\operatorname{sc}(\mathbb{T}) \le \lfloor |V|^2/4 \rfloor$

- $\operatorname{rc}(\mathbb{K}) \leq \min(|G|, |M|) \Longrightarrow \operatorname{rc}(\mathbb{T}) \leq |V|$
- $\operatorname{rc}(\mathbb{T}) \leq \operatorname{sc}(\mathbb{T})$
- for |V| = 1, 2, 3, 4 : $\operatorname{sc}(\mathbb{T}) \le |V|$
- for $|V| \ge 4$: $\operatorname{sc}(\mathbb{T}) \le \lfloor |V|^2/4 \rfloor$

- $\operatorname{rc}(\mathbb{K}) \leq \min(|G|, |M|) \Longrightarrow \operatorname{rc}(\mathbb{T}) \leq |V|$
- $\operatorname{rc}(\mathbb{T}) \leq \operatorname{sc}(\mathbb{T})$
- for |V|=1,2,3,4: $\quad \operatorname{sc}(\mathbb{T})\leq |V|$
- for $|V| \ge 4$: $\operatorname{sc}(\mathbb{T}) \le \lfloor |V|^2/4 \rfloor$

- $\operatorname{rc}(\mathbb{K}) \leq \min(|G|, |M|) \Longrightarrow \operatorname{rc}(\mathbb{T}) \leq |V|$
- $\operatorname{rc}(\mathbb{T}) \leq \operatorname{sc}(\mathbb{T})$
- for |V|=1,2,3,4: $\quad \operatorname{sc}(\mathbb{T})\leq |V|$
- for $|V| \ge 4$: $\operatorname{sc}(\mathbb{T}) \le \lfloor |V|^2/4 \rfloor$

Example

-
$$6 = \operatorname{sc}(K_{2,3}^{\operatorname{ref}}) > \operatorname{rc}(K_{2,3}^{\operatorname{ref}}) = 5$$

	$ v_1 $	v_2	a	b	с
v_1	1	0	1	1	1
v_2	0	1	1	1	1
a	1	1	1	0	0
b	1	1	0	1	0
c	1	1	0	0	1

Balanced Covering Property

Definition

We say that a tolerance space \mathbb{T} has the *balanced covering* property (in short *BCP*) if $sc(\mathbb{T}) = rc(\mathbb{T})$.

computational experiments:

- non-isomorphic tolerance spaces with $|V| \leq 10: 12.293.433$
- tolerance spaces with $|V| \leq 10$ and BCP: 2.553.962

Balanced Covering Property

Definition

We say that a tolerance space \mathbb{T} has the *balanced covering* property (in short *BCP*) if $sc(\mathbb{T}) = rc(\mathbb{T})$.

computational experiments:

- non-isomorphic tolerance spaces with $|V| \leq 10: 12.293.433$
- tolerance spaces with $|V| \le 10$ and BCP: 2.553.962

Balanced Covering Property

Definition

We say that a tolerance space \mathbb{T} has the *balanced covering* property (in short *BCP*) if $sc(\mathbb{T}) = rc(\mathbb{T})$.

computational experiments:

- non-isomorphic tolerance spaces with $|V| \leq 10: 12.293.433$
- tolerance spaces with $|V| \le 10$ and BCP: 2.553.962

Tolerance Spaces induced by irredundant Coverings

τ :	a	b	c	d	e
a	1	1	0	0	0
b	1	1	1	1	0
c	0	1	1	1	0
d	0	1	1	1	1
e	0	0	0	1	1

$\tau:$	a	b	c	d
a	1	0	1	1
b	0	1	1	1
c	1	1	1	0
d	1	1	0	1

-
$$\mathbb{T} := (\mathbb{K} \, \dot\cup \, \mathbb{K}^d)^{\mathrm{ref}}$$
 with $\mathbb{K} = (G, M, I)$

$(I \stackrel{.}{\cup} I^{-1})^{\operatorname{ref}}$:	G	M
G	E_G	Ι
M	I^{-1}	E_M

- $\{a\}, A \subseteq G \text{ and } \{b\}, B \subseteq M$
- $(\{a\}, \{a\} \cup A^I), (\{b\}, B_I \cup \{b\}), (\{a\} \cup B, \{a\}), (A \cup \{b\}, \{b\})$
- $(A, A^I), (B, B_I)$ and $(\{a\} \cup \{b\}, \{a\} \cup \{b\})$
- $-|G| + |M| < |I| \Rightarrow \operatorname{rc}(\mathbb{T}) = |G| + |M| < \operatorname{sc}(\mathbb{T}) = |I|$
- $-|G| + |M| \ge |I| \Rightarrow \operatorname{rc}(\mathbb{T}) = \operatorname{sc}(\mathbb{T}) \le |G| + |M|$

-
$$\mathbb{T} := (\mathbb{K} \, \dot\cup \, \mathbb{K}^d)^{\mathrm{ref}}$$
 with $\mathbb{K} = (G, M, I)$

$(I \stackrel{.}{\cup} I^{-1})^{\operatorname{ref}}$:	G	M
G	E_G	Ι
M	I^{-1}	E_M

- $\{a\}, A \subseteq G \text{ and } \{b\}, B \subseteq M$
- $(\{a\},\{a\}\cup A^I),(\{b\},B_I\cup\{b\}),(\{a\}\cup B,\{a\}),(A\cup\{b\},\{b\})$
- $(A, A^I), (B, B_I)$ and $(\{a\} \cup \{b\}, \{a\} \cup \{b\})$
- $-|G| + |M| < |I| \Rightarrow \operatorname{rc}(\mathbb{T}) = |G| + |M| < \operatorname{sc}(\mathbb{T}) = |I|$
- $-|G| + |M| \ge |I| \Rightarrow \operatorname{rc}(\mathbb{T}) = \operatorname{sc}(\mathbb{T}) \le |G| + |M|$

-
$$\mathbb{T}:=(\mathbb{K}\,\dot\cup\,\mathbb{K}^d)^{\mathrm{ref}}$$
 with $\mathbb{K}=(G,M,I)$

$(I \stackrel{.}{\cup} I^{-1})^{\operatorname{ref}}$:	G	M
G	E_G	Ι
M	I^{-1}	E_M

-
$$\{a\}, A \subseteq G \text{ and } \{b\}, B \subseteq M$$

- $(\{a\},\{a\}\cup A^I),(\{b\},B_I\cup\{b\}),(\{a\}\cup B,\{a\}),(A\cup\{b\},\{b\})$
- $(A, A^I), \ (B, B_I) \ \text{and} \ (\{a\} \cup \{b\}, \{a\} \cup \{b\})$
- $|G| + |M| < |I| \Rightarrow \operatorname{rc}(\mathbb{T}) = |G| + |M| < \operatorname{sc}(\mathbb{T}) = |I|$
- $-|G| + |M| \ge |I| \Rightarrow \operatorname{rc}(\mathbb{T}) = \operatorname{sc}(\mathbb{T}) \le |G| + |M|$

Theorem

Let \mathbb{T}_1 and \mathbb{T}_2 be tolerance spaces with the BCP, such that $rc(\mathbb{T}_1 \times \mathbb{T}_2) = rc(\mathbb{T}_1) + rc(\mathbb{T}_2)$. It follows that:

$$\operatorname{sc}(\mathbb{T}_1 \times \mathbb{T}_2) = \operatorname{sc}(\mathbb{T}_1) + \operatorname{sc}(\mathbb{T}_2).$$

- $\operatorname{sc}(\mathbb{T}_1 \times \mathbb{T}_2) \leq \operatorname{sc}(\mathbb{T}_1) + \operatorname{sc}(\mathbb{T}_2)$
- $\operatorname{sc}(\mathbb{T}_1) + \operatorname{sc}(\mathbb{T}_2) = \operatorname{rc}(\mathbb{T}_1) + \operatorname{rc}(\mathbb{T}_2) = \operatorname{rc}(\mathbb{T}_1 \times \mathbb{T}_2) \le \operatorname{sc}(\mathbb{T}_1 \times \mathbb{T}_2)$

Theorem

Let \mathbb{T}_1 and \mathbb{T}_2 be tolerance spaces with the BCP, such that $rc(\mathbb{T}_1 \times \mathbb{T}_2) = rc(\mathbb{T}_1) + rc(\mathbb{T}_2)$. It follows that:

$$\operatorname{sc}(\mathbb{T}_1 \times \mathbb{T}_2) = \operatorname{sc}(\mathbb{T}_1) + \operatorname{sc}(\mathbb{T}_2).$$

- $\operatorname{sc}(\mathbb{T}_1 \times \mathbb{T}_2) \leq \operatorname{sc}(\mathbb{T}_1) + \operatorname{sc}(\mathbb{T}_2)$
- $\operatorname{sc}(\mathbb{T}_1) + \operatorname{sc}(\mathbb{T}_2) = \operatorname{rc}(\mathbb{T}_1) + \operatorname{rc}(\mathbb{T}_2) = \operatorname{rc}(\mathbb{T}_1 \times \mathbb{T}_2) \le \operatorname{sc}(\mathbb{T}_1 \times \mathbb{T}_2)$

Theorem

Let \mathbb{T}_1 and \mathbb{T}_2 be tolerance spaces with the BCP, such that $rc(\mathbb{T}_1 \times \mathbb{T}_2) = rc(\mathbb{T}_1) + rc(\mathbb{T}_2)$. It follows that:

$$\operatorname{sc}(\mathbb{T}_1 \times \mathbb{T}_2) = \operatorname{sc}(\mathbb{T}_1) + \operatorname{sc}(\mathbb{T}_2).$$

-
$$\operatorname{sc}(\mathbb{T}_1 \times \mathbb{T}_2) \leq \operatorname{sc}(\mathbb{T}_1) + \operatorname{sc}(\mathbb{T}_2)$$

- $\operatorname{sc}(\mathbb{T}_1) + \operatorname{sc}(\mathbb{T}_2) = \operatorname{rc}(\mathbb{T}_1) + \operatorname{rc}(\mathbb{T}_2) = \operatorname{rc}(\mathbb{T}_1 \times \mathbb{T}_2) \leq \operatorname{sc}(\mathbb{T}_1 \times \mathbb{T}_2)$

- sufficient condition for additivity of the rectangle cover number with respect to the direct product of formal contexts
- square cover number and rectangle cover number of tolerance spaces
- example classes for tolerance spaces with the balanced covering property
- sufficient condition for additivity of the square cover number with respect to the direct product of tolerance spaces

- sufficient condition for additivity of the rectangle cover number with respect to the direct product of formal contexts
- square cover number and rectangle cover number of tolerance spaces
- example classes for tolerance spaces with the balanced covering property
- sufficient condition for additivity of the square cover number with respect to the direct product of tolerance spaces

- sufficient condition for additivity of the rectangle cover number with respect to the direct product of formal contexts
- square cover number and rectangle cover number of tolerance spaces
- example classes for tolerance spaces with the balanced covering property
- sufficient condition for additivity of the square cover number with respect to the direct product of tolerance spaces

- sufficient condition for additivity of the rectangle cover number with respect to the direct product of formal contexts
- square cover number and rectangle cover number of tolerance spaces
- example classes for tolerance spaces with the balanced covering property
- sufficient condition for additivity of the square cover number with respect to the direct product of tolerance spaces

- sufficient condition for additivity of the rectangle cover number with respect to the direct product of formal contexts
- square cover number and rectangle cover number of tolerance spaces
- example classes for tolerance spaces with the balanced covering property
- sufficient condition for additivity of the square cover number with respect to the direct product of tolerance spaces