Binary lattices

François Brucker, Célia Châtel, Pascal Préa

LIS, UMR 7020, Aix-Marseille Université, Centrale Marseille
July, 13, 2018

Decision trees

- easy to use,
- easy to understand,
- efficient.

Binary decision trees

Easier to :

- build,
- understand,
- use.

Binary lattice

Definition (Binary lattice)

(L, \leq) is binary if $\forall x \in L$

- x covers at most 2 elements,
- x is covered by at most 2 elements.

Poset embedding

Definition

(L, \leq) can be embedded into $\left(L^{\prime}, \leq\right)$ if there exists $f: L \rightarrow L^{\prime}$ such that:

$$
\forall l_{1}, l_{2} \in L, l_{1} \leq l_{2} \Longleftrightarrow f\left(l_{1}\right) \leq f\left(l_{2}\right)
$$

Poset embedding

Definition

(L, \leq) can be embedded into $\left(L^{\prime}, \leq\right)$ if there exists $f: L \rightarrow L^{\prime}$ such that:

$$
\forall I_{1}, l_{2} \in L, l_{1} \leq l_{2} \Longleftrightarrow f\left(l_{1}\right) \leq f\left(l_{2}\right)
$$

Binarizable lattice

Definition (Binarizable lattice)
(L, \leq) is binarizable if
$\exists\left(L^{\prime}, \leq\right)$ binary lattice such that (L, \leq) can be embedded in $\left(L^{\prime}, \leq\right)$.

Binarizable lattice

Definition (Binarizable lattice)
 (L, \leq) is binarizable if
 $\exists\left(L^{\prime}, \leq\right)$ binary lattice such that (L, \leq) can be embedded in $\left(L^{\prime}, \leq\right)$.

Binarizable lattice

Definition (Binarizable lattice)
 (L, \leq) is binarizable if
 $\exists\left(L^{\prime}, \leq\right)$ binary lattice such that (L, \leq) can be embedded in $\left(L^{\prime}, \leq\right)$.

Example of binarization

Example of binarization

Example of binarization

Crown-free lattices

Definition

A crown is a poset $\left(X_{1}, X_{1}^{\prime}, \ldots, X_{n}, X_{n}^{\prime}\right)$ such that:

- $\forall i, X_{i}<X_{i-1 \bmod n}^{\prime}, X_{i}<X_{i}^{\prime}$,
- $\forall i, j, j \neq i, i-1 \bmod n \Longrightarrow X_{i} \| X_{j}^{\prime}$.

3-crown

n-crown

At most $\mathcal{O}\left(n^{2}\right)$ elements.

Binarizable \Longrightarrow crown-free

3-crown

Binarization of a n-crown $\Longrightarrow(n-p)$-crown

Equivalence with set systems

Definition

S is a set system on a set V if :

- $S \subseteq 2^{V}$,
- $A \in S, B \in S \Longrightarrow A \cap B \in S$,
- S has a minimum and a maximum element.

Equivalence with set systems

Definition

S is a set system on a set V if :

- $S \subseteq 2^{V}$,
- $A \in S, B \in S \Longrightarrow A \cap B \in S$,
- S has a minimum and a maximum element.

Binarization of an element of a set system

Choose X_{i}, X_{j} among the
Create $X_{i} \cup X_{j}$
elements covered by Y

Binarization of a set system

Binarization of a set system

For each element which covers more than two elements :

- While it covers more than two elements :

Binarization of a set system

For each element which covers more than two elements :

- While it covers more than two elements :
- Chose two elements it covers

Binarization of a set system

For each element which covers more than two elements :

- While it covers more than two elements :
- Chose two elements it covers
- Create their union

Binarization of a set system

For each element which covers more than two elements :

- While it covers more than two elements :
- Chose two elements it covers
- Create their union

Binarization of a set system

For each element which covers more than two elements :

- While it covers more than two elements :
- Chose two elements it covers
- Create their union

Binarization of a set system

For each element which covers more than two elements :

- While it covers more than two elements :
- Chose two elements it covers
- Create their union

Choice of the elements to union

Definition (Maximal intersection elements)

X_{i}, X_{j} of maximal intersection if

$$
\nexists k,\left\{\begin{array}{l}
X_{i} \cap X_{j} \subsetneq X_{i} \cap X_{k} \\
X_{i} \cap X_{j} \subsetneq X_{j} \cap X_{k}
\end{array}\right.
$$

\Rightarrow Get similar objects together

Crown-free \Longrightarrow binarizable

L a crown-free set system
X_{i}, X_{j} of maximal intersection:
$\Rightarrow\left(X_{i} \cup X_{j}\right) \cap X_{k} \in L$
$\Rightarrow \forall Z, Z \cap\left(X_{i} \cup X_{j}\right) \in L \cup\{X \cup Y\}$
\Rightarrow resulting elements are still incomparable

Equivalence

Theorem (C., Brucker, Préa)
Let (L, \leq) finite lattice. (L, \leq) is binarizable iff (L, \leq) is crown-free.

Formal context example

Formal context example

Associated concept lattice

Example of binarization

Lower-binarized concept lattice

Binarized concept lattice

Thank you for your attention

