The theory and practice of coupling formal concept analysis to relational databases

Background Theory

Database Scaling

Conjunctive Queries

SQL Interpretation

Navigation

Summary

References

The theory and practice of coupling formal concept analysis to relational databases

Jens Kötters Peter W. Eklund [†]

[†]School of Information Technology, Deakin University, Geelong, Australia

FCA4AI 2018 Stockholm, 13 July 2018

The theory and practice of coupling formal concept analysis to relational databases

Background Theory

Database Scaling

Conjunctive Queries

SQL Interpretation

Navigation

Summary

References

Background Theory

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

FCA + Database Theory

The theory and practice of coupling formal concept analysis to relational databases

Background Theory

Database Scaling

Conjunctive Queries

SQL Interpretatio

Navigation

Summary

References

Previous work [Koe13] relates FCA with database theory. A table of analogies:

Standard FCA	FCA + Database Theory
Formal context	Relational Structure [Koe13],
	Power context family [Koe16]
Set of Objects	Table
Set of Attributes	Conjunctive query
Concept lattice	Conjunctive-query lattice

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Lattices of *n*-ary concepts

The theory and practice of coupling formal concept analysis to relational databases

Background Theory

Database Scaling

Conjunctive Queries

SQL Interpretatio

~

References

The conjunctive-query lattice can be decomposed into sublattices $\mathfrak{L}[\{x_1, \ldots, x_n\}]$ of *n*-ary concepts described by variables x_1, \ldots, x_n . All sublattices of *n*-ary concepts are isomorphic (irrespective of variable names), so we can speak of *the* lattice of *n*-ary concepts. The extents are *n*-ary relations.

The lattice $\mathfrak{C}[\{x_1, \ldots, x_n\}]$ contains the concepts of $\mathfrak{L}[\{x_1, \ldots, x_n\}]$ where intents correspond to connected graphs.

The theory and practice of coupling formal concept analysis to relational databases

Backgroun Theory

Database Scaling

Conjunctiv Queries

SQL Interpretatio

Navigation

Summary

References

Database Scaling

・ロト ・雪 ト ・ ヨ ト ・ ヨ ト

æ

Example: Literature Database

The theory and practice of coupling formal concept analysis to relational databases

Background Theory

Database Scaling

Conjunctive Queries

SQL Interpretation

Navigation

Summary

References

Book

title	author	publication_date
Alice in Wonderland	1	1865-11-26
To the Lighthouse	2	1927-05-05
The Hitchhiker's Guide to the Galaxy	3	1979-10-12
Trigger Warning	4	2015-02-03
Harry Potter and the Deathly Hallows	5	2007-07-21
The Casual Vacancy	5	2012-09-27
The Shining	6	1977-01-28
Doctor Sleep	6	2013-09-24
The Da Vinci Code	7	2003-03-18
Inferno	7	2013-03-14

Author

id	first_name	last_name	nationality	date_of_birth
1	Lewis	Carroll	British	1832-01-27
2	Virginia	Woolf	British	1882-01-25
3	Douglas	Adams	British	1952-03-11
4	Neil	Gaiman	British	1960-11-10
5	J. K.	Rowling	British	1965-07-31
6	Stephen	King	American	1947-09-21
7	Dan	Brown	American	1964-06-22

Conceptual scaling of a many-valued context (1)

The theory and practice of coupling formal concept analysis to relational databases

Background Theory

Database Scaling

Conjunctive Queries

SQL Interpretatio

Navigation

Summary

References

Author table

id	first_name	last_name	nationality	date_of_birth
1	Lewis	Carroll	British	1832-01-27
2	Virginia	Woolf	British	1882-01-25
3	Douglas	Adams	British	1952-03-11
4	Neil	Gaiman	British	1960-11-10
5	J. K.	Rowling	British	1965-07-31
6	Stephen	King	American	1947-09-21
7	Dan	Brown	American	1964-06-22

DOB context

DOB	19C	20C	21C
Lewis Carroll	×		
Virginia Woolf	×		
Douglas Adams		×	
Neil Gaiman		×	
J. K. Rowling		×	
Stephen King		×	
Dan Brown		×	

Centuries scale

Centuries	19C	20C	21C
1832-01-27	×		
1865-11-26	×		
1882-01-25	×		
1927-05-05		×	
1947-09-21		×	
1952-03-11		×	
1960-11-10		×	
1964-06-22		×	
1965-07-31		×	
1977-01-28		×	
1979-10-12		×	
2003-03-18			×
2007-07-21			×
2012-09-27			×
2013-03-14			×
2013-09-24			×
2015-02-03			\times

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 _ のへぐ

Conceptual scaling of a many-valued context (2)

The theory and practice of coupling formal concept analysis to relational databases

Background Theory

Database Scaling

Conjunctive Queries

SQL Interpretatio

Navigation

Summary

References

Author table

id	first_name	last_name	nationality	date_of_birth
1	Lewis	Carroll	British	1832-01-27
2	Virginia	Woolf	British	1882-01-25
3	Douglas	Adams	British	1952-03-11
4	Neil	Gaiman	British	1960-11-10
5	J. K.	Rowling	British	1965-07-31
6	Stephen	King	American	1947-09-21
7	Dan	Brown	American	1964-06-22

Nationality context

nat	British	American	French	Russian
Lewis Carroll	×			
Virginia Woolf	×			
Douglas Adams	×			
Neil Gaiman	×			
J. K. Rowling	×			
Stephen King		×		
Dan Brown		×		

Nationalities scale

Nationalities	British	American	French	Russian
British	×			
American		×		
French			×	
Russian				×

We say that the Nationalities scale is bound to the nationality column (and the Centuries scale was bound to the date_of_birth column).

Conceptual scaling of a many-valued context (3)

The theory and practice of coupling formal concept analysis to relational databases

Background Theory

Database Scaling

Conjunctive Queries

SQL Interpretation

Navigation

Summary

References

Author table

id	first_name	last_name	nationality	date_of_birth
1	Lewis	Carroll	British	1832-01-27
2	Virginia	Woolf	British	1882-01-25
3	Douglas	Adams	British	1952-03-11
4	Neil	Gaiman	British	1960-11-10
5	J. K.	Rowling	British	1965-07-31
6	Stephen	King	American	1947-09-21
7	Dan	Brown	American	1964-06-22

Derived context

Authors	DOB:19C	DOB:20C	DOB:21C	nat:British	nat:American	nat:French	nat:Russian
Lewis Carroll	\times			×			
Virginia Woolf	×			×			
Douglas Adams		×		×			
Neil Gaiman		×		×			
J. K. Rowling		×		×			
Stephen King		×			×		
Dan Brown		×			×		

We consider the subcontexts obtained from the scales as facets

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Higher-arity scales: Foreign keys

Book

author

publication_date

1865-11-26

title

Alice in Wonderland

Author table

Equality scale

×

 \times

×

Equality

(2.1)

						To the Lighthouse	2	1927-05-05
	id	first_name	last_name	nationality	date_of_birth	The Hitchhiker's Guide to the Galaxy	3	1979-10-12
	1	Lewis	Carroll	British	1832-01-27	Trigger Warning	4	2015-02-03
	2	Virginia	Woolf	British	1882-01-25	Harry Potter and the Deathly Hallows	5	2007-07-21
	3	Douglas	Adams	British	1952-03-11	The Casual Vacancy	5	2012-09-27
	4	Neil	Gaiman	British	1960-11-10	The Shining	6	1977-01-28
	5	J. K.	Rowling	British	1965-07-31	Doctor Sleep	6	2013-09-24
	6	Stephen	King	American	1947-09-21	The Da Vinci Code	7	2003-03-18
	7	Dan	Brown	American	1964-06-22	Inferno	7	2013-03-14
_	_					interno		2010 00 11

Database Scaling

The theory and practice

of coupling

formal concept analysis to relational databases

Binary context "wrote"

wrote	id=author	The first parame- ter of the Equality
(Lewis Carroll, Alice in Wonderland)	×	
(Virginia Woolf, To the Lighthouse)	×	scale is bound to
(Douglas Adams, Hitchhiker's Guide)	×	
(Neil Gaiman, Trigger Warning)	×	Author.id, the second
(J.K. Rowling, Harry Potter 7)	×	
(J.K. Rowling, The Casual Vacancy)	×	parameter is bound
(Stephen King, The Shining)	×	to Book.author.
(Stephen King,Doctor Sleep)	×	to Book.autnor.
(Dan Brown, The Da Vinci Code)	×	
(Dan Brown,Inferno)	×	◆ □ ◆ □ ◆ □ ◆ □ ◆ □ ◆ ○ < ○
		가 치다가 지 돈 지 못 한 것 못 좋아 있었(~)

Higher-arity scales: Measuring distance

The theory and practice of coupling formal concept analysis to relational databases

Background Theory

Database Scaling

Conjunctive Queries

SQL Interpretatio

Navigation

Summary

References

Distance scales can be used to measure spatial distance between objects or the time span between events. To measure at what are an author wrote a particular boo

To measure at what age an author wrote a particular book, we instead use the foreign key condition as a domain expression (which defines the object set of a derived context) and use a distance scale (not the one below !!) on top of this.

Distance scale

Distance	=0	≤ 1	≤ 2
(1,1)	×	×	×
(1,2)		×	×
(1,3)			×
(2,1)		×	×
(2,2)	×	×	×
(2,3)		×	×
(3,1)			×
(3,2)		×	×
(3,3)	×	×	×

Binary context "wrote"

wrote	wrote	$age{\leq}30$	$age{\leq}40$	age≦50
(Lewis Carroll, Alice in Wonderland)	×		×	×
(Virginia Woolf, To the Lighthouse)	×			×
(Douglas Adams, Hitchhiker's Guide)	×	×	×	×
(Neil Gaiman, Trigger Warning)	×			
(J. K. Rowling, Harry Potter 7)	×			×
(J. K. Rowling, The Casual Vacancy)	×			×
(Stephen King, The Shining)	×	×	×	×
(Stephen King, Doctor Sleep)	×			
(Dan Brown, The Da Vinci Code)	×		×	×
(Dan Brown, Inferno)	×			×

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

Power Context Family

The theory and practice of coupling formal concept analysis to relational databases

Database Scaling

The contexts for each facet can be assembled in a power context family.

0	× sort: Author	sort: Book		1	nationality: GB	nationality: USA	DOB: 19C	DOB: 20C	DOB: 21C	pubdate: 19C	pubdate: 20C	pubdate: 21C	
Virginia Woolf	1 x			Lewis Carroll	×		×						ĺ
Douglas Adams	X			Virginia Woolf	×		×						1
Neil Gaiman	×			Douglas Adams	×			×]
J. K. Rowling	×			Neil Gaiman	\times			×					
Stephen King	×			J. K. Rowling	\times			×					
Dan Brown	×			Stephen King		×		×					1
Alice in Wonderland		×		Dan Brown		×		×					ł
To the Lighthouse		×		Alice in Wonderland				L		×			ł
Hitchhiker's Guide		×		To the Lighthouse							×		
Harry Potter 7		×		Hitchhiker's Guide							×		
The Casual Vacancy		×		Harry Potter 7								×	
Trigger Warning		×		The Casual Vacancy								×	
The Shining		×		Trigger Warning								×	
Doctor Sleep		×		The Shining							×		1
The Da Vinci Code		×		Doctor Sleep								×	L
Inferno		×		The Da Vinci Code								×	L
			' 🗆	Inferno								×	

2	wrote: wrote	wrote: age ≤ 30	wrote: age ≤ 40	wrote: age≤50
(Lewis Carroll, Alice in Wonderland)	×		×	×
(Virginia Woolf, To the Lighthouse)	×			×
(Douglas Adams, Hitchhiker's Guide)	×	×	×	×
(Neil Gaiman, Trigger Warning)	×			
(J. K. Rowling, Harry Potter 7)	×			×
(J. K. Rowling, The Casual Vacancy)	×			×
(Stephen King, The Shining)	×	×	×	×
(Stephen King, Doctor Sleep)	×			
(Dan Brown, The Da Vinci Code)	×		×	×
(Dan Brown, Inferno)	×			×

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□

The theory and practice of coupling formal concept analysis to relational databases

Backgroun Theory

Database Scaling

Conjunctive Queries

SQL Interpretation Navigation

References

Conjunctive Queries

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Formalizations of Conjunctive Queries

The theory and practice of coupling formal concept analysis to relational databases

Background Theory

Database Scaling

Conjunctive Queries

SQL Interpretation Navigation

References

In popular use:

- Tableaux
- Logical Formulas
- Datalog Rules

Other formalizations in selected literature:

- Relational Structures [CM77]
- Windowed Relational Structures [Koe13]
- Windowed Power Context Families [Koe16]

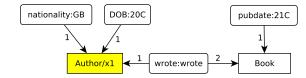
▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Windowed Intension Graphs [Koe16]

Windowed Intension Graph

The theory and practice of coupling formal concept analysis to relational databases

Background Theory


Database Scaling

Conjunctive Queries

SQL Interpretation Navigation

References

"20th-century-born British authors who published in the 21st century"

Terminology: object node, relation node, subject node, label, marker, window

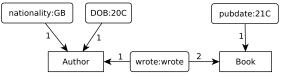
Intension Graph

The theory and practice of coupling formal concept analysis to relational databases

Background Theory

Database Scaling

Conjunctive Queries


SQL Interpretation

Navigation

Summary

References

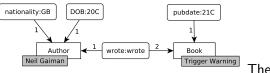
The underlying intension graph.

Solution

The theory and practice of coupling formal concept analysis to relational databases

Background Theory

Database Scaling

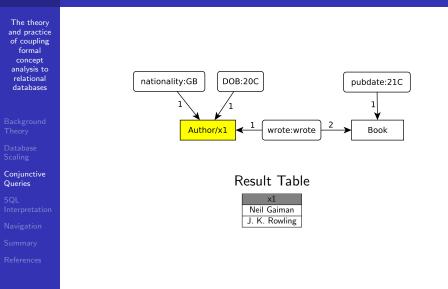

Conjunctive Queries

SQL Interpretatior

Navigation

Summary

References


There are two more

solutions in the below power context family.

0	sort: Author	sort: Book	1	nationality: GB	nationality: USA	DOB: 19C	DOB: 20C	DOB: 21C	oubdate: 19C	pubdate: 20C	pubdate: 21C	
Lewis Carroll	×		Lewis Carroll			×	-	-		<u> </u>		1 2
Virginia Woolf	×			-	<u> </u>		<u> </u>	_				-
Douglas Adams	×		Virginia Woolf	×		х						
Neil Gaiman	×		Douglas Adams	×			×					
J. K. Rowling	×		Neil Gaiman	×			×					(Lewis Carroll, Alice i
Stephen King	×		J. K. Rowling	×			×					(Virginia Woolf, To t
Dan Brown	×		Stephen King		×		×					(Douglas Adams, Hit
Alice in Wonderland		×	Dan Brown		×		×					(Neil Gaiman, Trigge
To the Lighthouse		×	Alice in Wonderland						×			(J. K. Rowling, Harry
Hitchhiker's Guide		×	To the Lighthouse							×		(J. K. Rowling, The
Harry Potter 7		×	Hitchhiker's Guide							×		(Stephen King, The S
The Casual Vacancy		×	Harry Potter 7								×	(Stephen King, Docto
Trigger Warning		×	The Casual Vacancy								×	(Dan Brown, The Da
The Shining		×	Trigger Warning								×	(Dan Brown, Inferno)
Doctor Sleep		×	The Shining							×		· · · · · · · · · · · · · · · · · · ·
The Da Vinci Code		×	Doctor Sleep								×	
Inferno		×	The Da Vinci Code								×	
			Inferno								×	1

2	wrote: wrote	wrote: age<30	wrote: age<40	wrote: age <50
(Lewis Carroll, Alice in Wonderland)	×		×	×
(Virginia Woolf, To the Lighthouse)	×			×
(Douglas Adams, Hitchhiker's Guide)	×	×	×	×
(Neil Gaiman, Trigger Warning)	×			
(J. K. Rowling, Harry Potter 7)	×			×
(J. K. Rowling, The Casual Vacancy)	×			×
(Stephen King, The Shining)	×	×	×	×
(Stephen King, Doctor Sleep)	×			
(Dan Brown, The Da Vinci Code)	×		×	×
(Dan Brown, Inferno)	×			×

Result Table (Concept Extension)

The theory and practice of coupling formal concept analysis to relational databases

Backgroun Theory

Database Scaling

Conjunctive Queries

SQL Interpretation

Navigation

Summary

References

SQL Interpretation

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Syntactic Interpretation

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

Database Scales

The theory and practice of coupling formal concept analysis to relational databases

Background Theory

Database Scaling

Conjunctiv Queries

SQL Interpretation

Navigation

Summary

References

Centuries	19C	20C	21C
1832-01-27	×		
1865-11-26	×		
1882-01-25	×		
1927-05-05		×	
1947-09-21		×	
1952-03-11		×	
1960-11-10		×	
1964-06-22		×	
1965-07-31		×	
1977-01-28		×	
1979-10-12		×	
2003-03-18			×
2007-07-21			×
2012-09-27			×
2013-03-14			×
2013-09-24			×
2015-02-03			×

A database scale assigns an SQL definition to each attribute. The corresponding scale context (left side) can be derived if so desired.

 $\sigma_{\text{Centuries}}(19\text{C}) \equiv z_1 \text{ BETWEEN "1800-01-01" AND "1899-12-31"}$ $<math>\sigma_{\text{Centuries}}(20\text{C}) \equiv z_1 \text{ BETWEEN "1900-01-01" AND "1999-12-31"}$ $\sigma_{\text{Centuries}}(21\text{C}) \equiv z_1 \text{ BETWEEN "2000-01-01" AND "2099-12-31"}$

Database Facets

The theory and practice of coupling formal concept analysis to relational databases

Background Theory

Database Scaling

Conjunctive Queries

SQL Interpretation

Navigation

Summary

References

DOB	19C	20C	21C
Lewis Carroll	×		
Virginia Woolf	×		
Douglas Adams		×	
Neil Gaiman		×	
J. K. Rowling		×	
Stephen King		\times	
Dan Brown		×	

Similarly, a facet provides SQL definitions of its attributes. It is obtained by a variable substitution in the underlying scale's SQL definition, according to the binding. (here: $z_1 \rightarrow t_1.date_of_birth$)

$$\begin{split} \Phi_{\text{DOB}}(19\text{C}) &\equiv t_1.\text{date_of_birth BETWEEN "1800-01-01" AND "1899-12-31"} \\ \Phi_{\text{DOB}}(20\text{C}) &\equiv t_1.\text{date_of_birth BETWEEN "1900-01-01" AND "1999-12-31"} \\ \Phi_{\text{DOB}}(21\text{C}) &\equiv t_1.\text{date_of_birth BETWEEN "2000-01-01" AND "2099-12-31"} \end{split}$$

Database Facets

The theory and practice of coupling formal concept analysis to relational databases

Background Theory

Database Scaling

Conjunctive Queries

SQL Interpretation

Navigation

Summary

References

pubdate	19C	20C	21C
Alice in Wonderland	×		
To the Lighthouse		×	
Hitchhiker's Guide		×	
Harry Potter 7			×
The Casual Vacancy			×
Trigger Warning			×
The Shining		×	
Doctor Sleep			×
The Da Vinci Code			×
Inferno			×

Thereby, a relation between values is translated into a relation between objects. The scales encode the actual logic; they should be generic and reusable.

$$\begin{split} \Phi_{pubdate}(19C) &\equiv t_1.publication_date \ \text{BETWEEN} "1800-01-01" \ \text{AND} "1899-12-31" \\ \Phi_{pubdate}(20C) &\equiv t_1.publication_date \ \text{BETWEEN} "1900-01-01" \ \text{AND} "1999-12-31" \\ \Phi_{pubdate}(21C) &\equiv t_1.publication_date \ \text{BETWEEN} "2000-01-01" \ \text{AND} "2099-12-31" \end{split}$$

SQL Translation

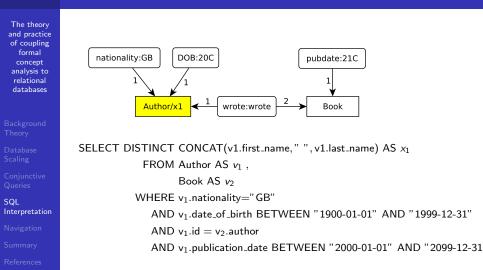
The theory and practice of coupling formal concept analysis to relational databases

Background Theory

Database Scaling

Conjunctive Queries

SQL Interpretation


Navigation

Summary

References

SELECT DISTINCT $\Omega_{sort(u_1)}(u_1)$ AS x_1 , ..., $\Omega_{sort(u_m)}(u_m)$ AS x_m FROM $sort(v_1)$ AS v_1 , ..., $sort(v_n)$ AS v_n WHERE $\Phi_{c_1}(a_1)(v_{11}, ..., v_{1n_1})$ AND ... AND $\Phi_{c_k}(a_k)(v_{k1}, ..., v_{kn_k})$

Example: SQL Translation

・ロ> < 回> < 回> < 回> < 回> < 回

The theory and practice of coupling formal concept analysis to relational databases

Backgroun Theory

Database Scaling

Conjunctiv Queries

SQL Interpretation

Navigation

Summary

References

Navigation

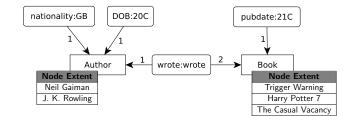
◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

The theory and practice of coupling formal concept analysis to relational databases

Background Theory

Database Scaling

Conjunctive Queries


SQL Interpretation

Navigation

Summary

References

In a projectional concept graph, each node is considered as a unary concept in a system of interrelated concepts. The node extent is a unary concept extent in the conjunctive-query lattice. However, we do not compute the graph closure (i.e. the intent in the conjunctive-query lattice).

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

The theory and practice of coupling formal concept analysis to relational databases

Background Theory

Database Scaling

Conjunctive Queries

SQL Interpretation

Navigation

Summary

References

Definition

A projectional concept graph is a 5-tuple $(V, E, \nu, \kappa, \text{ext}_{\vec{k}})$ comprised of an intension graph $\mathcal{G} := (V, E, \kappa, \nu)$ and its extension map

$$\mathsf{ext}_{ec{\mathbb{K}}}(\mathsf{v}) := \set{arphi(\mathsf{v}) \mid arphi \in \mathcal{S}(\mathcal{G}, ec{\mathbb{K}})}$$

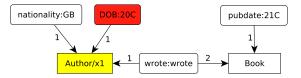
for a given power context family $\vec{\mathbb{K}}$ with $\mathcal{S}(\mathcal{G}, \vec{\mathbb{K}}) \neq \emptyset$. We call $\operatorname{ext}_{\vec{\mathbb{K}}}(v)$ the node extent of v.

The theory and practice of coupling formal concept analysis to relational databases

Background Theory

Database Scaling

Conjunctive Queries


SQL Interpretation

Navigation

Summary

References

We envision relation nodes as controls in a user interface to show/hide associated value columns.

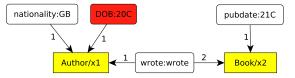
x1	x1.date_of_birth
Neil Gaiman	1960-11-10
J. K. Rowling	1965-07-31

The theory and practice of coupling formal concept analysis to relational databases

Background Theory

Database Scaling

Conjunctive Queries


SQL Interpretation

Navigation

Summary

References

Showing only projections eliminates combinatorial explosion in result tables. But windows of size ≥ 2 are still supported, if the actual combinations are of interest.

x1	x1.date_of_birth	x2
Neil Gaiman	1960-11-10	Trigger Warning
J. K. Rowling	1965-07-31	Harry Potter 7
J. K. Rowling	1965-07-31	The Casual Vacancy

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Refinement Triple

The theory and practice of coupling formal concept analysis to relational databases

Background Theory

Database Scaling

Conjunctive Queries

SQL Interpretation

Navigation

Summary

References

With each projectional concept graph, there is an associated refinement triple $(E^+, \kappa^+, \theta^+)$.

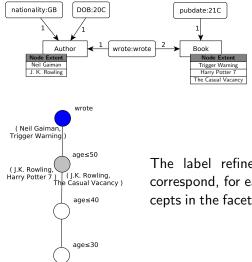
- *E*⁺: Associates with each object node *v* a list *E*⁺(*v*) of facets. Each facet corresponds to a new relation node that can be connected to *v*.
- κ⁺: Provides for each object or relation node u a list κ⁺(u) of scale intents (or equivalently, scale concepts), which can replace the current label κ(u).
- θ^+ : A list of pairs of object nodes that can be merged.

Each refinement option leads to another projectional concept graph that at least one solution.

Example: Refinement Triple

Background Theory

Database Scaling


Conjunctive Queries

SQL Interpretation

Navigation

Summary

References

The label refinements in $\kappa^+(u)$ correspond, for each facet, to concepts in the facet's concept lattice.

The theory and practice of coupling formal concept analysis to relational databases

Background Theory

Database Scaling

Conjunctive Queries

SQL Interpretation

Navigation

Summary

References

Summary

(中) (문) (문) (문) (문)

Summary

The theory and practice of coupling formal concept analysis to relational databases

Background Theory

Database Scaling

Conjunctive Queries

SQL Interpretatior

Navigation

Summary

References

- Revisited: Relational scaling
- Application: Building query vocabulary around a relational database
- Application: Faceted navigation in power context families

Proposal: A new class of concept graphs

Selected References I

The theory and practice of coupling formal concept analysis to relational databases

Background Theory

Database Scaling

Conjunctiv Queries

SQL Interpretation

Navigation

Summary

References

	[CM77] Ashok K. Chandra and Philip M. Merlin
	Optimal implementation of conjunctive queries in relational databases. In: Proceedings of the 9th annual ACM symposium on theory of computing, pp. 77–90 (1977)
	[DE09] Jon R. Ducrou and Peter W. Eklund
	Faceted document navigation using conceptual structures. In: Conceptual Structures in Practice. Chapman & Hall/CRC (2009)
	[GE99] Bernd Groh and Peter W. Eklund
	Algorithms for creating relational power context families from conceptual graphs. In: Proceedings of ICCS 1999. LNAI, vol. 1640, pp. 389–400. Springer (1999)
	[Her02] Joachim Hereth
	Relational scaling and databases.
	In: Proceedings of ICCS 2002. LNAI, vol. 2393, pp. 62–76. Springer (2002)
	[HRV02] Marianne Huchard, Cyril Roume and Petko Valtchev
	When concepts point at other concepts: the case of UML diagram reconstruction. In: Proceedings of FCAKDD 2002, pp. 32–43.
	[Koe11] Jens Kötters
	Object configuration browsing in relational databases.
_	In: Proceedings of ICFCA 2011. LNCS, vol. 6628, pp. 151–166. Springer (2011)
	[Koe13] Jens Kötters
	Concept lattices of a relational structure.

In: Proceedings of ICCS 2013. LNCS, vol. 7735, pp. 301-310. Springer (2013)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Selected References II

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()