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Credit Rating Scales: Examples

2



Grading: Example
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Rating: What is it?

O set of objects to be rated
prominent examples are financial entities which issue debt

There are different (credit) rating agencies applying different
ratings, where a (credit) rating is a mapping A : O → S to a
rating scale S

Rating scale is a finite chain S = C (n) := {0, . . . , n}
S naturally and totally ordered by ”≤”
n:= length of chain S
”0” represents the lowest credit quality, ”n” the highest
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Motivation for Directed Distances

Question: Given two ratings A and B from different sources

Which one is more progressive?

”Bicycle Distance”:

A(o)

B(o)

B(o)

A(o)

zero positive

”Only counting when rating B(o) is higher than A(o)”
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Measure of Progressivity: a Directed Distance

Input: O a set, a finite chain S = {0, . . . , n}, two ratings
A,B : O → S

Definition (Progressivity of rating B given rating A)

D+(A,B) :=
∑

o∈O: A(o)≤B(o)

rank B(o)− rank A(o)

”natural rank function in a chain”: rank s := s, s ∈ S

D+(A,B) ”well-defined” and finite if O is finite

D+(A,B) ≥ 0

D+(A,B) = 0 iff ∀o ∈ O : B(o) ≤ A(o)

D+(A,B) ”triangular”, i.e. ∀C : O → S :
D+(A,B) ≤ D+(A,C ) + D+(C ,B): corollary of a theorem
below
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Measure of Conservatism: the same Directed Distance

Input: O a set, a finite chain S = {0, . . . , n}, two ratings
A,B : O → S

Definition (Conservatism of rating A given rating B)

D−(B,A) :=
∑

o∈O: A(o)≤B(o)

rank B(o)− rank A(o)

D+(A,B) = D−(B,A)

Usually D+(A,B) 6= D+(B,A)

If D+(A,B) > D+(B,A) then A is more conservative than B,
and B is more progressive than A.
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The Symmetric Case: Measuring Distance between Ratings

Input: O a finite set, a finite chain S = {0, . . . , n}, two ratings
A,B : O → S

Definition (Distance between ratings A and B)

D(A,B) := D+(A,B) + D+(B,A)

”symmetric”: D(A,B) = D(B,A)

D(A,B) = 0 = D(B,A) iff A = B
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Questions and Generalizations
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p ∧ t

p ∧ q q ∧ t

p q t

”Scaling”: Scales do not need to be identical. Different raters
use different scales. What can we do about it?

Why using linear orders at all? What about posets as target
of ratings? Which posets will work?
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Algorithm for Scaling
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Embedding (order preserving injection) one chain into the
other

Embedding C (1) into C (2): 3 possibilities

Embedding C (1) into C (3): 6 possibilities
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Algorithm for Scaling

Input: O a finite set, ratings A : O → C (k), B : O → C (n), k ≤ n

Algorithm (Scaling with minimal distance)

Run through all embeddings Ei : C (k)→ C (n)

Calculate Ei ◦ A and D(B, Ei ◦ A) for each embedding Ei

Pick (one of) the Ei with minimal distance D(B, Ei ◦ A)

Works well if the number of embeddings
(n+1
k+1

)
is not too high.

Develop smarter matching algorithm (and get rich)
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Directed Distances for Ratings with Target Posets other
than Chains I

x y z

x ∧ y y ∧ z

x ∨ y y ∨ z = q

x ∧ y ∧ z = p

x ∨ y ∨ z

If p ≤ q, then p and q are contained in a chain, we can try to
use our distance above which compares positions in a chain

12



Directed Distances for Ratings with Target Posets other
than Chains II

x

y

z

x ∧ y = x ∧ z

x ∨ y = x ∨ z

But we need a condition, which makes (length of) maximal
chains unique.

A chain C is called maximal if, for any chain D, C ⊆ D
implies C = D.

Such a condition is the famous Jordan-Dedekind chain
condition.
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Directed Distances for Ratings with Target Posets other
than Chains III

x y z

x ∧ y y ∧ z

x ∨ y y ∨ z

x ∧ y ∧ z

x ∨ y ∨ z

A poset is said to satisfy the Jordan-Dedekind chain condition
if any two maximal chains between the same elements have
the same finite length.
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Directed Distances for Ratings with Target Posets other
than Chains IV

r p

p ∧ q

q

p ∧ r

There is neither a chain containing (p, q) nor (p, r).

Agreement p ∧ q higher than agreement p ∧ r .

Take one maximal chain between (p ∧ q, p), resp. between
(p ∧ r , p).

Compare rank p with rank (p ∧ q) resp. with rank (p ∧ r).
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Directed Distances for Ratings with Target Posets other
than Chains V

r p

p ∧ q

q

p ∧ r

d(p, q) := rank p − rank p ∧ q

d(p, q) = 1, d(p, r) = 2, d(q, r) = 1 and d(r , q) = 0

Do we always get d(p, q) ≤ d(p, r) + d(r , q)?

Gives this construction always a ”triangular” d?
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WARNING: Example of a ”Non-Triangular-Metric”

p ∧ t

p ∧ q q ∧ t

p q t

d(p, t) = rp − r(p ∧ t) = 3− 0 = 3

d(p, q) = rp − r(p ∧ q) = 3− 2 = 1

d(q, t) = rq − r(q ∧ t) = 3− 2 = 1

Hence,

d(p, t) = 3 > 2 = d(p, q)+d(q, t)

Thus, d is not a triangular
metric!
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Generalized Framework: Functorial Maps

Input: P = (P,≤P) a poset (i.e. ≤P ⊆ P × P) &
M = (M, ∗, ε,≤) an ordered monoid

Definition (Functorial map)

A map ∆: ≤P −→ M is called functorial w. r. t. (P,M) if

for all p ∈ P : ∆(p, p) = ε

for all p, t, q ∈ P with

p ≤P t ≤P q : ∆(p, t) ∗∆(t, q) = ∆(p, q)

Definition (Weakly positive map)

∆ is called weakly positive if ε ≤ ∆(p, q) for all (p, q) ∈ ≤P.
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Generalized Framework: Supermodular Maps

Definition (Supermodular maps)

A map ∆: ≤P −→ M is called supermodular if

∆(p ∧ q, q) ≤ ∆(p, p ∨ q)

holds for all (p, q) s.t. both p ∧ q and p ∨ q exist.

p q

p ∧ q

p ∨ q

∆(p, p ∨ q)

∆(p ∧ q, q)
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Generalized Framework: Algebraic Modeling of Directed
Distances

Input: P a set & M = (M, ∗, ε,≤) an ordered monoid

Definition (Generalized Quasi-Metric: ”GQM”)

Map d : P × P −→ M is a GQM w. r. t. (P,M) if it is

”weakly positive”: ε ≤ d(p, q) for all p, q ∈ P

”neutral”: d(p, p) = ε for all p ∈ P

”triangular”: d(p, q) ≤ d(p, t) ∗ d(t, q) for all p, t, q ∈ P
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Generalized Framework: Question

For a given ∆: ≤P−→ M, does there exist a generalized
quasi-metric d : P × P −→ M w. r. t. (P,M) which extends ∆
such that d |≤P = ∆?
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Functorial maps and their role in constructing GQM

Theorem (Supermodular case)

Let P = (P,≤P) be a lattice. If a map ∆: ≤P −→ M is weakly
positive, supermodular and functorial w. r. t. (P,M), then

d : P × P −→ M, (p, q) 7→ ∆(p ∧ q, q)

is a GQM w. r. t. (P,M).

p q

p ∧ q

p ∨ q

∆(p, p ∨ q)

∆(p ∧ q, q)
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Conclusion

In order to compare ratings, we propose a sound directed
metric in order to measure how progressive or conservative
ratings are.

Scaling: For chains S ,S ′ of different size we propose an
algorithmic solution, which works well if the difference of the
length of the two chains is not too big.

Getting rich: Understand existing matching algorithms.
Develop smarter ones. Use for apps.

Posets as target: As target other then simply chains there is
the huge class of lattices which allow for a (finite)
Jordan-Dedekind chain condition together with a
supermodular rank function. In particular, distributive (and
modular) lattices of finite length will work very well.
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Generalized Metrics for Actuaries: Appendix.
Proof of Main Theorem

T. Gäbel-Hökenschnieder, T. Pfeiffer, S. E. Schmidt,

TU Dresden, Bad Kreuznach

July 13, 2018
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Algebraic Modeling of Directed Distances

Input: P a set & M = (M, ∗, ε,≤) an ordered monoid

Definition (Generalized Quasi-Metric: ”GQM”)

Map d : P × P −→ M is a GQM w. r. t. (P,M) if it is

”weakly positive”: ε ≤ d(p, q) for all p, q ∈ P

”neutral”: d(p, p) = ε for all p ∈ P

”triangular”: d(p, q) ≤ d(p, t) ∗ d(t, q) for all p, t, q ∈ P
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Functorial Maps and their Role in constructing GQM

Recall d(p, q) := ∆(p ∧ q, q)

d : ”Weakly positive” and ”neutral” clear.

Steps to show that d is ”triangular”:

1 t ≤P x ≤P z =⇒ ∆(x , y) ≤ ∆(t, z)

2 x ≤P y =⇒ ∆(x ∧ y , y ∧ z) ≤ ∆(x , y)

3 ∆(p ∧ q, q) ≤ ∆(p ∧ t, t) ∗∆(t ∧ q, q)
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Functorial maps and their role in constructing GQM

Claim 1 (Interval Property):
t ≤P x ≤P z =⇒ ∆(x , y) ≤ ∆(t, z)

Proof. Since ∆ is functorial, we obtain

∆(t, z) = ∆(t, x) ∗∆(x , y) ∗∆(y , z)

As ∆ is weakly positive, we get

∆(t, z) ≥ ε ∗∆(x , y) ∗ ε
= ∆(x , y)
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Functorial Maps and their Role in constructing GQM

Claim 2 (Meet Property):
x ≤P y =⇒ ∆(x ∧ y , y ∧ z) ≤ ∆(x , y)

Proof.

∆(x ∧ y , y ∧ z) = ∆(x ∧ (y ∧ z), y ∧ z)

Denoting y ∧ z ; y ′; interval property:

∆(x ∧ y , y ∧ z) = ∆(x ∧ y ′, y ′)

≤ ∆(x , x ∨ y ′)

x ∨ y ′ ≤P y (since x ≤P y and y ′ ≤P y); claim 1:

∆(x ∧ y , y ∧ z) ≤ ∆(x , y)
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Functorial maps and their role in constructing GQM

Claim 3: ∆(p ∧ q, q) ≤ ∆(p ∧ t, t) ∗∆(t ∧ q, q)

Proof. With claim 1:

∆(p ∧ q, q) ≤ ∆(p ∧ t ∧ q, q)

Since ∆ is functorial:

∆(p ∧ t ∧ q, q) = ∆(p ∧ t ∧ q, t ∧ q) ∗∆(t ∧ q, q)

With Claim 2:

∆(p ∧ t ∧ q, t ∧ q) ∗∆(t ∧ q, q) = ∆(p ∧ t, t) ∗∆(t ∧ q, q)

Hence, ∆(p ∧ q, q) ≤ ∆(p ∧ t, t) ∗∆(t ∧ q, q).

29



Corollary: D+ is triangular I

Input: O a set, a finite chain S = {0, . . . , n}, ratings
A,B,C : O → S . Then:

D+(A,B) ≤ D+(A,C ) + D+(C ,B)

The set O of all ratings O : A→ S is endowed with a natural
order:

A ≤O B if A(o) ≤ B(o) for all o ∈ O.

We write O = (O,≤O). O is a lattice where

(A ∨ B)(o) = max(A(o),B(o))

(A ∧ B)(o) = min(A(o),B(o))
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Functorial maps and their role in constructing GQM

Theorem (Submodular case)

Let P = (P,≤P) be a lattice. If a map ∆: ≤P −→ M is weakly
positive, submodular and functorial w. r. t. (P,M), then

d : P × P −→ M, (p, q) 7→ ∆(p, p ∨ q)

is a GQM w. r. t. (P,M).

p q

p ∧ q

p ∨ q∆(p, p ∨ q)

∆(p ∧ q, q)
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