

Combining Concept Annotation and Pattern Structures for Guiding Ontology Mapping

*Pierre Monnin*¹, Amedeo Napoli¹ and Adrien Coulet^{1,2} July 13, 2018

¹ LORIA (CNRS, Inria Nancy-Grand Est, Université de Lorraine), Nancy, France

² BMIR (Stanford University), Stanford, USA

Context & Motivation

Context & Motivation (1/6)

Ontology

- · A formal representation of a particular domain
- Composed of a terminological component TBox
 - → Definition of classes and predicates between classes
- · Composed of an assertion component ABox
 - ightarrow Individuals instantiating classes and predicates

Example

The drug codein is an individual instantiating the class Analgesics

Context & Motivation (2/6)

Figure 1: Linked Open Data cloud diagram 2014-08-30, by Andrejs Abele, Paul Buitelaar, Richard Cyganiak, Anja Jentzsch and John P. McCrae. http://lod-cloud.net/

Context & Motivation (3/6)

Figure 2: Linked Open Data cloud diagram 2018-06-28, by Andrejs Abele, Paul Buitelaar, Richard Cyganiak, Anja Jentzsch and John P. McCrae. http://lod-cloud.net/

Context & Motivation (4/6)

Use Case 1: There is a need for structure between ontologies

- Individuals can instantiate classes from several TBoxes *E.g.*, in the medical domain, MeSH, ICD-9-CM, ICD-10-CM...
- Corresponding classes from several ontologies may be mapped with equivalence relationships
- This alignment may be a manual review by an expert or a semi-automatic process

Example

The class Cardiomyopathies (D009202) from MeSH is equivalent to Cardiomyopathy (425) in ICD-9-CM

Context & Motivation (5/6)

Use Case 2: There is a need for structure within an ontology

- In the ABox: predicate assertions, i.e., relations between individuals
 - E.g., in DrugBank, VKORC1 is an inhibitor of warfarin
- Individuals instantiate classes of ontologies E.g., GO, ATC
- From predicate assertions, frequently associated classes as domain and range could be discovered
 - → Could indicate common behavior at the class level

Example

Context & Motivation (6/6)

Formal Concept Analysis (FCA) [Ganter and Wille, 1999]

- A well-fonded mathematical framework
- · Already applied for knowledge engineering purposes

Pattern Structures [Ganter and Kuznetsov, 2001]

- An extension of FCA allowing to have complex descriptions of objects
 - → Ontology classes

Concept Annotation [Monnin et al., 2017]

- · An extension of FCA introduced in our previous work
- Adding a third dimension to a concept lattice w/o changing its structure
- · Already experimented for ontology re-engineering
- ightarrow Combine Concept Annotation and Pattern Structures for the two considered use-cases

Basics about Ontologies

Basics about Ontologies

Considering an ontology ${\cal O}$

- \cdot We denote $\mathcal{C}(\mathcal{O})$ the set of classes of \mathcal{O}
- Subsumption relation $C \sqsubseteq D$
 - → Partial order between classes
- $lcs(C_1, C_2)$ is the least common subsumer of C_1 and C_2
- Considering a set of classes $C_n = \{C_1, C_2, \dots, C_n\}$
 - $\rightarrow \min \mathcal{C}_n = \{ C \in \mathcal{C}_n \mid \not \exists \ D \in \mathcal{C}_n, \ D \sqsubseteq C \}.$

Concept Annotation

Concept Annotation: previous work

Formal context (G, M, I)

- · G: set of individuals
- M: set of predicates
- $(g, m) \in I$ iff g is involved in a relationship whose predicate is m

Annotation

- Derivation operator $(\cdot)^{\diamond}: 2^G \to 2^{\mathcal{C}(\mathcal{O})}$
- Given a formal concept (A, B) $A^{\diamond} = \bigcap_{g \in A} \{C \mid \mathcal{O} \models C(g)\}$
 - \rightarrow Annotated concept (A, B, A^{\diamond})

Combining Concept Annotation with Pattern Structures

Objective: only keep as annotation the most specific classes instantiated

Mapping function δ

- $\delta: G \to 2^{\mathcal{C}(\mathcal{O})}$
- $\delta(g) = \min \{C \mid \mathcal{O} \models C(g)\}$

Similarity operator □

- Given $g_1, g_2 \in G$
- $\cdot \ \delta(g_1) \sqcap \delta(g_2) = \min \left\{ \operatorname{lcs}(C_1, C_2) \mid \forall \ (C_1, C_2) \in \delta(g_1) \times \delta(g_2) \right\}$

Derivation operator $(\cdot)^{\circ}$

- $(\cdot)^{\circ}: 2^{G} \rightarrow 2^{\mathcal{C}(\mathcal{O})}$
- Given a formal concept (A, B), $A^{\circ} = \prod_{g \in A} \delta(g)$

Use Case 1: Suggesting Mappings between Classes of Ontologies

Suggesting Mappings between Classes of Ontologies (1/4)

Running Example

Figure 3: TBoxes

	\mathcal{O}_{ref} (MeSH)	\mathcal{O}_1 (ICD-9-CM)	\mathcal{O}_2 (ICD-10-CM)
d1	Heart failure	Heart failure	Heart failure
d2	C., Alcoholic	Alcoholic C.	Alcoholic C.
d3	E., Fibroelastosis	E. Fibroelastosis	E. Fibroelastosis

Table 1: Classes instantiated by the individuals (d1, d2, d3) of the ABox

Suggesting Mappings between Classes of Ontologies (2/4)

Classifying individuals w.r.t. \mathcal{O}_{ref}

- Pattern Structure $(G, (2^{\mathcal{C}(\mathcal{O}_{ref})}, \sqcap_{ref}), \delta_{ref})$
- Pattern Concepts (A, D) with $A \subseteq G$ and $D \in 2^{\mathcal{C}(\mathcal{O}_{ref})}$

Suggesting Mappings between Classes of Ontologies (3/4)

Annotating with \mathcal{O}_1 and \mathcal{O}_2

- Two annotations for a formal concept (A, B)
 - w.r.t. \mathcal{O}_1

$$A^{\circ_1} = \prod_{g \in A} \delta_1(g)$$

w.r.t. O₂

$$A^{\circ_2} = \prod_{g \in A} \delta_2(g)$$

 \rightarrow Annotated concept $(A, B, A^{\circ_1}, A^{\circ_2})$

Suggesting Mappings between Classes of Ontologies (4/4)

Reading mappings from the annotated lattice

Considering an annotated concept $(A, B, A^{\circ_1}, A^{\circ_2})$

- · $A^{\circ_1} \subseteq \mathcal{C}(\mathcal{O}_1)$
- · $A^{\circ_2} \subseteq \mathcal{C}(\mathcal{O}_2)$

Considering each pair $(C_1, C_2) \in A^{\circ_1} \times A^{\circ_2}$

- They are instantiated by all individuals in A
- Suggestion of $C_1 \Leftrightarrow C_2$

Use Case 2: Discovering Associated Classes as Domain

and Range of a Predicate

Discovering Associated Classes as Domain and Range (1/5)

Running example

- A set G of individuals instantiating classes of an ontology \mathcal{O}_1 \to genes instantiating classes of GO
- A set M of individuals instantiating classes of an ontology \mathcal{O}_2 \to drugs instantiating classes of ATC
- The incidence relation $I \subseteq G \times M$ indicates that an individual from G is in a relationship with an individual from M
 - \rightarrow the gene is an inhibitor of the drug

Discovering Associated Classes as Domain and Range (2/5)

	drug ₁	drug₂	drug₃	drug ₄
gene ₁	×	×		
$gene_2$	×	×		
gene ₃		×	×	×
gene ₄				×

Discovering Associated Classes as Domain and Range (3/5)

Discovering Associated Classes as Domain and Range (4/5)

Annotating with \mathcal{O}_1 and \mathcal{O}_2

- Two annotations for a formal concept (A, B)
 - w.r.t. \mathcal{O}_1

$$A^{\circ_1} = \prod_{g \in A} \delta_1(g)$$

• w.r.t. \mathcal{O}_2

$$B^{\circ_2} = \prod_{m \in B} \delta_2(m)$$

 \rightarrow Annotated concept $(A, B, A^{\circ_1}, B^{\circ_2})$

Discovering Associated Classes as Domain and Range (5/5)

Reading Domain and Range from the annotated lattice

- Considering an annotated concept (A, B, A^{o_1}, B^{o_2})
- Every individual in A is in relationship w/ every individual in B
- $A^{\circ_1} \subseteq \mathcal{C}(\mathcal{O}_1)$ is the set of the most specific classes instantiated by all individuals in A
- $B^{\circ_2} \subseteq \mathcal{C}(\mathcal{O}_2)$ is the set of the most specific classes instantiated by all individuals in B
- \rightarrow Classes from A°_1} as domain are associated with classes from B°_2} as range

Conclusion & Perspectives

Conclusion & Perspectives

- · Pattern structures enable more complex annotations
- · The resulting lattice can be seen as a pivot structure
- The approach needs to be validated on real data sets
- Mappings suggestion
 - · Closed World Assumption vs Open World Assumption
 - Choice of background knowledge \mathcal{O}_{ref} ?
 - · Potential other applications: concept drift...
- · Discovering associated classes as domain and range
 - · Interactive exploration of the annotated lattice
 - · Add metrics (e.g., support) for selecting interesting associations?

Thank you for your attention Questions?

References i

Ganter, B. and Kuznetsov, S. O. (2001).

Pattern Structures and Their Projections.

In Conceptual Structures: Broadening the Base, 9th International Conference on Conceptual Structures, ICCS 2001, Stanford, CA, USA, July 30-August 3, 2001, Proceedings, pages 129–142.

Ganter, B. and Wille, R. (1999).

Formal concept analysis - mathematical foundations.

Springer.

References ii

Monnin, P., Lezoche, M., Napoli, A., and Coulet, A. (2017). Using Formal Concept Analysis for Checking the Structure of an Ontology in LOD: The Example of DBpedia.

In Foundations of Intelligent Systems - 23rd International Symposium, ISMIS 2017, Warsaw, Poland, June 26-29, 2017, Proceedings, pages 674–683.