
Workshop Notes

9th International Workshop

“What can FCA do for Artificial Intelligence?”

FCA4AI 2021

30th International Joint Conference on Artificial Intelligence

IJCAI 2021

August 21 2021

Montréal, Québec, Canada

Editors

Sergei O. Kuznetsov (NRU HSE Moscow)

Amedeo Napoli (LORIA Nancy)

Sebastian Rudolph (TU Dresden)

http://fca4ai.hse.ru/2021/

2

Preface

The eight editions of the FCA4AI Workshop showed that many researchers working in
Artificial Intelligence are deeply interested by a well-founded method for classification and
data mining such as Formal Concept Analysis (see https://conceptanalysis.wordpress.
com/fca/).

FCA4AI started with ECAI 2012 (Montpellier) and the last edition was co-located with
ECAI 2020 (Santiago de Compostela, virtual conference). The FCA4AI workshop has now
a quite long history and all the proceedings are available as CEUR proceedings (see http:
//ceur-ws.org/, volumes 939, 1058, 1257, 1430, 1703, 2149, 2529, and 2729). This year, the
workshop has again attracted researchers from many different countries working on actual
and important topics related to FCA, showing the diversity and the richness of the relations
between FCA and AI.

Formal Concept Analysis (FCA) is a mathematically well-founded theory aimed at data
analysis and classification. FCA allows one to build a concept lattice and a system of de-
pendencies (implications and association rules) which can be used for many AI needs, e.g.
knowledge discovery, machine learning, knowledge representation, reasoning, ontology engi-
neering, as well as information retrieval and text processing. Recent years have been witness-
ing increased scientific activity around FCA, in particular a strand of work emerged that is
aimed at extending the possibilities of FCA w.r.t. knowledge processing. These extensions
are aimed at allowing FCA to deal with more complex data, both from the data analysis and
knowledge discovery points of view. Actually these investigations provide new possibilities for
AI practitioners within the framework of FCA. Accordingly, we are interested in the following
issues:

• How can FCA support AI activities such as knowledge processing, i.e. knowledge dis-
covery, knowledge representation and reasoning, machine learning (clustering, pattern
and data mining), natural language processing, information retrieval. . .

• How can FCA be extended in order to help AI researchers to solve new and complex
problems in their domains, in particular how to combine FCA with neural classifiers
for improving interpretability of the output and producing valuable explanations. . .

The workshop is dedicated to discussion of such issues. First of all we would like to thank
all the authors for their contributions and all the PC members for their reviews and precious
collaboration. This year, 24 papers were submitted and 14 were accepted for presentation
at the workshop, out of which 6 short papers. The papers submitted to the workshop were
carefully peer-reviewed by three members of the program committee. Finally, the order of
the papers in the proceedings (see page 5) follows the program order (see http://fca4ai.
hse.ru/2021/).

The Workshop Chairs

Sergei O. Kuznetsov
National Research University Higher School of Economics, Moscow, Russia

Amedeo Napoli
Université de Lorraine, CNRS, Inria, LORIA, 54000 Nancy, France

Sebastian Rudolph
Technische Universität Dresden, Germany

3

Program Committee

Mehwish Alam (AIFB Institute, FIZ KIT Karlsruhe, Germany)

Jaume Baixeries (UPC Barcelona, Catalunya)

Karell Bertet (L3I, Université de La Rochelle, France)

Aleksey Buzmakov (National Research University HSE Perm, Russia)

MiguelCouceiro (LORIA, Nancy France)

Diana Cristea (Babes-Bolyai University, Cluj-Napoca, Romania)

Mathieu D’Aquin (National University of Ireland Galway, Ireland)

Florent Domenach (Akita International University, Japan)

Elizaveta Goncharova (NRU Higher School of Economics, Moscow, Russia)

Tom Hanika (University of Kassel, Germany)

Marianne Huchard (LIRMM/Université de Montpellier, France)

Dmitry I. Ignatov (National Research University HSE Moscow, Russia)

Dmitry Ilvovsky (NRU Higher School of Economics, Moscow, Russia)

Mehdi Kaytoue (Infologic, Lyon, France)

Jan Konecny (Palacky University, Olomouc, Czech Republic)

Francesco Kriegel (Technische Universität Dresden, Germany)

Leonard Kwuida (Bern University of Applied Sciences, Switzerland)

Florence Le Ber (ENGEES/Université de Strasbourg, France)

Tatiana Makhalova (National Research University HSE Moscow, Russia, and Inria LORIA,
Nancy, France)

Nizar Messai (Université François Rabelais Tours, France)

Rokia Missaoui (UQO Ottawa, Canada)

Sergei A. Obiedkov (NRU Higher School of Economics, Moscow, Russia)

Uta Priss (Ostfalia University, Wolfenbüttel, Germany)

Christian Sacarea (Babes-Bolyai University, Cluj-Napoca, Romania)

Henry Soldano (Laboratoire d’Informatique de Paris Nord, Paris, France)

Francisco José Valverde Albacete (Universidad Carlos III de Madrid, Spain)

Renato Vimieiro (Universidade Federal de Minas Gerais, Belo Horizonte, Brazil)

4

Contents

1 Modelling Conceptual Schemata with Formal Concept Analysis
Uta Priss . 7

2 Data Overview by Means of Delta-Classes of Equivalence. The Case of the Titanic
Dataset
Aleksey Buzmakov, Sergei O. Kuznetsov, Tatiana Makhalova, and Amedeo Napoli . . 19

3 FCA Went (Multi-)Relational, But Does It Make Any Difference?
Mickaël Wajnberg, Petko Valtchev, Mario Lezoche, Alexandre Blondin-Massé, and
Hervé Panetto . 27

4 Likely-Occurring Itemsets for Pattern Mining
Tatiana Makhalova, Sergei O. Kuznetsov, and Amedeo Napoli 39

5 Concept-based Chatbot for Interactive Query Refinement in Product Search
Elizaveta Goncharova, Dmitry Ilvovsky, and Boris Galitsky 51

6 Variability Extraction from Simulator I/O Data Schemata in Agriculture Decision-
Support Software
Thomas Georges, Marianne Huchard, Mélanie König, Clémentine Nebut, and Chouki
Tibermacine . 59

7 Multimodal Clustering with Evolutionary Algorithms
Mikhail Bogatyrev, Dmitry Orlov, and Tatiana Shestaka 71

8 On Suboptimality of GreConD for Boolean Matrix Factorisation of Contranominal
Scales
Dmitry Ignatov and Alexandra Yakovleva . 87

9 Summation of Decision Trees
Egor Dudyrev and Sergei O. Kuznetsov . 99

10 Ensemble Techniques for Lazy Classification Based on Pattern Structures
Ilya Semenkov and Sergei O. Kuznetsov . 105

11 A Concept of Self-Supervised Logical Rule Inference in Symbolic Classifications
Xenia Naidenova and Vladimir Parkhomenko . 113

12 Non-Redundant Link Keys in RDF Data: Preliminary Steps
Nacira Abbas, Alexandre Bazin, Jérôme David, and Amedeo Napoli 125

13 Formal Concept Analysis for Semantic Compression of Knowledge Graph Versions
Damien Graux, Diego Collarana, and Fabrizio Orlandi 131

5

6

Modelling Conceptual Schemata
with Formal Concept Analysis

Uta Priss

Ostfalia University, Wolfenbüttel, Germany

Abstract. This paper discusses how to construct conceptual schemata (which are
meant to provide conceptual information in a manner close to natural language,
easy to memorise and mentally parse) from concept lattices which tend to present
a more computational view of conceptual information. Different methods for con-
structing schemata from concept lattices (such as OR-definitions for reducing the
number of attributes and implications of a concept lattice) are considered.

1 Introduction

As the name states, Formal Concept Analysis (FCA) provides a means for analysing
concepts. While there are many applications for FCA, it is often easier to employ FCA
for computational problems than to actually analyse concepts in a manner similar to
how natural language is processed by humans. For the purpose of structuring and de-
veloping teaching materials it would be desirable if FCA could serve as a means for
representing concepts in a manner that is close to how students learn domain knowl-
edge. A representation would be desirable that is similar to relations amongst natural
language words, for example hyponyms such as “poodle” and “dog”. Lattices that are
automatically generated from natural language databases, however, such as WordNet
or Roget’s Thesaurus tend to be more computational because their relations are not
sufficiently precisely defined (Priss & Old 2010).

In this paper, we are introducing an approach for shifting between word-based nat-
ural language representations and more formal representations with FCA. For that pur-
pose we are distinguishing (conceptual) schemata which utilise natural language words
from (conceptual) classes which contain a set of formal contexts. Investigating the con-
nections between schemata and classes is a semiotic task because it considers a rela-
tionship between words as representations of signs and concepts as meanings of signs.
It is of interest to determine how well the information of a class is retained in a schema,
how efficiently it is represented and how well a schema covers a class. The semiotic
perspective and the relationship to educational research have been discussed elsewhere
(Priss 2021a and 2021b) and are not further elaborated in this paper.

The notion of “schema” is influenced by Lakoff’s (1987) “image schema”. But the
focus of schemata in this paper is on verbal description, not on images. The words
or phrases that are defined by a schema and relate one schema to other schemata are
called head representamens in this paper in analogy to the headwords of dictionary
entries which are also called catchwords, keywords, subject headings, index terms or

7

descriptors in other disciplines. From a semiotic view, head representamens are repre-
sentamens of signs (Priss 2017). From a computational view, head representamens are
just strings that are elements of a set. Head representamens are to be distinguished from
other representamens which have an auxiliary function.

Head representamens can serve as building blocks for constructing compound rep-
resentamens using the operations AND, OR and NOT. For example, head represen-
tamens for poodles might be “poodle” and “miniature poodle” whereas a compound
representamen might be “poodle AND cute”. Such operations are syntactically defined
in schemata and semantically defined in classes with interpretations mapping schemata
into classes1. The operations AND and OR for head representamens are similar but
not identical to natural language “and” and ”or” because, in natural language, “and”
is sometimes used for an intersection (such as “dog and cute”), sometimes for a union
(such as “dogs and cats”) and “or” can be exclusive or inclusive. An interpretation
should map an AND-operation amongst head representamens into a meet of concepts
in a class, an OR-operation into a join of concepts or a construction involving a union
of extensions and a NOT-operation into an extensional set difference.

The basics of FCA can be found in the textbook by Ganter & Wille (1999) and
are not repeated in this paper. But it should be mentioned that a concept (a′, a′′) is
called an attribute concept of a and a concept (o′′, o′) an object concept. The ordering
amongst object concepts is called object order. Concepts that are not object concepts
are called supplemental concepts in this paper. The extension of a supplemental concept
equals the union of the extensions of its proper subconcepts. In this paper supplemental
concepts are drawn as empty nodes in the Hasse diagrams. Each supplemental concept
corresponds to a clause because for such a concept c with extension ext(c) and inten-
sion int(c) and the condition ∀oi ∈ ext(c) : ∃ci < c : oi ∈ ext(ci) it follows that∧
(ai ∈ int(c))⇒ ∨

(ai | ∃ci : ci < c, ai ∈ int(ci), ai 6∈ int(c)) is a clause. It is par-
ticularly interesting to consider whether some concepts always have to be supplemental
with respect to background knowledge even if more objects are added to a context. An
example for this feature is provided in the next section.

Some aspects presented in Section 2 which discusses a certain type of reduction of
concept lattices have already been covered elsewhere, for example, by Ganter & Obied-
kov (2016). Ganter (2019) discusses how to render an implication basis of a formal
context more human readable by changing and grouping some of the implications and
Lopez-Rodriguez et al. (2021) provide a means for determining core implications from
a basis. In this paper, the focus is on reducing implications combined with representing
some of the information by other means (as subconcept hierarchies or prototypical ex-
amples) if that renders the information more human readable. OR-reductions are also
relevant for reducing a concept lattice to its AOC-poset (Osswald & Petersen, 2002)
which consists only of the attribute and object concepts and possibly for feature models
of Product Line Representations (Carbonnel et al. 2016).

The definitions of conceptual schemata, classes and interpretations in Section 3 are
similar to a standard modelling with formal semantics, for example, Prediger’s (1998)
K-interpretations which map ordered sets of concept and relation names into power

1 Contrary to standard formal semantics where interpretations map strings into sets, in this paper
interpretations map head representamens into concepts.

8

context families. The aim of Prediger’s work and others who extended it was to establish
a connection between FCA and Conceptual Graphs and focused on logical properties.
The focus of this paper is on the relationship between representamens and concepts in
a more closed world setting. Most established FCA exploration and reduction methods
tend to focus on reducing the lower parts of a lattice whereas in this paper mainly
supplemental concepts in the upper part of a concept lattice are reduced. Thus, this
paper draws on existing research but from a somewhat different perspective.

2 OR-Reduction

This section uses an example of a formal context and lattice from Ganter & Wille (1999)
consisting of seven prototypical types of triangles and their defining properties (Fig. 1,
left). In this example, the supplemental concepts (represented as empty nodes) must
always be supplemental because every triangle must have exactly one of the attributes
“acute”, “obtuse” or “right” and either be equilateral or not or isosceles or not. Thus
according to background knowledge about triangles, the object concepts describe actual
examples of triangles whereas the extensions of the supplemental concepts must always
be unions of the extensions of their subconcepts even if more triangles are added to the
context. The lattice displays subconcept relationships for the types of triangles. If a
student wants to learn about triangles, their types and their definitions, it would not be
efficient to memorise all of the concepts of the lattice on the left side of Fig. 1. because
it displays more a computational view than a natural language view.

obtuse

acute

equilateral

obtuse

acute, isoseceles

right

equilateral

acute

oblique isosceles not equilateral

right

Obj 1

Obj 2

Obj 3

Obj 4

Obj 5

Obj 6

Obj 7

obtuse, isosceles

right, isosceles

Implications: equilateral −> isosceles acute
acute obtuse −> ⊥

acute right −> ⊥

obtuse right −> ⊥obtuse right

⊥

⊥

⊥

(equilateral −> isosceles AND acute)

obtuseacute

equilateral

isosceles right

obtuseacute right

equilateral

isosceles

oblique := acute OR obtuse
not_equilateral := NOT equilateral

acute obtuse
acute rightFig. 1. A lattice of triangles (cf. Ganter & Wille (1999)) and its reduced form

The right side of Fig. 2 shows a reduced version of the lattice on the left. The at-
tributes “oblique” and “not equilateral” have been removed because oblique represents
“acute OR obtuse” and “not equilateral” is the negation of “equilateral”. Normally in
FCA reducing means to remove all attributes and objects from a context which are
at attribute or object reducible concepts. Another form of reduction is to calculate an
AOC-poset which only keeps object and attribute concepts and their ordering (Osswald
& Petersen 2002). AOC-posets are compact and can be algorithmically produced (Berry
et al. 2014). A lattice can be reconstructed from its AOC-poset if a clause is added for
each concept that is neither an attribute nor an object concept. A disadvantage of AOC-
posets is that conjunctions of attributes and therefore implications need not correspond

9

to a single node and cannot easily be read from Hasse diagrams. This disadvantage
is avoided by the reduction methods in this paper. Other means for reducing the size
of concept lattices discussed in the literature tend to rely on statistical or probabilistic
methods which cannot easily be reversed (cf. Priss & Old (2011) for an overview).

In this paper, only reducing attributes is of interest. Reducing attributes in the stan-
dard manner (called AND-reduction in this paper) changes the labelling of a concept
lattice but not its structure. Removing attributes that are OR combinations (called OR-
reduction in this paper) or NOT combinations (NOT-reduction) may change the concept
lattice itself and reduce its size as demonstrated in Fig. 1. All of the following defini-
tions focus on attributes and assume that the contexts are finite and clarified (or purified)
which means that for any two attributes a 6= b =⇒ a′ 6= b′.

Definition 1. An attribute a of a formal context (O,A, J) is called OR-reducible if a
set A? := {a1, ..., an} ⊆ A exists with a′ = a′1 ∪ ... ∪ a′n and ai ∈ A? ⇐⇒ a′i ⊂ a′

and ¬∃b ∈ A : a′i ⊂ b′ ⊂ a′.

Definition 2. For a formal context (O,A, J): For an OR-reducible attribute a, its OR-
definition is provided by a := a1 OR ... OR an for ai ∈ A?. An attribute a with
∃{a1, ..., an} ⊆ A : a′ = a′1 ∩ ... ∩ a′n is called (AND-)reducible with an AND-
definition provided by a := a1 AND ... AND an. An attribute a with ∃b ∈ A : a′ = O\b′
is called NOT-reducible with its NOT-definition provided by a := NOT b.

Lemma 1. If a is OR-reducible, then its set A? := {a1, ..., an} for its representation as
a1 OR ... OR an is uniquely determined. If a is NOT-reducible then its NOT-definition
is uniquely determined.

Proof: For b ∈ A with b′ ⊂ a′: if b′ \⋃{a′i : ai ∈ A?, ai 6= b} 6= ∅, then b ∈ A?.
Else b′ ⊆ ⋃{a′i : ai ∈ A?, ai 6= b} = a′ and either ∃ai ∈ A? : b′ ⊂ a′i (thus b 6∈ A?)
or ¬∃ai ∈ A? : b′ ⊂ a′i (thus b ∈ A?). Thus b ∈ A? or b 6∈ A? is uniquely determined.
NOT-definitions are unique because the context is clarified.

An attribute b that was removed during clarification can be considered a strong syn-
onym or SYN-definition in the form of a := b. As mentioned above, AND-reduction
corresponds to standard FCA ∧-reduction. AND-definitions are not unique because of-
ten several possibilities exist to represent a ∧-reducible concept as a meet of other con-
cepts. OR-reduction focuses on attributes whereas standard FCA ∨-reduction focuses
on objects. Thus, these two notions are different. An OR-reducible attribute must be-
long to a ∨-reducible concept, but not every ∨-reducible concept has an OR-reducible
attribute. In fact OR- and NOT-reducible attributes need not exist at all in a lattice. In a
similar manner, XOR-definitions could be declared as OR-definitions where the a′i are
pairwise disjoint.

Lemma 2. i) The AND-definition of an attribute concept (a′, a′′) is a.
ii) An object concept (o′′, o′) cannot be OR-reducible.
iii) A ∨-reducible concept that is an attribute concept (a′, a′′) and not an object concept
can always be made OR-reducible by adding further attributes to the formal context.

Proof: i) Trivial. ii) Because o cannot be in the extension of proper subconcepts of
(o′′, o′). iii) Attributes a1, ..., an can be added so that each lower neighbour of (a′, a′′)

10

is an attribute concept (a′i, a
′′
i). Because the concept is not an object concept, Def. 1 is

then fulfilled with A? = {a1, ..., an}.
Thus Lemma 1 only states that an OR-definition is unique with respect to a fixed

formal context. Turning each lower neighbour into an attribute concept is always possi-
ble but may not be the best strategy. For example in Fig. 1, oblique is definable as “acute
OR obtuse” even though only one of its lower neighbours is an attribute concept.

Standard FCA implications only use logical AND. Implications that are formed with
combinations of AND and OR are called (cumulated) clauses and are more compli-
cated than standard implications. For example, there is no equivalent to the Duquenne-
Guigues basis for clauses (Ganter & Obiedkov 2016). Because the requirements for an
OR-definition are more specific than just a logical OR, the implications discussed in
the next lemma are not standard FCA clauses. The lemma shows that if attributes are
removed from a context as OR-definitions, some of the implications of the original con-
text can be directly reconstructed from the OR-definitions (as background knowledge)
and the implications of the reduced context.

Lemma 3. For implications involving OR-definitions with a := a1 OR ... OR an:
i) ∀ai : ai → a
ii) a→ x⇐⇒ (a1 OR ... OR an)→ x⇐⇒ (a1 → x) and ... and (an → x)
iii) x→ a⇐⇒ x→ (a1 OR ... OR an)⇐⇒ (x→ a1) or ... or (x→ an)
iv) a1... an → x =⇒ a→ x
v) ∀ai : (x→ aiy =⇒ x→ ay)

Proof: i) Because a′i ⊂ a′. ii) a′1 ∪ ... ∪ a′n ⊆ x′ ⇐⇒ a′1 ⊆ x′ and ... and a′n ⊆ x′.
iii) With A? = {a1, ..., an} it follows that x′ ⊆ a′1 ∪ ... ∪ a′n ⇐⇒ ∃ai ∈ A? : x′ ⊆ a′i
because otherwise x ∈ A?. iv) follows from ii) and the Armstrong rule of composition.
v) because of transitivity of “→”.

Removing an OR-reducible attribute changes a lattice unless the attribute is also
AND-reducible. It would be desirable to develop an efficient algorithm for reconstruct-
ing the implications of an original non-reduced context from the implications of a re-
duced context together with the OR-definitions. Lemma 3 contains some rules for such
an algorithm, but the list is not complete and it is not clear whether it can be completed.
A challenge for such an algorithm is that if several OR-definitions exist, they can mu-
tually affect each other and thus cannot be processed in a linear sequence. It would be
even more desirable if such an algorithm were to convert basis implications into basis
implications. While all implications of an OR-reduced context are implications of its
non-reduced context, applying Lemma 3 to an implication that belongs to a basis does
not guarantee that it results in a basis implication of the non-reduced context. If effi-
ciency is not an issue, then the implications of the non-reduced context can always be
calculated by adding OR-definitions to a formal context as columns (for attributes) that
are unions of other columns. For the purposes of developing schemata as discussed in
the next section, it is sufficient to store those implications that cannot be easily recon-
structed with Lemma 3 in a separate list in addition to the basis implications.

Presumably reconstructing the implications after NOT-reduction is even more com-
plicated. OR-reduction does not change the object order of a lattice. But adding or delet-
ing NOT-reducible attributes does change the object order as shown in Fig. 1. Therefore

11

removal of NOT-reducible attributes may not in general be advisable. For the same rea-
son, combining AND, OR and NOT in definitions is not even discussed in this paper. A
further reason for removing OR-reducible attributes is because their existence is some-
what arbitrary. In the example in Fig. 1, oblique is OR-definable as “acute OR obtuse”.
There are no similar attributes for “acute OR right” and “obtuse OR right”, but there
could be. It is arbitrary which OR-definitions happen to exist as an attribute and which
do not. Successive OR-reduction might reduce a concept lattice to its object ordering.
Presumably, implications involving object concepts are particularly important whereas
all other implications somewhat depend on how upper level concepts are labelled.

3 Conceptual Schemata and Classes

Learning is a complicated task that consists of memorising information but also acquir-
ing skills and modes of thinking. With respect to conceptual knowledge different modes
of thinking correspond to structuring content in a variety of manners: some information
as concepts, some as implications, clauses or examples and some by techniques for de-
ducing further information from the memorised information. The idea for conceptual
schemata is that they present information in a format that is closer to how information
would be structured for learning purposes. The role of conceptual classes is then to
ensure that the information that is behind a schema is consistent and as complete as
possible. The definitions in this section only provide a general framework and will need
to be specified with further details for actual applications.

Fig. 2 shows the conceptual schema (on the left) for the concept lattice (on the right)
of the example of Fig. 1. In this case the reduced lattice is already quite close to a
schema, except that the top and bottom node are not necessary because they can be de-
duced. Further details about the schema are explained below. Evidence for the adequacy
of the diagram on the left of Fig. 2 is provided by the fact that the German Wikipedia
page about triangles contains basically the same image2 for the “hierarchy of triangles”.
Thus, the Wikipedia authors appear to consider it a suitable summary of knowledge
about basic triangles. Students can memorise that diagram together with the definition
of “oblique” and the fact that acute, right and obtuse are mutually exclusive. Students
can then deduce further implications (such as “obtuse → oblique not equilateral” and
“equilateral→ isosceles acute”) from the memorised information.

The following definitions specify the relationship between conceptual schemata and
classes more precisely. The definitions are similar to standard definitions of formal se-
mantics except that interpretations result in concepts instead of sets.

Definition 3. A (conceptual) class (O,AL, J,N) consists of a set O of formal objects,
a set AL of predicates (or “attributes”, formed according to some language L), a re-
lation J ⊆ O × AL with oJa ⇐⇒ (a(o) is true) and a set N of formal contexts with
(Oi, Ai, Ji) ∈ N for Oi ⊆ O,Ai ⊆ AL, Ji ⊆ J and Ji ⊆ Oi ×Ai. The set of all con-
cepts that can be derived from any of the contexts is denoted by C(O,AL, J,N), the set
of all true statements that can be derived from any of the contexts by T (O,AL, J,N).

2 https://de.wikipedia.org/wiki/Datei:Hierarchie.Dreiecke.png

12

Implications: equilateral −> isosceles acute
acute obtuse −> ⊥

acute right −> ⊥

obtuse right −> ⊥obtuse right

⊥

⊥

⊥

(equilateral −> isosceles AND acute)

obtuseacute

equilateral

isosceles right

obtuseacute right

equilateral

isosceles

oblique := acute OR obtuse
not_equilateral := NOT equilateral

acute obtuse
acute right

Fig. 2. A conceptual schema (left) and a NOT-OR-reduced concept lattice (right)

A conceptual class is a set of formal contexts which are defined with respect to a
common set of objects and attributes. While it would be possible to consider (O,AL, J)
a formal context itself, it may be too big to compute anything useful for it. Therefore
concepts and implications are only computed for the contexts in N . It is possible for
implications from one n1 ∈ N to contradict implications from another n2 ∈ N , but
that can be avoided by renaming attributes and is a matter of how the data of an ap-
plication is modelled. In this paper, the language L contains expressions formed from
unary predicates and the symbols AND, OR, NOT, → and :=, although the symbol
“AND” is usually omitted as the default operation. In general, L can be more complex.
The implications of a context are considered true for all objects of the context. In this
paper, the examples of classes only consist of a single context where the predicates are
unary attributes. But in general, Def. 3 encompasses a wide variety of possibilities. For
example, a class can be a computer program of a declarative programming language or
a relational database where the elements of O are tuples and a single predicate for each
table determines whether or not a tuple exists in the table.

Definition 4. A (conceptual) schema (RH , RL,B) consists of a set R of head repre-
sentamens, a set RL of (representamen) expressions that are formed using head rep-
resentamens and elements of a language L with RH ⊆ RL and a set B of binary
(representamen) relations B ⊆ RL ×RL.

Further, non-mathematical conditions of conceptual schemata could be formulated,
for example, that a schema should be coherent, focused on a single topic and have a
certain minimal and maximal size. In this paper, the vocabulary of L is AND, OR and
NOT and B := {→, ↪→,=, :=,⊥} with “:=” ⊆ RH × RL, r1 = r2 ⇐⇒ (r1 →
r2, r2 → r1), (r1 := r2 =⇒ r1 = r2) and (r1 ↪→ r2 =⇒ r1 → r2). The relations
are definition (:=), strong synonymy (=), hyponymy (→ or edge in a Hasse diagram),
distant hyponymy (↪→ or arrow in a Hasse diagram) and mutual exclusivity (⊥). Two
expressions are in a distant hyponymy relation if the exact hyponymy chain from one
to the other is not specified. Further syntactic conditions need to be provided for actual
applications. The Hasse diagram on the left of Fig. 2 is an abbreviation for some of the
expressions and the hyponymy relation. Each node corresponds to an expression, either

13

by itself (“acute”) or as an AND-definition (“isosceles AND acute”), but only involving
hyponyms, not distant hyponyms. The hyponymy relation is the transitive closure of the
edges in the diagram. The hyponymy instance “equilateral→ isosceles AND acute” is
in brackets because it is redundant and can be read from the Hasse diagram.

Expressions and relations in a schema are meaningless strings that are manipulated
according to the rules of a language. In order to evaluate whether expressions and rela-
tions are meaningful or true, they need to be mapped into classes using interpretations.
The following definition specifies that head representamens and expressions are mapped
onto concepts and relations onto true statements.

Definition 5. A schema (RH , RL,B) is interpretable over a class (O,AL, J,N) if a
set I of partial functions (called interpretations) can be defined so that ∀r ∈ RL ∃i ∈
I : i(r) ∈ C(O,AL, J,N) and ∀B ∈ B ∀b ∈ B ∃i ∈ I : i(b) ∈ T (O,AL, J,N).

The definition does not provide any details with respect to how the interpretations
are constructed. Further conditions must be supplied for specific applications. For ex-
ample, if r1 is a hyponym of r2, it should be required that i(r1) <n i(r2) in some
context n. Ideally, there should be exactly one interpretation for each formal context so
that a head representamen can be assigned different concepts for different contexts but
only at most one concept within a single context. Because different relation instances in
a schema can utilise different interpretations, a certain amount of flexibility, ambiguity
or fuzziness is possible. For example, a tomato can be a fruit in one context and a veg-
etable in another context. A schema should not just be interpretable, but also provide
sufficient information about its underlying class as specified in the next definition. All
examples of schemata in this paper fulfil Def. 6.

Definition 6. A schema (RH , RL,B) covers a class (O,AL, J,N) under a set I of
interpretations if each object concept is an interpretation of at least one representamen
expression, if the object order and the relationship between an object concept and its
attribute concepts is an interpretation of some instances of “→” and T (O,AL, J,N)
can be logically derived from interpretations of representamen relations.

4 Two Further Examples of Schemata and Classes

This section provides two further examples for developing conceptual schemata. The
example in Fig. 3 is based on Ganter & Obiedkov (2016) where it is utilised for a dis-
cussion of clauses. According to the example, a driving license is passed exactly if both
the theoretical and the driving part are passed and failed if one of them is failed. Ganter
& Obiedkov argue that the 8 implications of the lattice do not represent the information
in a natural manner. Instead they are suggesting to use 6 clauses and 2 implications.
A difference between the clauses of Ganter & Obiedkov and the OR-definitions in this
paper is that OR-defined attributes can be removed from the set of attributes before cal-
culating the remaining implications. Thus the set of implications becomes smaller. The
example in Fig. 3 shows that after defining the attribute “license fail” as “driving fail OR
theory fail” and then removing it from the formal context, only four relation instances
corresponding to implications are left. The first two correspond to both directions of

14

an AND-definition (“license pass” as “driving pass AND theory pass”). The other two
state that passing and failing each part of a driving test is mutually exclusive. Thus the
schema on the left of Fig. 3 presents all relevant information and covers the class on the
right in a succinct manner.

driving_theory_

⊥driving_pass driving_fail
⊥theory_pass theory_fail

license_fail := driving_fail OR theory_fail

pass passfailfail

license_pass

license_fail

fail fail pass pass

license_pass

.
(license_pass := theory_pass AND driving_pass)

theory_driving_driving_theory_

theory_driving_

Fig. 3. A conceptual schema (left) for the driving license example (right)

The final example of this paper is based on Ganter & Wille (1999) and consists of
properties of binary relations as defined in the following table3.

property definition
reflexive ∀a ∈ A : aRa
irreflexive ∀a ∈ A : ¬aRa
symmetric ∀a, b ∈ A : aRb→ bRa
asymmetric ∀a, b ∈ A : aRb→ ¬(bRa)
antisymmetric ∀a, b ∈ A : aRb and bRa→ a = b
transitive ∀a, b, c ∈ A : aRb and bRc→ aRc
semiconnex ∀a 6= b ∈ A : aRb or bRa
connex ∀a, b ∈ A : aRb or bRa

The concept lattice in Fig. 4 follows Ganter & Wille (1999). But it contains addi-
tional AND-defined attributes, such as “preorder := reflexive AND transitive”. It also
contains some attributes about extreme cases. The example assumes that the relations
R are defined as R ⊆ S × S for a non-empty set S. It may seem counter-intuitive that
a relation can be both an order relation and an equivalence relation or symmetric and
antisymmetric at the same time because that is only possible for extreme cases with at-
tributes such as R = S × S, R = {(i, j) | i = j}, |S| = 1 or R = {}. These attributes
are included in the lattice.

Supplemental concepts are identified in Fig. 4 using background knowledge about
binary relations. OR-definitions are only applicable to supplemental concepts. In the

3 It should be remarked that the notions “semiconnex” and “connex” are used ambiguously in the
literature. Sometimes “connex” is used instead of “semiconnex” and “strong connex” instead
of “connex”.

15

R={(i,j)| i=j}

reflexive

symmetric symmetric

irreflexive

transitive
anti−

preorder

posetpreorder relation
total

relation

relation
tolerance

order
strict partial

strict total
order

equivalence
partial

equivalence

asymmetric

connex
semi−

total order R = S x S

|S| =1

R = {}

connex

Fig. 4. A conceptual class of types of binary relations

previous examples, the concept lattices had supplemental concepts higher up in the
lattice which could be removed using OR-definitions. This example only has very few
supplemental concepts which are at the bottom of the lattice. These could be removed
by introducing more attributes according to Lemma 2, but that does not reduce the
complexity of the lattice significantly and increases the set of implications. Instead, the
suggestion for developing a conceptual schema in this example is to extract meaningful
parts of the lattice. Fig. 4 indicates a subdivision according to whether a relation is
reflexive, irreflexive or neither. But such a division groups equivalence relations closely
with order relations which are separated from strict orders. Thus it seems more natural
to consider symmetric and NOT-symmetric as the main dividing factor for types of
binary relations. Therefore, Fig. 5 and Fig. 6 divide the conceptual schema of binary
relations into 3 parts: those that are not symmetric and tend to be orders, those that
are symmetric and closely related to equivalence relations and the extreme cases at the
bottom of the lattice which are antisymmetric and symmetric at the same time.

reflexive irreflexive ⊥

(transitive AND irreflexive −> asymmetric)

orderpreorder
total

total order strict total
order

strict partial
order

asymmetric

semiconnex antisymmetric irreflexivereflexive

connex

transitive

partial

preorder

Fig. 5. Conceptual schema for types of binary relations: part 1

16

∈

transitive

symmetric AND antisymmetric −> transitivereflexive AND symmetric AND semiconnex −> transitive

relation

R = S x S

{(1,1),(1,2),(2,1),(2,2)},{1,2}

equivalence

R = {}

connex

{(1,1)},{1} {},{1}

{(1,1)},{1,2}
{},{1,2}

(i,j) R=> i=j

semi−
connex

antisymmetric symmetric

irreflexivereflexive

{(1,1),(2,2)},{1,2}
|S|=1 semiconnex

partial
relation

asymmetric

preorder

preorder

transitivereflexive

total

{(1,1),(1,2),(2,2)},{1,2}

connex

symmetric

relation

tolerance

equivalence

Fig. 6. Conceptual schema for types of binary relations: parts 2 and 3

The three parts of the schema in Fig. 5 and Fig. 6 are derived from the lattice of
the class by deleting and restricting some attributes. Restricting means in this case that
an attribute is replaced by its meet with another attribute. For example, in Fig. 5, the
attribute “symmetric” is deleted and the attributes “reflexive”, “semiconnex” and “con-
nex” are replaced by their meet with “transitive” which results in distant hyponyms
in the schemata. AND-definitions involving distant hyponyms cannot be read from the
Hasse diagrams of the schemata. The left schema in Fig. 6 is derived by deleting the
attributes “antisymmetric”, “asymmetric”, “irreflexive” and “semiconnex”. The right
schema is derived by restricting all attributes to their meet with “antisymmetric”, “sym-
metric” and “transitive”. For the non-restricted attributes, the hyponymy relation of the
schema corresponds to the subconcept relation of the class and results in the same im-
plications. The restricted attributes are considered distant hyponyms because their im-
plications are not completely contained in the parts of the schema. All phrases in Fig. 5
are head representamens. In Fig. 6, the phrases and formulas that are written above
the nodes are head representamens. The strings below the nodes represent prototypical
examples and are not head representamens. The conceptual class contains four implica-
tions which are not just AND-definitions. Each of these four implications is included in
the part of the schema where it is visible. In this case, even the schemata are still quite
complex. But that is due to the subject manner. Learning all the relevant information
about the head representamens in Fig. 5 and Fig. 6 will require a significant amount of
time.

5 Conclusion

In summary, conceptual classes and schemata mutually influence each other. In some
cases, it might be more suitable to extract a class from a schema using some form of
conceptual exploration. In other cases, a schema can be constructed after reducing a
class. The following strategies can be employed:

• Possibly splitting the context into smaller coherent subcontexts
• Conceptual exploration (for completing the set of objects and attributes)

17

• Purifying the lattice, adding SYN-definitions
• AND-reduction
• OR-reduction
• Further OR-reduction after adding attributes according to Lemma 2
• NOT-reduction

The motivation behind this strategy is that with respect to relationships between
conceptual schemata and classes, the core content of a class is retained in its object
concepts, their ordering and the AND-definitions of object concepts. The concepts that
are above the object order may be less important, in particular if they are supplemen-
tal concepts, because they tend to represent attributes that may be expressible as OR-
definitions.

References

1. Berry, A.; Gutierrez, A.; Huchard, M.; Napoli, A.; Sigayret, A. (2014). Hermes: a simple and
efficient algorithm for building the AOC-poset of a binary relation. Annals of Mathematics
and Artificial Intelligence, 72, 1, p. 45-71.

2. Carbonnel, J.; Bertet, K.; Huchard, M.; Nebut, C. (2016). FCA for software product lines
representation: Mixing configuration and feature relationships in a unique canonical represen-
tation. In: Concept Lattices and their Applications (CLA’16), CEUR, p. 109-122.

3. Ganter, B.; Wille, R. (1999). Formal Concept Analysis. Mathematical Foundations. Springer.
4. Ganter, B.; Obiedkov, S. (2016). Conceptual Exploration. Springer.
5. Ganter, B. (2019). “Properties of Finite Lattices” by S. Reeg and W. Weiß, Revisited. In:

Cristea et al. (eds) Formal Concept Analysis. ICFCA 2019. LNCS 11511, Springer, p. 99-109.
6. Lakoff, G. (1987). Women, Fire, and Dangerous Things. What Categories Reveal about the

Mind. The University of Chicago Press.
7. Lopez-Rodriguez D., Cordero P., Enciso M., Mora A. (2021). Clustering and Identification

of Core Implications. In: Braud et al. (eds.) Formal Concept Analysis. ICFCA 2021. LNAI
12733, p. 138-154.

8. Osswald, R.; Petersen, W. (2002). Induction of classifications from linguistic data. In: Proc.
of the ECAI-Workshop on Advances in Formal Concept Analysis for Knowledge Discovery
in Databases.

9. Prediger, S. (1998). Simple concept graphs: A logic approach. In: Mugnier et al. (eds.) Con-
ceptual Structures: Theory, Tools and Applications. ICCS 1998. LNCS 1453, Springer, p.
225-239.

10. Priss, U.; Old, L. J. (2010). Concept Neighbourhoods in Lexical Databases. In: Kwuida;
Sertkaya (eds.), Formal Concept Analysis. ICFCA 2010. LNCS 5986, Springer, p. 283-295.

11. Priss, U.; Old, L. J. (2011). Data Weeding Techniques Applied to Roget’s Thesaurus. In:
Wolff et al. (eds.) Knowledge Processing and Data Analysis. KPP 2007. LNAI 6581, Springer,
p. 150-163.

12. Priss, U. (2017). Semiotic-Conceptual Analysis: A Proposal. International Journal of General
Systems, 46, 5, p. 569-585.

13. Priss, U. (2021a). Diagrammatic Representation of Conceptual Structures. In: Braud et
al. (eds.) Formal Concept Analysis. ICFCA 2021. LNAI 12733, p. 281-289.

14. Priss, U. (2021b). Conceptual Schemata as a Means for Structuring Teaching Materials. In:
Concepts in Action: Representation, Learning, and Application (CARLA’21). Available at:
https://www.conceptuccino.uni-osnabrueck.de/carla workshop/carla 2021.html

18

Exploring the Dataset Structure by Means of
Delta-Classes of Equivalence.

The Case of the Titanic Dataset?

Aleksey Buzmakov1, Sergei O. Kuznetsov1, Tatyana Makhalova2, and
Amedeo Napoli1,2

1 National Research University Higher School of Economics, Russia
2 LORIA (CNRS – Inria NGE – University of Lorraine), Vandœuvre-lès-Nancy,

France
{avbuzmakov,skuznetsov}@hse.ru,

tatiana.makhalova@inria.fr, amedeo.napoli@loria.fr

Abstract. Being able to have a quick look at a dataset is essential in
many applications. One way is to summarize the dataset by means of a
small set of patterns. In this paper we suggest defining such set of pat-
terns as the closed elements of delta-classes of equivalence. This approach
allow us to propose an overview of a dataset and then, if necessary, any
delta-class of equivalence can be expanded to provide more detailed in-
formation about a certain part of the dataset.
To demonstrate our proposal we deeply studied the Titanic dataset about
survival of passengers and showed the connections between the passenger
attributes and a possible dataset summary in terms of patterns.

Keywords: FCA · Δ-closure · Δ-concepts · use case · Δ-implications.

1 Introduction

In this paper, we are interested in pattern or itemset mining in tabular data.
There is a considerable amount of work on many aspects of this subject, espe-
cially regarding algorithms and search for interesting patterns [1]. One recurrent
problem in itemset mining is the exponential number of resulting itemsets. Focus-
ing on closed itemsets allows a significant reduction of this number by replacing
a whole class of itemsets with the largest one, i.e., the closed itemset, which has
the same support [7]. Nowadays, there are very efficient algorithms for comput-
ing frequent closed itemsets [6], even for low frequency thresholds. However, the
efficient generation of closed itemsets only partially solves the problem of the
exponential explosion of itemsets, since the main difficulties appear afterwards,
when the generated itemsets are processed.

An alternative to the exhaustive enumeration of itemsets is based on “sam-
pling” [4] and on a gradual search for itemsets according to an interestingness
measure or a set of constraints [8]. Such algorithms usually result in a rather

? The reported study was funded by RFBR, project number 20-31-70047

19

small set of itemsets while they may provide only an approximate solution. Al-
though both approaches use quite different techniques, they rely on the same
assumption, namely that the “internal or intrinsic structure” of the dataset un-
der study can be understood by means of subset of selected itemsets.

Then, in each approach a particular set of itemsets is returned, which provides
a “multifaceted view” of the intrinsic structure underlying the data.

Our approach is based on Δ-classes of equivalence, the generalization of stan-
dard classes of equivalence based on closure operator. A user-set parameter ∆
measures how much a closed set can differ from its upper neighbors in the partial
order of closed sets.

A ∆-class of equivalence allows one to characterize the distribution underly-
ing the data, i.e., when ∆ is large, there are only a few ∆-classes of equivalence
whose elements are very stable, while when ∆ is small, the number of ∆-classes
increases and the related information becomes less stable. Moreover, the ∆-
classes of equivalence are very stable for large ∆ and do not significantly depend
on the data sampling used for the analysis.

In this paper we study ∆-classes for Titanic dataset. In particular, we show
what kind of conclusions w.r.t. the passengers of Titanic can be made. Further we
study what kind of information can be stored in “implications” of the Δ-classes
of equivalence. In particular, such implications can show what information is
usually associated with a set of attributes.

The paper has the following structure. First we introduce basic definitions
related to generalized closure operator. Then in Section 3 we evaluate this closure
operator on Titanic dataset.

2 Δ-classes of equivalence

The proposed approach is introduced in terms of Formal Concept Analysis
(FCA) [5] and the following notation. A formal context is a triple (G,M, I),
where G and M are sets of objects and attributes correspondingly and I ⊆ G×M
is a relation between them. Derivation operator is denoted with arrows in order
to clearly show the range and domain of the corresponding mappings:

A↑ = {m ∈M | (∀g ∈ A)(g,m) ∈ I}, A ⊆ G (1)

B↓ = {g ∈ G | (∀m ∈ B)(g,m) ∈ I}, B ⊆M (2)

We should note that operators (·)↑↓ and (·)↓↑ form closure operators on 2G

and 2M , respectively. Hereafter, we focus on the operator (·)↓↑ and its general-
izations. Let us reformulate the definition in terms of “instance counting”. Let
B be any set of attributes.

Definition 1. An attribute set B is closed iff (∀m ∈M \B)|(B∪{m})↓| 6= |B↓|.
It can be seen that (·)↓↑ maps any set of attributes to a closed set of attributes.
Let us reformulate Definition 1 in the following equivalent way. B is closed iff

(∀m ∈M \B)[|B↓| − |(B ∪ {m})↓| ≥ 1].

20

This form allows changing the threshold 1 at the end of the formula to any other
positive value. The larger this value, the less attribute sets would pass a test
similar to the one from Definition 1. This leads to the definition of Δ-closedness
of an attribute set [2].

Definition 2. A set of attributes B is called Δ-closed if for any m ∈M :

|B↓| − |(B ∪ {m})↓| ≥ ∆ ≥ 1. (3)

In [2] it was shown that Δ-closedness is a closure operator. In particular
it means that from a computational point of view, given a non Δ-closed set
of attributes B, i.e., ∃m ∈ M(|B↓| − |(B ∪ {m})↓ < ∆), it can be closed by
iteratively changing B to B ∪ {m}, for any m violating (3) until such attribute
is not found. The corresponding closure operator is denoted by (·)∆. Since it is a
closure operator, it divides all sets of attributes 2M into classes of equivalences
having the same closure.

Definition 3. Given an attribute set B, its equivalence class Equiv∆(B) is the
set of all attribute sets with the closure equal to the closure of B, i.e.,

Equiv∆(B) = {X ⊆M | (X)∆ = (B)∆}. (4)

Moreover, since according to Definitions 1 and 2 if a set of attributes is
Δ-closed than it is necessary closed. Thus, these Δ-classes of equivalence are
joins of several closure-based classes of equivalence. It allows introducing a new
derivation operator related to Δ-closure.

A↑∆ = (A↑)∆, A ⊆ G (5)

B↓∆ = (B)∆↓, B ⊆M (6)

The new Δ-derivation operator allows defining Δ-concepts ordered within a
lattice in the similar way to the classical formal concepts. Moreover, since any
Δ-closed set of attributes is a closed set of attributes, than the set of Δ-concepts
are subset of formal concepts and the order of Δ-concepts is a suborder of the
corresponding formal lattice.

Finally, we should discuss Δ-implications since they provide a useful tool for
finding associations between attribute sets.

Definition 4. A rule A→
∆
B is called Δ-implication if B = A∆ \A, i.e., A and

A ∪B are from the same Δ-class of equivalence.

Since Δ-closure can change the support of the attribute set a Δ-implication
is not necessary an implication. However, the set of Δ-implications is subset of
all association rules, thus they are more easy analysable. In particular, given an
implication A→ B, the set B is the set of attributes that are associated with A
in most samples from the underlying distribution.

In the next section we experimentally show how such lattices of Δ-concepts
and the corresponding implications can be used for data analysis. Moreover,

21

since Δ-concepts can be found in polynomial time3 [3], such analysis is suitable
for processing really big data.

3 Evaluation

3.1 Dataset

In this paper we use Titanic dataset downloaded (train dataset) from Kaggle4.
This is one of the most known datasets with easily interpretable patterns that
do not require deep diving into the domain knowledge. The dataset describes
891 passengers of the last Titanic ship travel. Every passenger is described with
name, age, sex, the number of parents and/or children and the number of spouse
and/or siblings travelled together with the passenger. The ticket price and the
ticket class is also known as well as the survival state of the passenger after the
Titanic shipwreck.

All numerical data is divided into 5 percentiles and then inter-ordinal scaling
is used on top of these percentiles. For example, for the quantity Age it is known
from the data that 1

5 of the passengers were below 19 years old, the next 1
5

between 19 and 25, then between 25 and 32 and then between 32 and 41 and
finally the last 1

5 of the passengers were above 41 years old. Then new binary
attributes are formed based on these limits (19, 25, 32,41), these eight attributes
are “Age ≥ 19,” “Age ≤ 19”. “Age ≥ 25,” “Age ≤ 25”. “Age ≥ 32,” “Age ≤ 32”.
“Age ≥ 41,” “Age ≤ 41”.

Additionally, from the ”Name” field the social status is extracted, including
”Mr”, ”Mrs”, ”Master”, etc. It makes in total 49 attributes.

3.2 Concept lattice navigation

Even for such relatively simple data the total number of concepts is 9002. It is
not hard to build such a lattice. However, analysis of the lattice is quite hard.
It is hardly possible to draw the whole lattice and the only way is to navigate
it from the top or from the bottom concepts. However, ∆-classes of equivalence
give another means for such analysis and navigation.

Let us first increase the ∆ threshold for the lattice. If ∆ = 90, then the
lattice size is only 11 and it can be drawn. It is shown in Figure 1. For every
concept the corresponding extent size and ∆-measure are shown. Every attribute
is shown outside of the concept with an arrow attached to the concept of the first
attribute entry. It can be seen that the lattice involves only 9 attributes out of
49. All other attributes are attached to the BOTTOM concept and are not shown. It

3 Being more precise the enumeration procedure can be set in such a way, that it fin-
ishes in input-polynomial time. It is achieved by iteratively increasing the threshold
θ if the number of the already found patterns is too large. The result is the set of all
patterns with ∆ ≥ θ. However, if θ is automatically set to be too high, the procedure
still finishes in input-polynomial time but the result set is empty.

4 https://www.kaggle.com/c/titanic

22

Fig. 1. The lattice of concepts with ∆ ≥ 90 for Titanic dataset.

means that starting for any attribute a from this set, one has ∆({a}↓) < 90, i.e.,
smaller than the threshold. For example, the attribute fare ≥ 8 is introduced to
the lattice at the very top concept. It means that |∅↓| − |{fare ≥ 8}↓| < 90, i.e.,
for most of objects fare ≥ 8. Moreover, since the top concept in this lattice has
the maximal value of ∆, its extent is the most typical extent for all passengers.
Since we cannot make it more precise without excluding less objects than 175.

Then we can see that there are 5 concepts below the top concept. They are the
only concepts that are significantly different from their children. Accordingly, this
concept lattice for ∆ = 90 shows the structure of different groups of passengers
(formal concepts with Δ-closure for ∆ = 90. A concept is only shown if there is
no more precise description that contains similar number of objects.

This setting allows finding and prioritizing the association rules related to a
certain set of attributes.

3.3 Δ-Association rules

Let us study female subpopulation of the passengers. In particular, we can try to
Δ-close the following description sex = female. What Δ should be used? One
of the reasonable choice is the maximal Δ such that Δ-closure of sex = female

is different from M . For example in Figure 1 no concept with sex = female

is found. It means that for ∆ ≥ 90, {sex = female}↓↑∆ = M . If the whole
lattice is available it corresponds to the concept with the maximal Δ-measure
such that the intent of the concept is a superset of {sex = female}. In the form

23

of Δ-implication it can be written as5:

{sex = female} →
∆
{fare ≥ 10}.

It suggests that women rarely buy cheapest tickets. Moreover, since we do
not find class ≤ 2 attribute, it means that they can afford the 3rd class, but
nevertheless not the cheapest tickets. What about men?

{sex = male} →
∆
{title = Mr, fare ≥ 8}.

Now we see that the preference for more expensive tickets is missing. However,
we see that most of the men are titled ”Mr”. It is not the classical closure
assuming that all men are Mr. Indeed, the correspondence between the title and
sex is shown in Table 1.

Table 1. Correspondence between passenger sex and title

Miss Mrs Mr Master Other

female 182 128 0 0 4
male 0 0 525 40 12

Let us dive deeper into the title. What do we know about Master-title?

{title = Master} →
∆
{sex = male, age ≤ 19, fare ≥ 10, class ≥ 2}.

We can see, that Master corresponds to young men from 2nd and 3rd class but
not with the cheapest tickets. It is a quite strange combination and a deeper
investigation is needed. However, it is not an artefact of the procedure. If we
check the original dataset all findings are supported, i.e., they are mostly from
the 2nd and 3rd class, but not so cheap. The proposed procedure was useful here
only for highlighting such finding. In contrast, for Miss-title no new information
is found.

Let us now formulate a question about women that had cheap tickets:

{sex = female, fare ≤ 10} →
∆
{title = Miss, class = 3, fare ≤ 8}.

In fact if decision is to travel cheap, then it is the cheapest option. Similar,
answer will be given for men traveled cheap. However, the group of men that
traveled cheep is about 7 times larger than the group of women. Thus, if we
would have just requested ”who traveled cheap”, than the result would be the
group of men.

Finally, let us ask how age affects the travel behavior.

{age ≤ 25} →
∆
{class ≥ 2, 8 ≤ fare ≤ 40}.

5 For simplicity, the attribute sets are shown with reduction, i.e., if by knowing that
fare ≥ 10 we can conclude that fare ≥ 8, the last attribute is not shown.

24

Thus, young people usually travel in the 2nd or 3d class. Similarly, for people
aged more than 41 years.

{age ≥ 41} →
∆
{class ≤ 2, fare ≥ 22},

i.e., such people usually prefer the 1st or 2nd class and the fare is more than 22.
Let us finally show that we can be interested also in combinations of at-

tributes. For example, what about women of age more than 41 years?

{age ≥ 41, sex = female} →
∆
{class = 1, fare ≥ 40, title = Mrs}

So in contrast to generally aged people, women usually travel in the 1st class
and they are titled Mrs.

4 Conclusion

Based on Titanic dataset Δ-classes of equivalence are shown to be useful for ex-
ploratory data analysis. In particular, it can be used to systematize the dataset
and to prioritize association rules related to certain requests, e.g., every at-
tribute can be associated with the most frequent attributes taken into account
co-occurrences of the attributes. Since, Δ-classes of equivalence can be found
in polynomial time [3], such approach is suitable for very large datasets. More-
over, such approach focuses on the distribution, where the dataset is taken from,
rather than the dataset itself.

References

1. Aggarwal, C.C., Han, J.: Frequent pattern mining. Springer (2014)
2. Boley, M., Horváth, T., Wrobel, S.: Efficient discovery of interesting patterns based

on strong closedness. Statistical Analysis and Data Mining: The ASA Data Science
Journal 2(5-6), 346–360 (2009)

3. Buzmakov, A., Kuznetsov, S.O., Napoli, A.: Fast generation of best interval patterns
for nonmonotonic constraints. In: Proceedings of the Joint European Conference on
Machine Learning and Knowledge Discovery in Databases. pp. 157–172. Springer
(2015)

4. Dzyuba, V., van Leeuwen, M., De Raedt, L.: Flexible constrained sampling with
guarantees for pattern mining. Data Mining and Knowledge Discovery 31(5), 1266–
1293 (2017)

5. Ganter, B., Wille, R.: Formal concept analysis–mathematical foundations (1999)
6. Hu, Q., Imielinski, T.: Alpine: Progressive itemset mining with definite guarantees.

In: Proceedings of the SIAM International Conference on Data Mining. pp. 63–71.
SIAM (2017)

7. Pasquier, N., Bastide, Y., Taouil, R., Lakhal, L.: Efficient mining of association rules
using closed itemset lattices. Information systems 24(1), 25–46 (1999)

8. Smets, K., Vreeken, J.: Slim: Directly mining descriptive patterns. In: Proceedings
of the 12 SIAM International Conference on Data Mining, Anaheim, California. pp.
236–247 (2012)

25

26

FCA Went (Multi-)Relational, But Does It
Make Any Difference?

Mickaël Wajnberg1, Petko Valtchev1, Mario Lezoche2, Alexandre
Blondin-Massé1, and Hervé Panetto2

1 Université du Québec À Montréal, Canada {name.firstname}@uqam.ca
2 Université de Lorraine, France {firstname.name}@univ-lorraine.fr

Abstract. Relational Concept Analysis (RCA) was designed as an ex-
tension of Formal Concept Analysis (FCA) to multi-relational datasets,
such as the ones drawn from Linked Open Data (LOD) by the type-wise
grouping of the resource into data tables. RCA has been successfully
applied to practical problems of AI such as knowledge elicitation, knowl-
edge discovery from data and knowledge structuring. A crucial question,
yet to be answered in a rigorous manner, is to what extent RCA is a true
extension of FCA, i.e. reveals concepts that are beyond the reach of core
FCA even using a suitable encoding of the original data. We show here
that the extension is effective: RCA retrieves all concepts found by FCA
as well as many further ones.

Keywords: Multi-relational Data · Formal Concept Analysis · RDF
· Propositionalization.

1 Introduction

FCA provides the mathematical framework for several Knowledge Discovery in
Databases (KDD) tasks whenever the data is purely, or at least predominantly,
of categorical nature. Indeed, FCA-based association discovery and conceptual
clustering have been applied to knowledge base structuring, ontology learning,
anomaly detection, observation classification, etc. Most real datasets, though,
stray from being purely categorical. FCA thus provides a set of scaling operators
to deal with numerical and otherwise ordered scales. In AI, the majority of
interesting data, such as those compatible with the LOD format, have relational
structure. They can be represented either as graphs (for instance, named graphs
in RDF) or as sets of relational tables. Approaches have been designed for the
former, emphasizing the intra-data object links, e.g. logical FCA [7] and pattern
structures [8], for graph datasets. For the latter, the focus is on inter-object links,
e.g. in datasets structured as a unique RDF graph. In this second trend, more
akin to power-context families [15] and Graph-FCA [6], we focus on the particular
approach of relational concept analysis (RCA). It has already been successfully
applied to a wide range of practical problems such as hydroecology [4], industrial
decision making [12] or biology [1,13]. Rather than in a global graph, RCA shapes
the data as a set of ×-tables, complying to the Entity-Relationship framework [2].

27

Part of the tables have the classical objects × properties format (entity types,
FCA contexts) while the remainder represent objects × objects relations.

A natural question is whether RCA does extend the reach of FCA, knowing
that for single datasets, whatever the level of complexity of the object descrip-
tions (sequences, trees, graphs), the results of an FCA-based processing on those
descriptions can be brought down to FCA on a context made of suitably-chosen
derived attributes. The question is all the more important as prior studies seem
to imply it does not [3] (though, for a reduced version of RCA). We make the
case here for RCA as a true extension of FCA, in the sense that due to its
multi-relational input and fixed point computation, it detects concepts that are
out of reach for FCA while, in turn, retrieving all concepts that FCA is able to
reveal. To that end, we chose some plausible re-encodings of a simple relational
context family (RCF), the hypothesis being that with more complex datasets,
the phenomenon only amplifies.

The remainder of the paper is as follows: Section 2 provides background on
RCA while Section 3 presents our FCA-vs-RCA comparison. Next, Section 4
discusses the comparison outcome and Section 5 concludes.

2 Background

Formal concept analysis [14] is a mathematical method for eliciting the con-
ceptual structure of “object × attribute” datasets. Data are gathered within a
(formal) context, a triple K = (O, A, I) where O is a set of objects, A is a set of
attributes and I ⊆ O×A is the context incidence relation, where (o, a) ∈ I, also
written oIa, means that the object o bears the attribute a. A context induces
two derivation operators: one mapping objects to attributes, and the reciprocal.
The object derivation ′ maps a subset X of objects to the set of attributes shared
by all members of X, ′ : ℘(O) −→ ℘(A) with ′ : X 7→ {a ∈ A | oIa ∀o ∈ X}.
The dual attribute derivation, also denoted by ′, works the other way around,
′ : ℘(A) −→ ℘(O) with ′ : Y 7→ {o ∈ O | oIa ∀a ∈ Y }. Inside a context K, a
(formal) concept is a pair (X,Y) ⊆ O × A such that X ′ = Y and Y ′ = X. The
sets X and Y are called extent and intent of the concept (X,Y), respectively.

FCA extracts conceptual abstractions on objects by factoring out shared at-
tributes. Relational concept analysis [10] extends it by factoring in relational
information, as available in multi-relational datasets [5]. RCA admits multiple
sorts of objects in its input format, each organized as a separate context, plus
a set of binary relations between contexts. The input data structure, called re-
lational context family (RCF), is thus a pair (K,R) where K = {Ki}i=1,...,n
is a set of distinct contexts Ki = (Oi, Ai, Ii) and R = {rk}k=1,...,m a set
of binary relations rk ⊆ Oi × Oj where the contexts Ki and Kj are the do-
main and range contexts of rk, respectively. Relational tables are also processed
in their own way, as explained below. A cross in the table of relation r for
(domain_objecti, range_objectj), can be understood as the first order logic
term r(domain_objecti, range_objectj) being true.

28

RCA distills the shared relational information (i.e., inter-object links) using
propositionalization [9]: It integrates new attributes into an extended version
of the initial context, say Kd = (Od, Ad, Id), to further refine the conceptual
structure of the underlying object set. To increase shareability, rather than the
individual objects from the target (range) context, say Kt, the new attributes
refer to abstractions on them. In its most basic version, RCA exploits the natural
conceptual structure provided by the concepts of each context. Indeed, two links
of relation r : d −→ t departing from o1 and o2 from Od and referring to
two distinct objects ō1 and ō2 from Ot, respectively, are distinct information.
However, replacing ō1 and ō2 with a common abstraction, say {ō1, ō2}′, makes the
new information shareable. Relational scaling follows a well-known schema from
description logics: Given a relation r, for each concept ct from the range context
of r, it produces, for Ad, an attribute q r : cr where q is an operator chosen
before-hand from a set Q. RCA admits, among others, standard description
logics restrictions (Q = {∃,∀,∀∃, . . .}), which behold their respective semantics
(see [10] for details and example 1 for illustration).

Example 1. Assume a RCF made of contexts on people and cars, and an owner-
ship relation, or pos(sesses), which are given in Tables 1, 3 and 2, respectively.
The cars lattice is shown in Figure 1. Now, an ∃-scaling of the relation pos using
that lattice will add, for each car concept c, a new attribute ∃pos : c to the
person context, e.g. ∃pos : cars_4 and ∃pos : cars_3 that can be rewritten as
∃pos : (cp) and ∃pos : (el, pw), respectively, using intents as IDs.

KP

Senior
A
dult

M
ale

Fem
ale

I.T
.

Sport

Fa × ×
La × × ×
Sh × ×
Tr × × × ×

Table 1: Person Context

pos tw t3 zo f5
Fa ×
La × ×
Sh × ×
Tr

Table 2: Relation pos

KC el pw cp ch

tw × ×
t3 × ×
zo × ×
f5 × ×

Table 3: Car Context
Fig. 1: Car Lattice

A scaling step results in the related contexts being extended, which, in turn,
may lead to the emergence of new concepts. Thus, as the set of available ab-
stractions increases, a scaling step with the differential set of concepts would
produce further relational attributes and the whole process would go on cycling.
The resulting iterative context refinement necessarily ends at a fixed point [10],
i.e. a set of lattices whose concepts refer to each other via relational attributes.

29

3 What can RCA do for AI (that FCA can’t) ?

Below, we examine two encoding strategies that bring a multi-relational dataset
to a mono-relational one, i.e. aggregate several contexts into a single data table,
so that they can be fed to classical FCA.

3.1 Encoding multiple contexts into a single one

Assume a simple RCF made of two contexts and a relation (see Figure 2). We
use this simple case for our reasoning, knowing that in more complex cases, i.e.
three or more contexts and several relations, it can be extended appropriately.
Moreover, while there could be a wide range of concrete encoding disciplines [11],
the principle behind them admits only two basic cases, i.e. entity-centric and
relation-centric. In our FCA/RCA perspective this boils down to which sort of
RCF element, i.e. context or relation, is put center-stage.

O1

A1

I1 O1

O2

r O2

A2

I2

Fig. 2: Fictitious RCF

O./

A1 A2

Fig. 3: Semi-join

O1

A1 ρ(A2)

Fig. 4: Aggregation

The first encoding principle we examine below emphasizes the object-to-
object relation as a primary construct and pivotal element of the encoding.
Its member pairs become first-class objects which carry the attributes of both
contexts incident to the relation. Technically speaking, the method is akin to
the (semi-)join operation of relational algebra. The overall encoding schema is
illustrated in Figure 3 whereas Section 3.2 proposes a formal definition thereof.
It also provides a detailed comparison of the results from applying RCA to the
RCF from Figure 2 with those of FCA on the semi-join of the two initial contexts.

A bit closer to the RCA propositionalization spirit, a second encoding princi-
ple emphasizes the context as a main construct and driver of the encoding: The
domain context of the relation is extended with some additional attributes that
translate the relation while following a technique akin to relational scaling. The
main difference here is that the context is the one-shot context extension. The
procedure whose details are discussed in Section 3.3, is schematically illustrated
in Figure 4. Moreover, the asymmetric encoding of the relation and the one-
shot extension amount to processing the range context as if it were aggregated
into the domain one. Therefore, we termed the overall encoding principle the
aggregation and the resulting context the aggregated one.

Finally, please notice that in the detailed investigation of each case (see be-
low), our reasoning follows three steps: 1) We pick an arbitrary formal concept
from the FCA output, 2) we show the RCA output comprises a concept with the
same objects, and 3) we establish the link between the intents of both concepts.

30

3.2 Semi-join in single relation RCF

We consider here the concurrent case where the FCA is applied on a context
encoding the semi-join of this RCF, as presented in Figure 3. This encoding
consists in creating the objects of O./ as the object pairs (o1, o2) where o1 ∈
O1 ∪ {⊥}, o2 ∈ O2 ∪ {⊥}, according to the RCF modeling of O1, O2 Figure 2.
The ⊥ object is a fictitious empty object with no attributes used to complete
the semi-join. There are three cases to define the elements of O./:

– If o1 ∈ O1, o2 ∈ O2, then (o1, o2) ∈ O./ if and only if (o1, o2) ∈ r
– If o1 = ⊥, o2 ∈ O2, then (o1, o2) ∈ O./ if and only if r−1(o2) = ∅, i.e. if there

is no x ∈ O1 such that (x, o2) ∈ r
– If o1 ∈ O1, o2 = ⊥, then (o1, o2) ∈ O./ if and only if r(o1) = ∅, i.e. if there

is no x ∈ O2 such that (o1, x) ∈ r

Example 2. As an illustration of the above modeling, assume an RCF made of
contexts for people (Table 1) and for cars (Table 3) plus an ownership relation
(possession, Table 2). In the first context, Farley, Lane, Shana, and Trudy are
described by being senior or adult, male or female, working in IT, and practicing
a lot of sports. Cars –Twingo, Tesla 3, Zoe, and Fiat 500– can be electrical,
powerful, compact or (not exclusive) cheap. The corresponding semi-join context
is presented in Table 4.

K./

Senior
A
dult

M
ale

Fem
ale

I.T
.

Sport

el pw cp ch

(Fa,tw) × × × ×
(La,t3) × × × × ×
(La,f5) × × × × ×
(Sh,tw) × × × ×
(Sh,f5) × × × ×
(Tr,⊥) × × × ×
(⊥,zo) × ×

Table 4: Semi-join context of Example 2 RCF

To avoid ambiguity, we consider the derivations in the K1 and K2 contexts
always denoted x′, while the derivation in the join context is denoted x∇ (and
the double derivation x∇∇).

We are first interested in describing a formal concept of the joined context.
Let X ⊆ O./ be a set of objects. So, for all (o1, o2) ∈ X we have o1 ∈ O1 ∪ {⊥}
and o2 ∈ O2 ∪ {⊥}. Thus, by definition, C = (X∇∇, X∇) is a formal concept.
Let us now take the projections on the first and second elements of the pairs of
X∇∇, i.e. π1 = {o1 | ∃o2, (o1, o2) ∈ X∇∇} and π2 = {o2 | ∃o1, (o1, o2) ∈ X∇∇}.
We start by defining X∇∇ in terms of these projections.

31

Lemma 1 We have X∇∇ = (π1 × π2) ∩O./

Proof. Let (u, v) ∈ X∇∇. By definition X∇∇ ⊆ O./, so (u, v) ∈ O./. Moreover,
by construction u ∈ π1 and v ∈ π2 so (u, v) ∈ π1×π2. Thus, X∇∇ ⊆ (π1×π2)∩
O./.

Let (u, v) ∈ (π1 × π2) ∩ O./. Since (u, v) ∈ (π1 × π2), it exists ũ and ṽ s.t.
(u, ũ) ∈ X∇∇ and (ṽ, v) ∈ X∇∇. But, by construction {(u, ũ), (ṽ, v)}∇ ⊆ u′∪v′.
And, since (u, v) ∈ O./ we can write (u, v)∇ = u′ ∪ v′. Thus, by derivation
property we have X∇∇∇ ⊆ {(u, ũ), (ṽ, v)}∇, by transitivity X∇∇∇ ⊆ (u, v)∇.
Thus, by deriving this expression we obtain (u, v)∇∇ ⊆ X∇∇∇∇. Finally, as
(u, v) ∈ (u, v)∇∇ and X∇∇∇∇ = X∇∇ we have (u, v) ∈ X∇∇. ut

We first study the particular cases containing the object ⊥ by starting with
the case where this element appears in both projections.

Proposition 1 If ⊥ ∈ π1 and ⊥ ∈ π2 then X∇ = ∅ and X∇∇ = O./

Proof. Suppose ⊥ ∈ π1 and ⊥ ∈ π2 then by definition of ⊥ we have X∇∩A1 = ∅
and X∇∩A2 = ∅ and therefore X∇ = ∅. By definition of the derivation we have
∅∇ = O./ therefore X∇∇ = O./.The second assertion holds by symmetry. ut

In the case described by the lemma 1, it is immediate to show that we can
construct (X∇∇, X∇). We show that the same is true when only one of the
components π1 or π2 contains ⊥ by first describing X∇ then X∇∇ in the lemmas
2 and 3.

Lemma 2 If ⊥ ∈ π1 and ⊥ 6∈ π2, X∇ = π′2. If ⊥ ∈ π2 and ⊥ 6∈ π1, X∇ = π′1.

Proof. Let us suppose ⊥ ∈ π1 and ⊥ 6∈ π2. We have a ∈ X∇ iff X∇∇ ⊆ a∇. Yet,
since ⊥ ∈ π1 we have construction X∇∩A1 = ∅. thus, we have a ∈ A2.therefore,
we have a ∈ X∇ iff for all (o1, o2) ∈ X∇∇ o2 carries the attribute a, i.e. a ∈ π′2.
Since we have a ∈ X∇ iff a ∈ π′2, we have X∇ = π′2. We show the second
assertion symmetrically. ut

Lemma 3 If ⊥ ∈ π1 and ⊥ 6∈ π2, X∇∇ = (O1 ∪{⊥}×π2)∩O./. If ⊥ ∈ π2 and
⊥ 6∈ π1, X∇∇ = (π1 ×O2 ∪ {⊥}) ∩O./.

Proof. Let us suppose ⊥ ∈ π1 and ⊥ 6∈ π2. Let v ∈ π2. Any pair (u, v) ∈ O./
verifies π′2 ⊆ (u, v)∇. Since, by the lemma 2, we have X∇ = π′2, we can write
X∇ ⊆ (u, v)∇ and thus, by derivation (u, v)∇∇ ⊆ X∇∇. Finally, for any u ∈
O1 ∪ {⊥}, we have (u, v) ∈ X∇∇ donc X∇∇ = (O1 ∪ {⊥} × π2) ∩O./. We show
the second assertion symmetrically. ut

The lemmas 2 and 3 allow us to determine that in cases where only one of
the projections contains ⊥ we can write a formal concept of K./ only with the
other projection. Let us now study a formal concept based on this projection
determined by RCA.

32

Lemma 4 If ⊥ ∈ π1 and ⊥ 6∈ π2, there exists a concept C2 = (π2, π
′
2) on K2.

If ⊥ ∈ π2 and ⊥ 6∈ π1, there exists a concept C1 = (π1, π
′
1) on K1.

Proof. Let us suppose ⊥ ∈ π1 and ⊥ 6∈ π2. Since π2 ⊆ O2, (π′′2 , π′2) is a concept
son K2. It is therefore sufficient to show that π′′2 = π2, or more simply π′′2 ⊆ π2.
Let o ∈ π′′2 . By construction at least one couple (ō, o) ∈ O./ and o′ ⊆ (ō, o)∇.
Now, we have o ∈ π′′2 so by derivation, π′2 ⊆ o′. Moreover, by the lemma 2, we
have X∇ = π′2. Thus, X∇ ⊆ (ō, o)∇ so by derivation, (ō, o) ∈ X∇∇. Finally, by
definition of the projections o ∈ π2. The second assertion holds by symmetry. ut

The following proposition gathers the previous lemmas. It emphasizes that,
in the case where only one of the two projections contains ⊥, any concept of
K./ can be expressed with the other projection. Moreover, there exists a con-
cept generated by RCA, of the same intent and whose extent corresponds to a
projection of the extent of the concept generated by FCA.

Proposition 2 Let C = (X∇∇, X∇). If ⊥ ∈ π1 and ⊥ 6∈ π2, C = ((O1 ∪{⊥}×
π2) ∩ O./, π′2) and there exists a corresponding concept C2 = (π2, π

′
2) on K2.

If ⊥ ∈ π2 and ⊥ 6∈ π1, C = ((π1 × O2 ∪ {⊥}) ∩ O./, π′1) and there exists a
corresponding concept C1 = (π1, π

′
1) on K1.

Proof. Follows from the lemmas 2, 3 and 4. ut

There remains a specific case, described by the lemma 5, to complete the
exhaustive description of a formal concept on the join table.

Lemma 5 For any X ⊆ O1×O2 we have X∇ = π′1 ∪π′2 and X∇∇ = {(o1, o2) |
π′1 ⊆ o′1 ∧ π′2 ⊆ o′2}

Proof. Let us show X∇ = π′1 ∪ π′2 by double inclusion.

(i) X∇ ⊆ π′1 ∪ π′2.
The RCF modeling assures us that A1 ∩A2 = ∅. Thus, an attribute a ∈ X∇

is either in A1 or in A2. If a ∈ X∇ ∩ A1, it must be shared by all the elements
of π1; and so a is in π′1. Similarly, if a is in X∇ ∩ A2, a ∈ π′2. We deduce that
X∇ ⊆ π′1 ∪ π′2.

(ii) π′1 ∪ π′2 ⊆ X∇.
On the other hand, if an attribute a is in π′1, then any pair of X∇∇ has a first

component that carries the attribute a. Since this property is true for any pair
of X∇∇ and X ⊆ X∇∇, then any pair of X carries the attribute a. Therefore,
we have a ∈ X∇. In the same way, we show that if a ∈ π′2, then a ∈ X∇. thus,
we have π′1 ⊆ X∇ and π′2 ⊆ X∇. We can therefore affirm that π′1 ∪ π′2 ⊆ X∇.

Finally, by (i) and (ii) we have X∇ = π′1 ∪π′2. As X∇∇ describes exactly the
set of couples (o1, o2) having the attributes of π′1 ∪ π′2, by construction of the
join table we have π′1 ⊆ o′1 and π′2 ⊆ o′2. ut

33

The cases described by the lemmas 1 and 2 allow for the immediate selection
of concepts from the RCA process corresponding in terms of extent to a concept
in the join table. The proposition 3 relies on the lemma 5 to state the main result
of this subsection, dealing with non-degenerate cases (without ⊥ element).

Proposition 3 Let X ⊆ O1×O2. There exists by RCA on K1 a concept (X1, Y1)
such that X1 = π1 and π′1 ⊆ Y1 and there exists on K2 a concept (X2, Y2) such
that X2 = π2 and π′2 ⊆ Y2.

Proof. As π′1 ⊆ A1 and π′2 ⊆ A2, C1 = (π′′1 , π′1) and C2 = (π′′2 , π′2) are formal
concepts on their respective contexts computed at step 0 of RCA.

Let us consider the contexts K1 and K2 after graduation by the operator
∃ on the relations r and r−1. We then have the attributes ∃r : C2 in K1 and
∃r−1 : C1 in K2. We define the sets of attributes Y1 = π′1 ∪ {∃r : C2} and
Y2 = π′2 ∪ {∃r−1 : C1} as well as the concepts C3 = (Y ′1 , Y ′′1) and C4 = (Y ′2 , Y ′′2)
(it is possible that C1 = C3 or C2 = C4). We have Y ′1 = π′′1 ∩ {∃r : C2}′, let us
show that Y ′1 = π1 by double inclusion.

Let o ∈ π1, we have o ∈ π′′1 . Moreover, by construction, any pair of (o, ō) ∈
X∇∇ verifies (o, ō) ∈ r with ō ∈ π2 and, by hypothesis, ō 6= ⊥. Thus, since
π2 ⊆ π′′2 , o carries the attribute ∃r : C2. Thus, we have π1 ⊆ Y ′1 .

Let o ∈ Y ′1 . We have π′1 ∪ {∃r : C2} ⊆ o′. Since {∃r : C2} ⊆ o′, there exists
ō ∈ π′′2 such that (o, ō) ∈ r and thus (o, ō) ∈ O./. Moreover, since ō ∈ π′′2 , we have
π′2 ⊆ ō′. Since π′2 ⊆ ō′, π′1 ⊆ o′ and that by the lemma 5 we have X∇ = π′1 ∪ π′2,
we can affirm X∇ ⊆ (o, ō)∇. Finally (o, ō)∇∇ ⊆ X∇∇ and by definition of π1,
on a o ∈ π1 (In a completely analogous way, we show π2 = Y ′2).

Finally, we have shown the existence of C3 = (Y ′1 , Y ′′1) such that Y ′1 = π1 and
π1 ⊆ Y ′′1 as well as of C4 = (Y ′2 , Y ′′2) such that Y ′2 = π2 and π2 ⊆ Y ′′2 . ut

In conclusion, the propositions 1, 2 and 3 show that for any concept C =
(X∇∇, X∇) we find on K1 a concept (X1, Y1) such that X1 = π1 and π′1 ⊆ Y1
and there exists on K2 a concept (X2, Y2) such that X2 = π2 and π′2 ⊆ Y2. It
is to note that if ⊥ ∈ π1 (respectively π2) we have π1 = {x | ∃y, (x, y) ∈ O./}
(respectively π2 = {x | ∃x, (x, y) ∈ O./}). Example 3 illustrates these properties.

Example 3. Let us consider the relational family as well as the semi-join context
defined in the Example 2.

On the joined context, we find the concept C = ({(La, t3), (La, f5)}, {Adult,
Female, IT, pw}). Here, π1 = {La} and π2 = {t3, f5}. We check that there exists
on KP a concept (π1, π

′
1), namely the concept C1 = ({La}, {Adult, Female,

IT}), and on KC a concept (π2, π
′
2), the concept C2 = ({t3, f5}, {pw}). After an

iteration, RCA extends these concepts’ intents to {Adult, Female, IT, ∃pos : C2}
and {pw,∃pos−1 : C1}, respectively.

3.3 Aggregation operation in mono-relational case
Assume again the RCF in Figure 2 and let us consider FCA is applied on the
context schematically visualized in Figure 4. Intuitively, this amounts to extend-
ing the domain context of the relation by appending some new attributes. These

34

are derived from the range context attributes by a technique akin to relational
scaling, i.e. one basically simulating a one-shot RCA-like context refinement.

Formally speaking, we design the context Kl = (Ol, Al, Il) where Ol =
O1, Al = A1∪ρ(A2), and ρ(A2) are the attributes resulting from the application
of the scaling operator ρ to the attribute concept of a ∈ A2. We will denote such
an attribute ρr : a to avoid confusion with RCA’s own relational attributes. No-
tice that A1 ∩ ρ(A2) = ∅ holds. Next, we introduce Constraint(ρ, r, op, (X,Y)),
a predicate verifying whether op and (X,Y), from the domain and the range of r,
respectively, jointly comply to the semantic of ρ. Thus, Constraint(∀, r, op, (X,Y))
is true iff r(op) ⊆ X. The predicate is a compact expression of the incidence Il:

– if ap ∈ A1 then (op, ap) ∈ Il iff (op, ap) ∈ I1,
– if ap ∈ ρ(A2) then (op, ap) ∈ Il iff Constraint(ρ, r, op, (a′p, a′′p)) is true.

Example 4 illustrates the ∀∃ case (reasoning with other operators is similar).
For the O2 perspective, it is enough to swap K1 and K2 and replace r by r−1.

Example 4. Consider again the RCF in Example 2. We aggregate the family via
∀∃: For an o ∈ OP and a ∈ AC s.t. ∀∃pos : a ∈ ρ(AC) it holds (o,∀∃pos : a) ∈ I
iff 1) ∃oC ∈ OC s.t. (o, oC) ∈ pos and 2) ∀oC ∈ OC , (o, oC) ∈ pos entails ov ∈ a′
(there is at least one image of o by pos and all such images carry a. Table 5
depicts the resulting aggregated context Kl.

Kl

Senior
A
dult

M
ale

Fem
ale

I.T
.

Sport
∀∃
p
os

:
el

∀∃
p
os

:
p
w

∀∃
p
os

:
cp

∀∃
p
os

:
ch

Fa × × × ×
La × × × ×
Sh × × ×
Tr × × × ×
Table 5: Kl for Example 4

Kl

Senior
A
dult

M
ale

Fem
ale

I.T
.

Sport
∃
p
os

:
el

∃
p
os

:
p
w

∃
p
os

:
cp

∃
p
os

:
ch

Fa × × × ×
La × × × × × ×
Sh × × × × ×
Tr × × × ×
Table 6: Kl for Example 6

To define a formal concept on the aggregated table, we first identify the
component of the intent on the part ρ(A2). Again, we denote the derivations in
K1 and K2 by ′, and in the aggregated context by ∇.

Definition 1. The relational deviation of X ⊆ Ol, denoted δ(X), is the set of
its attributes from ρ(A2), i.e. δ(X) = X∇ ∩ ρ(A2).

Proposition 4 Given a X ⊆ Ol, δ(X) = ∩o∈X{ρr : a | Constraint(ρ, r, o, (a′, a′′))}.

Proof. Let o ∈ X. By construction, for any ρr : a ∈ ρ(A2), holds ρr : a ∈ o∇

iff Constraint(ρ, r, o, (a′, a′′)). Thus o∇ ∩ ρ(A2) = {ρr : a | Constraint(ρ, r, o,
(a′, a′′))}. As X ′ =

⋂
o∈X o

′, we have X ′ ∩ ρ(A2) =
⋂
o∈X o

∇ ∩ ρ(A2), hence
δ(X) = ∩o∈X{ρr : a | Constraint(ρ, r, o, (a′, a′′))}. ut

35

A formal concept on the aggregated context is then characterized by:

Proposition 5 Let X ⊆ Ol, then the concept C = (X∇∇, X∇) of the aggre-
gated context satisfies X∇ = X ′ ∪ δ(X) and X∇∇ = X ′′ ∩ {o | δ(X) ⊆ o∇}.

Proof. By definition, we have Al = A1 ∪ ρ(A2) and A1 ∩ ρ(A2) = ∅. Thus we
can write X∇ = (X∇ ∩A1) ∪ (X∇ ∩ ρ(A2)), that is X∇ = X ′ ∪ δ(X).

By deriving X∇, we determine that X∇∇ = {o | o ∈ O1 ∧X ′ ⊆ o∇ ∧ δ(X) ⊆
o∇}. Now, as X ′ ⊆ A1, we have X ′ ⊆ o∇ iff X ′ ⊆ o∇ ∩ A1, that is X ′ ⊆ o′.
Finally, X∇∇ = X ′′ ∩ {o | δ(X) ⊆ o∇}. ut

Now, let us assume we have the result of RCA using the same relational
scaling with ρ along r on the simple RCF in Figure 2. Let X be the extent of
a concept from Kl. The set δ(X) is well-defined, hence we can denote its i-th
member by ρr : aδ,i (where aδ,i ∈ A2). As every concept Cδ(X),i = (a′δ,i, a′′δ,i) is
well defined on K2, in RCA, K1 will be refined with all the attributes ρr : Cδ(X),i
at the first relational scaling step. Let Yδ = X ′ ∪i∈1..|δ(X)| ρr : Cδ(X),i, we claim
that C = (X∇∇, X∇) and Cδ = (Y ′δ , Y ′′δ) have the same extent:

Proposition 6 Y ′δ = X∇∇.

Proof. Y ′δ ⊆ X∇∇: Let o ∈ Y ′δ . First, o carries all the attributes of X ′, thus
X ′ ⊆ o∇. Moreover, for each attribute ρr : aδ,i ∈ δ(X) a concept Ci = (a′δ,i, a′′δ,i)
exists such that o carries the attribute ρr : Ci (for which Constraint(ρ, r, o, Ci)
is true). Since aδ,i is in the intent of Ci, we can verify that ρr : aδ,i ∈ o∇. Since for
all i, we have ρr : aδ,i ∈ o∇, then we have δ(X) ⊆ o∇. Finally, since δ(X) ⊆ o∇

and X ′ ⊆ o∇, we have X∇ ⊆ o∇. By derivation, we have o∇∇ ⊆ X∇∇. Finally,
Y ′δ ⊆ X∇∇. ut

Y ′δ ⊇ X∇∇: The 1st relational scaling step will necessarily produce ρr :
(a′δ,i, a′′δ,i) for each ρr : aδ,i ∈ δ(X). Let o ∈ X∇∇, then o carries all the attributes
ofX ′. Moreover, after the scaling step, o gets incident to each attribute ρr : aδ,i ∈
δ(X) (Constraint(ρ, r, o, (a′δ,i, a′′δ,i)) is necessarily satisfied). Thus, we have Yδ ⊆
o′ and therefore o′′ ⊆ Y ′δ . Finally, since o ∈ o′′ we conclude that X∇∇ ⊆ Y ′δ . ut

Proposition 6 states that for any concept from the aggregated context, an
RCA concept with the same extent exists. Definition 2 introduces the notion of
relational weakening (illustrated by Example 5) to enable the mapping between
both intents. The latter is given by proposition 7.

Definition 2. Let a concept C be produced by RCA and let Yr be the set of
relational attributes of the intent of C. We call relational weakening of C, noted
Ω(C), the set Ω(C) =

⋃
ρr:(U,V)∈Yr

{ρr : v | v ∈ V }

Example 5. Assume the contexts of Example 2: Context KC gives rise to the
concepts C1 = ({t3}, {el, pw}), C2 = ({f5}, {pw, cp}), C3 = ({t3, zo}, {el})
and C4 = ({zo, f5}, {cp}). After a scaling with ∃, KP yields the concept C =
({La}, {Adult, Female, I.T., ∃pos : C1,∃pos : C2,∃pos : C3,∃pos : C4,∃pos :
>}). Then Ω(C) = {∃pos : el,∃pos : pu,∃pos : cp}.

36

Proposition 7 δ(X) ⊆ Ω(Cδ)

Proof. Let’s denote by Yr the set of relational attributes in the intent of Cδ. Let
ρr : a ∈ δ(X), then by scaling and construction of Cδ, it holds ρr : (a′, a′′) ∈ Yr
and as a ∈ a′′, one concludes δ(X) ⊆ Ω(Cδ). ut

While we’ve just shown that the extents of C and Cδ are equal, their intents
might differ: As proposition 7 states, the intent of the aggregate table concept
is a subset of the weakening of the RCA concept with the same extent (see
Example 6 below). In this sense, we see the RCA concept as more informative.

Example 6. Assume the relational family defined by Example 2 with the ∃ op-
erator. The aggregated context is presented in table 6. Now, after one iteration,
RCA discovers the concept ({Fa}, {Senior,Male, ∃pos : (cp, ch)}) whereas FCA
finds ({Fa}, {Senior,Male, ∃pos : (cp),∃pos : (nd))}). While ∃pos : (cp, ch) im-
plies ∃pos : (cp) and ∃pos : (ch), the reverse does not hold.

4 Discussion

We’ve shown that for any FCA concept from an encoded context, RCA would
reveal a counterpart concept, or a pair of such, conveying the same semantics
(equal extent). Moreover, the syntactic expression of the RCA concept(s) is
clearer than the FCA one, whatever the encoding. With semi-join, since separate
RCA concepts map to the 1st and 2nd projections of a FCA concept, the clarity
gain is immediate. Indeed, no confusion is ever possible as to which attribute of
the semi-join intent is incident to which object. Moreover, redundancy in FCA
concepts, e.g. shared 1st or 2nd projection, is avoided in RCA.

With aggregation, RCA trivially produces a concept of the same extent, yet
it is more precise: The FCA counterpart is readily obtained by relational weak-
ening. Here, higher-order encoding schemata are conceivable that mimic RCA
iterations by nesting the scaling operators. Yet the maximal depth of these nest-
ings in the resulting (pseudo-)relational attributes must be fixed beforehand.
This is a serous limitation since we know of no simple way to determine the
number of iterations required till the fixed point for a given RCA task, i.e. a
RCF and a vector of scaling operators. This means that, at least in the realistic
cases, RCA will be revealing concepts that FCA –over the aggregated context
with all possible nestings of a depth up till the limit– will miss. A relevant
question here is whether knowing the fixed point contexts in RCA, there is an
equivalent aggregation context that comprises only nested operator attributes
referring exclusively to attribute concepts. This would mean that a static en-
coding, i.e. without the need for explicitly composing RCA concepts popping at
iterations 2+, exists. The cost of constructing such an encoding is, though, a
separate concern.

37

5 Conclusion

We tackled here the question of whether RCA brings some effective scope ex-
tension to the realm of FCA, given that FCA is at its core. We’ve examined two
complementary principles of encoding a relation into a single augmented context
and compared FCA output on each of the contexts to the output of RCA on the
original RCF. It was shown that in both cases, RCA is able to find counterpart
concepts (same extent) to those found by FCA, while the RCA intents at its 1st
iteration are at least as expressive as the FCA ones.

A more systematic study should allow us to demonstrate similar results in
the more complex cases of multiple relations in the RCF as well as multiple
relations between the same pair of contexts.

References

1. M. Alam et al. Lattice based data access: An approach for organizing and accessing
linked open data in biology. In DMoLD@ECML/PKDD. Springer, 2013.

2. P. Chen. The Entity-Relationship Model - Toward a Unified View of Data. ACM
Transactions on Database Systems, 1(1):9–36, 1976.

3. X. Dolques et al. RCA as a data transforming method: a comparison with propo-
sitionalisation. In ICFCA, pages 112–127. Springer, 2014.

4. X. Dolques et al. Performance-friendly rule extraction in large water data-sets with
aoc posets and relational concept analysis. Intl. J-l of General Syst., 2016.

5. S. Džeroski. Multi-relational data mining: an introduction. ACM SIGKDD Explo-
rations Newsletter, 5(1):1–16, 2003.

6. S. Ferré and P. Cellier. Graph-fca: An extension of formal concept analysis to
knowledge graphs. Discrete Applied Mathematics, 273:81–102, 2020.

7. S. Ferré and O. Ridoux. A logical generalization of formal concept analysis. In
ICCS, pages 371–384. Springer, 2000.

8. B. Ganter and S. Kuznetsov. Pattern structures and their projections. In ICCS,
pages 129–142, 2001.

9. S. Kramer et al. Propositionalization approaches to relational data mining. In
Relational Data Mining, pages 262–291. Springer, 2001.

10. M. Rouane-Hacene et al. Relational concept analysis: mining concept lattices from
multi-relational data. AMAI, 67(1):81–108, 2013.

11. E. Spyropoulou and T. De Bie. Interesting multi-relational patterns. In ICDM,
pages 675–684. IEEE, 2011.

12. M. Wajnberg et al. Mining process factor causality links with multi-relational
associations. In K-Cap, pages 263–266, 2019.

13. M. Wajnberg et al. Mining heterogeneous associations from pediatric cancer data
by relational concept analysis. In MSDM@ICDM. IEEE, 2020.

14. R. Wille. Restructuring Lattice Theory: An Approach Based on Hierarchies of
Concepts, pages 445–470. Springer Netherlands, Dordrecht, 1982.

15. R. Wille. Conceptual graphs and formal concept analysis. In ICCS, pages 290–303.
Springer, 1997.

38

Likely-Occurring Itemsets for Pattern Mining

Tatiana Makhalova, Sergei O. Kuznetsov, and Amedeo Napoli
1 Université de Lorraine, CNRS, Inria, LORIA, F-54000 Nancy, France

tatiana.makhalova@inria.fr
2 National Research University Higher School of Economics, Moscow, Russia

skuznetsov@hse.ru
3 Université de Lorraine, CNRS, Inria, LORIA, F-54000 Nancy, France

amedeo.napoli@loria.fr

Abstract. We consider the itemset mining problem in general settings,
e.g., mining association rules and itemset selection. We introduce the
notion of likely-occurring itemsets and propose a greedy approach to
itemset search space discovery that allows for reducing the number of
arbitrary or closed itemsets. This method provides itemsets that are
useful for different objectives and can be used as an additional constraint
to curb the itemset explosion. In experiments, we show that the method
is useful both for compression-based itemset mining and for computing
good-quality association rules.

1 Introduction

A generic objective of itemset mining is to discover a small set of non-redundant
and interesting itemsets that describe together a large portion of data and that
can be easily interpreted [1].

Itemset mining can be summarized into two steps: (i) discovering itemset
search space and (ii) selecting interesting itemsets among the discovered ones.

This paper is devoted to the first step, i.e., the itemset search space discov-
ery. Since the itemset search space contains exponentially many elements, it is
important to discover as few useless itemsets as possible.

There are several approaches to discover the itemset search space: (i) an ex-
haustive enumeration of all itemsets followed by a selection of those satisfying
imposed constraints [19], (ii) a gradual enumeration of some itemsets guided
by an objective (or by constraints) [17], (iii) mining top-k itemsets w.r.t. con-
straints [15], (iv) sampling a subset of itemsets w.r.t. a probability distribution
that conforms to an interestingness measure [6,7]. To reduce redundancy when
enumerating itemsets, the search space can be shrunk to closed itemsets, i.e., the
maximal itemsets among those that are associated with a given set of objects
(support).

The exhaustive enumeration is the most universal way to discover itemset
search space. There exists a lot of very efficient algorithms for its enumeration,
e.g., CbO [12], In-Close [3], LCM [18], Alpine [11], and others [13].

39

Despite its wide usage and applicability for a large spectrum of interest-
ingness measures, the exhaustive enumerators usually mine itemsets w.r.t. fre-
quency, which results in the following issues: using too high frequency threshold
results in a considerable amount of not interesting itemsets, while too low fre-
quency threshold results in itemset explosion and intractability of itemset mining
methods in practice.

However, considering the itemset mining problem in more general settings,
e.g., mining association rules and implications, the exhaustive enumeration of
frequent itemsets is usually the only (universal) remedy for the pattern explosion
problem.

In this paper, we revisit the notion of likely-occurring itemsets introduced
in [14] and propose a greedy approach to itemset search space discovery that al-
lows for reducing the number of closed itemsets. This method provides itemsets
that are useful for different objectives and can be used as an additional constraint
to curb the itemset explosion. In experiments we show that the method is use-
ful both for compression-based itemset mining and for computing good-quality
association rules.

2 Preliminaries

We deal with binary datasets within the FCA framework [10].
A formal context is a triple K = (G,M, I), where G is a set of objects, M is

a set of attributes and I ⊆ G × M is the incidence relation, i.e., (g,m) ∈ I if
object g has attribute m.

Two derivation operators (·)′ are defined for A ⊆ G and B ⊆ M as follows:

A′ = {m ∈ M | ∀g ∈ A : gIm} , B′ = {g ∈ G | ∀m ∈ B : gIm} .

For A ⊆ G, B ⊆ M , a pair (A,B) such that A′ = B and B′ = A, is called
a formal concept, then A and B are closed sets and called extent and intent (or
closed itemsets), respectively.

The (empirical or observed) probability of an itemset X ⊆ M is given by
P (X) = fr(X) = |X ′|/|G|.

3 Likely-occurring itemsets

To reduce the itemset search space, we propose an additional constraint that
consists in considering only the itemsets whose observed probability is greater
than the estimated one. The estimated probability is computed under the inde-
pendence model. We give the details on the chosen independence model below.

Definition 1. A closed itemset X ⊆ M is called likely-occurring closed (LOC)
if there exists m ∈ X and Y ⊆ X \ {m}, (Y ∪ {m})′′ = X such that P (X) >
Q · P (Y) · P ({m}), and Q ≥ 1.

40

g1 a b c d e
g2 a b c d e
g3 a b c d e
g4 a b c
g5 a b c
g6 c
g7 a b
g8 a b d
g9 a d e
g10 a

(a)

a

ab

1

2

3

abd
4

7
abde

5 6

c

abcdead

the node was created at the step i

8
ade

i

(b)

Fig. 1: A binary dataset and the execution tree of Algorithm 1 for this dataset

The empty itemset ∅ is considered to be likely-occurring by default. The
parameter Q controls how large the difference between the observed probability
P (X) and the estimated probability P (Y) ·P ({m}), Y ⊆ X \{m} of the itemset
X may be. The least restrictive constraint, i.e., Q = 1, requires the observed
probability to be greater than the estimated one. The larger values of Q are
more restrictive, i.e., they require the observed probability to be much larger
than the estimated one.

According to the definition above, at most |X| splittings should be enumer-
ated to check whether an itemset X is LOC or not. To make it more tractable
in practice, we propose a relaxation of the LOC itemset and a greedy approach
for its computing, where one needs to check only one splitting per itemset. Let
us proceed to this definition.

Definition 2. Let {m1,m2, · · · ,mk} be a set of attributes arranged in order of
decreasing frequency, i.e., fr(mi) ≥ fr(mj) for any i ≤ j. A closed itemset
X is likely-occurring closed (LOC) if there exists a LOC itemset Y ⊂ X and
m ∈ X \ Y such that fr(m) ≥ minm∗∈Y fr(m∗), X = (Y ∪ {m})′′ and P (X) >
Q · P (Y) · P ({m}).
Example. Let us consider a running example from Fig. 1a, where the attributes
are arranged by decreasing frequency. Itemset ab is an LOC itemset because a is
an LOC itemset and P (ab) > P (a) · P ({b}), the same for abd, namely, abd is an
LOC itemset because ab is an LOC itemset and P (abd) > P (ab) · P ({d}), etc.

We propose an algorithm to compute LOC itemsets using Definition 2, its
pseudocode is given in Algorithm 1. This algorithm computes gradually LOC
itemsets by considering one by one attributes of decreasing frequency. Apart from
the threshold Q on the difference in probabilities, the algorithm also supports
threshold F on frequency. By default, we use minimal restrictions, namely Q = 1
(we require the observed probability to be greater than the estimated one) and
F = 0 (we do not impose any frequency constraints).

41

Algorithm 1 ComputeLOC
Procedure Merge (node,candidate)
Input: node, current node

candidate, candidate node
1: In ← node.itemset
2: Ic ← candidate.itemset
3: if |In \ Ic| > 0 then
4: extent← (Ic ∪ In)

′ {computing shared objects}
5: if extent = I ′c then
6: In ← In ∪ Ic {if In is included into all objects as In, just extend Ic}
7: else if

(
|extent|

|G| > Q · |I
′
c|

|G|
|I′n|
|G|

)
and |extent| ≥ F then

8: for all child ∈ node.children do
9: merge(child, candidate)

10: end for
11: if candidate /∈ T then
12: node.children.add(candidate)
13: end if
14: end if
15: end if

Input: (G,M, I) formal context
F , frequency threshold
Q, threshold on LOC

Output: T , a tree composed of LO/LOC-itemsets
1: T ← createEmptyTree()
2: root← T .getRoot()
3: M∗ ← sortByDescendingFrequency(M)
4: for all m ∈M∗ do
5: candidate← m′′ {for LOC itemsets}
6: for all child ∈ root.children do
7: merge(child, candidate)
8: if candidate /∈ T then
9: root.children.add(candidate)

10: end if
11: end for
12: end for
13: return T

Example. Let us consider the execution tree of the algorithm for a dataset
from Fig. 1a. The algorithm starts constructing a tree adding the attributes of
decreasing frequency. The order in which itemsets are enumerated is specified in
the corresponding nodes.

4 Likely-occurring itemsets and related notions

Probability-based models are common in itemset and association rule mining.
In this section we consider two widespread approaches to assess itemsets and

42

association rules, and discuss how they are related to likely-occurring closed
itemsets.

Independence model and lift. The models based on the comparison of estimated
and observed probabilities of itemsets are quite common in the scientific lit-
erature. The simplest model is the attribute independence model. Under this
model, all items (attributes) are assumed to be independent. Attribute prob-
ability is approximated straightforwardly using the attribute frequency. Then,
the probability of an itemset X is computed as follows:

Pind(X) =
∏

x∈X

P (x) =
∏

x∈X

fr(x).

Despite its simplicity, this model is widely used in machine learning, e.g., Naïve
Bayes classifiers are based on it. A natural extension of the attribute indepen-
dence model is the partition independence model, where some partitions of X
are assumed to be independent. Lift [8] is one of the most common measures to
assess association rules under the partition independence model.

Definition 3. Let X → Y be an association rule, then lift is given by

lift(X → Y) =
P (XY)

P (X)P (Y)
=

fr(XY)

fr(X)fr(Y)
.

Apart from lift, there is a lot of other measures (indices) based on the
comparison of the antecedent and consequent supports, e.g., redundancy con-
straints [4,22], minimum improvement [5], etc. They are commonly used to select
association rules.

The notion of lift can be also adapted in different ways for itemset assessment.
For example, one may assess the probability of an itemset under the assumption
that any partition of the itemset into two disjoint sets is independent. If the ob-
served probability is greater than all the estimated probabilities obtained under
this model, then the itemset is called productive [21].

The introduced above LOC itemsets, in a certain sense, represent a particular
case of productive itemsets. Instead of considering all possible partitions of X
into two sets of items, we consider only its proper subset Y and attribute m ∈
X\Y . Reformulating the definition of LOC in terms of lift (for association rules),
LOC itemset X is an itemset that consists of LOC itemset Y and attribute m
such that Y ∪ {m} is the generator of X, and lift(X → m) > Q, Q ≥ 1. Since
Y is also LOC, this reasoning can be done recursively.

If it is needed, one may reduce further the size of the discovered LOC itemsets
by putting more tighter constraints, i.e., setting higher values for Q (in line 7 of
the Merge procedure given in Algorithm 1):

|(Ic ∪ In)
′|

|G| > Q · |I
′
c|

|G| ·
|I ′n|
|G| .

43

The constraint above is equivalent to the constraint on lift of the association
rule In → Ic, i.e.,

lift(In → Ic) =
P (In ∪ Ic)

P (In) · P (Ic)
> Q.

Moreover, because of the greedy strategy, the constraints hold recursively,
i.e., there exist two disjoint subsets I∗n, I∗c ⊆ In such that lift(I∗n → I∗c) > Q.
In experiments we consider how the proposed greedy strategy works for mining
association rules on real-world datasets. Since the computing strategy is greedy,
there are no guarantees that all LOC itemsets (see Definitions 1) will be enu-
merated.

Itemset mining through compression Likely-occurring itemsets may be also useful
for selection of itemsets. We consider the relation between the itemsets selected
by a compression-based itemset miner Krimp [20] and LOC itemsets.

In Krimp, and similar methods, the length of the code word corresponding
to an itemset X is given by length(X) = − logP (X). Hence the compression
is achieved by replacing several code words representing the itemsets B with a
single code word, such that length(B) <

∑
X∈cover(B) length(X). The latter is

equivalent to logP (B) > log(
∏

X∈cover(B) P (X)). Thus, we obtain the inequality
P (B) >

∏
X∈cover(B) P (X), which is very similar to one from the definition of

the LOC itemsets.
Intuitively, in both cases, an itemset is considered optimal if its observed

probability is greater than the estimated one. However, there are important dif-
ferences between the models underlying the definition of “itemset optimality”
(for the LOC itemsets and the model used in Krimp):

1. the both methods use different probability estimates of itemsets, namely,
P (X) = fr(X) (for the LOC estimates) and P (X) = usage(X)∑

Y ∈P usage(Y) (for the
Krimp-like models), where usage(X) is frequency of X in the coverage, and
P is the set of patterns;

2. the “optimality” of an itemset X in the compression-based model used in
Krimp is evaluated not only w.r.t. the dataset but also w.r.t. the other
itemsets selected so far.

Thus, LOC itemsets may provide better results than the commonly used fre-
quent closed itemsets, which are used by Krimp. We compare different strategies
for discovering itemset search space on real-world datasets in the next section.

44

5 Experiments
We use the discretized datasets from the LUCS-KDD repository [9] and study
LOC itemsets4 for two tasks, namely association rule and itemset mining.

Association rule mining. Frequent (closed) itemsets are commonly used to mine
association rules. We study how useful LOC itemsets compared to frequent closed
itemsets. In experiments we use 2 different sets of itemsets to compute rules: fre-
quent closed (FR.CL.) and likely-occurring closed (LOC) itemsets. The itemsets
are evaluated on 10 datasets, their parameters are given in Table 1. The number
of objects and attributes is denoted by |G| and |M |, respectively. The density of
datasets (the ratio of 1’s) is given in the column “density”. The total number of
closed itemsets is reported in the column “#CL”. The total number of arbitrary
itemset has not been computed.

Table 1: Parameters of datasets and the studied sets of itemsets

name data description closed itemsets time (for itemsets) #rules
|G| |M | density #CL #LOC #FR.CL. fr.thr. LOC FR LOC FR.CL

breast 699 14 0.64 360 74 74 0.33 0.01 0.12 4292 3980
ecoli 327 24 0.29 424 120 120 0.06 0.02 0.60 4768 2950
glass 214 40 0.22 3211 887 955 0.06 0.10 10.85 55262 18454
heart-dis. 303 45 0.29 25511 1928 1973 0.17 0.28 1.43 862252 22222
iris 150 16 0.25 106 45 47 0.05 0.00 0.03 274 320
led7 3200 14 0.50 1936 150 150 0.19 0.01 0.05 1484 1120
pima 768 36 0.22 1608 317 317 0.10 0.06 4.57 21294 7528
ticTacToe 958 27 0.33 42684 1880 1908 0.03 0.11 14.90 53816 13016
wine 178 65 0.20 13169 4914 5647 0.03 1.20 520.43 1771852 189378
zoo 101 35 0.46 4552 610 621 0.33 0.10 1.14 1609108 24736
average 690 32 0.34 9356 1093 1181 0.14 0.19 55.41 438440 28370

For each dataset we generate the whole set of LOC itemsets (Q = 1, F = 0),
the sizes of these sets are indicated in the column “#LOC”.

We chose the frequency threshold for closed itemsets in such a way that
the number of closed itemsets is equal to the number of the LOC itemsets.
The frequency threshold is indicated in the column “fr.thr.” for closed itemsets.
The frequency threshold varies a lot from dataset to dataset. For example, the
smallest threshold is 0.06 for “ecoli” and “glass” datasets and the largest one is
0.33 for “breast” and “zoo” dataset. As we can see from the table, the sizes of
“#LOC” and “#FR.CL.” are quite close one to another.

To compute association rules we use a miner from MLxtent library imple-
mented in Python5. The number of rules generated based on LOC and frequent
closed (FR.CL.) is reported in the column “#rules”.
4 The source code for computing LOC itemsets is available at https:

//github.com/makhalova/pattern_mining_tools/blob/master/modules/binary/
likely_occurring_itemsets.py

5 http://rasbt.github.io/mlxtend/

45

The number of rules generated based on the LOC itemsets is higher than the
number of rules generated based on frequent closed itemsets. For example, for
the “ecoli” dataset, the number of rules computed on 120 LOC and 120 frequent
closed itemsets is 4768 and 2950, respectively. It can be explained by the fact
that the size of the LOC itemsets is usually larger than the size of frequent
closed itemsets. Thus, a larger amount of rules can be built on LOC itemsets by
splitting each itemset into an antecedent and consequent.

To evaluate their quality, we consider the most common quality measures for
the association rules, namely support, confidence, lift, leverage, and conviction.
We recall them below.

Let X → Y be an association rule with the antecedent X and the consequent
Y , then the rule support is given by

support(X → Y) = support(X ∪ Y) =
(X ∪ Y)′

|G| ∈ [0, 1].

Confidence [2] of a rule X → Y is the conditional probability of X ∪Y given
X. It is defined as follows:

confidence(X → Y) =
support(X → Y)

support(X)
∈ [0, 1].

The maximal value is achieved when Y always occurs with X.
Lift [8] was discussed in the previous section. We recall it below. For a rule

X → Y lift is given by

lift(X → Y) =
support(X → Y)

support(X) · support(Y)
∈ [0,∞).

Leverage [16], like lift, is based on the comparison of the observed probability
(frequency) of the rule and the probability estimated under the assumption that
the antecedent and consequent are independent. Leverage is given as follows:

leverage(X → Y) = support(X → Y)− support(X) · support(Y) ∈ [−1, 1].

For independent X and Y leverage is equal to 0.
Let us proceed to the results of the experiments.
For the generated rules we consider mean values of the aforementioned qual-

ity measures as well as the 75th, 90th, and 95th percentiles. Considering the
percentiles allows us to focus on the quality of the best itemsets, which are usu-
ally of interest to analysts. The averaged over 10 dataset values are reported in
Fig. 2.

Since we do not set any frequency threshold for LOC, the support of LOC-
based rules, as expected, is lower than the support of the rules based on frequent
closed itemsets (FR.CL.). The top n% of LOC-based rules have higher values
than the top n% of FR.CL.-based ones. For example, the top 10% values (the
90th percentile) of confidence are at least 0.935 for the LOC-based rules, and

46

Fig. 2: The averaged quality for 2 types of rules: computed based on frequent
closed (FR.CL.) and LOC itemsets. The quality is measured by support, confi-
dence, lift, and leverage. For each type of rules and each quality measure, the
average values of mean, the 75th, 90th, and 95th percentiles over 10 datasets
from Table 1 are reported

only 0.885 for FR.CL.-based rules, respectively. Thus, considering the top rules,
the LOC-based rules have higher confidence.

Regarding lift, LOC-based rules provide the best results. The difference in
values is especially noticeable for the top 5% of rules (the 95th percentile). Top
5% LOC-rules have the highest values of lift, on average, 91.38. However, the
lift values of the top 5% of rules vary a lot from dataset to dataset (the standard
deviation is shown in plots by horizontal lines). Nevertheless, the quality, mea-
sured by lift, is consistently higher for LOC-based rules than for FR.CL.-based
rules.

The leverage is higher for FR.Cl.-based rules. Despite the fact that lift and
leverage differ only in the mathematical operations they use to compare the
observed and estimated supports of rules and their parts, the analysis of rules
based on these measures may lead to very different results. The high values of
leverage (and low values of lift) for FR.CL.-based rules are caused by a different
order of magnitude of the supports. Very low supports (that is the case of LOC-
based rules) result in high values of lift and low values of leverage.

Thus, the analysis of the generated rules allows us to conclude that rules gen-
erated based on LOC itemsets have better quality than the rules generated using
roughly the same amount of frequent arbitrary and closed itemsets, respectively.

Compression quality. In Section 4 we discussed the relation between LOC item-
sets and the itemsets ensuring good compression in Krimp.

In this section we study the applicability of LOC itemsets for this task and
compare them with closed itemsets (used in the original version of Krimp. We
emphasize that, in the compared approaches, the itemset search space is discov-
ered independently of the itemset mining process.

To evaluate the ability of the itemsets to compress data, we consider how
many itemsets we need to obtain a certain compression ratio. Fig. 3 shows how
the compression ratio changes w.r.t. the number of considered itemsets. The

47

Fig. 3: Compression quality of closed (FR.CL.) and LOC itemsets. The lower
values are better

initial state corresponds to the point (0,1), meaning that 0 itemsets have been
used to compress data, and the compression ratio is maximal and equal to 1.
The curves that are closer to the point (0,0) correspond to the best strategies
of itemset search space discovery (i.e., the itemset set allows for compressing
data better with a lower number of itemsets). The experiments show that for
“car evaluation”, “wine” and “nursery” datasets the LOC itemsets do not pro-
vide any benefits over the closed itemsets. For the majority of datasets, the
number of LOC is too small to ensure as good compression as with the whole
set of closed itemsets, e.g., “adult”, “breast”, “led7”, and others. Among some
of these datasets, we may still observe better behavior of LOC itemsets, e.g.,
for “hepatitis”, “mushroom”, “letter recognition”, and “page blocks”. There are
also datasets where with the LOC itemsets we achieve as good compression as
with the closed ones, but use a much lower number of itemsets, e.g., “auto”,
“hepatitis”, “soybean”, “zoo”.

In general, LOC itemsets may be quite useful for itemset selection based on
compression.

48

6 Conclusion

In this paper we studied likely-occurring closed itemsets in the context of asso-
ciation rule mining and itemset selection. In our experiments we show that the
number of frequent enumerated LOC itemsets is much lower than the number
of frequent closed itemsets. However, with LOC itemsets, we obtain association
rules of better quality. The proposed approach may be useful for compression as
well, however, it does not outperform the methods where itemsets are discovered
towards the direction minimizing the total description length.

References

1. Aggarwal, C.C., Han, J. (eds.): Frequent Pattern Mining. Springer (2014)
2. Agrawal, R., Imieliński, T., Swami, A.: Mining association rules between sets of

items in large databases. In: Proceedings of the International Conference on Man-
agement of Data. vol. 22, pp. 207–216. ACM SIGMOD (1993)

3. Andrews, S.: A partial-closure canonicity test to increase the efficiency of CbO-
type algorithms. In: International Conference on Conceptual Structures. pp. 37–50.
Springer (2014)

4. Bastide, Y., Taouil, R., Pasquier, N., Stumme, G., Lakhal, L.: Mining frequent pat-
terns with counting inference. In: ACM SIGKDD Explorations Newsletter. vol. 2.
ACM SIGKDD (2000)

5. Bayardo, R.J., Agrawal, R., Gunopulos, D.: Constraint-based rule mining in large,
dense databases. Data Mining and Knowledge Discovery 4(2-3), 217–240 (2000)

6. Boley, M., Lucchese, C., Paurat, D., Gärtner, T.: Direct local pattern sampling
by efficient two-step random procedures. In: Proceedings of the 17th International
Conference on Knowledge discovery and Data Mining. pp. 582–590. ACM SIGKDD
(2011)

7. Boley, M., Moens, S., Gärtner, T.: Linear space direct pattern sampling using
coupling from the past. In: Proceedings of the 18th International Conference on
Knowledge Discovery and Data Mining. pp. 69–77. ACM (2012)

8. Brin, S., Motwani, R., Ullman, J.D., Tsur, S.: Dynamic itemset counting and impli-
cation rules for market basket data. In: Proceedings of the International Conference
on Management of Data. pp. 255–264. ACM SIGMOD (1997)

9. Coenen, F.: The LUCS-KDD discretised/normalised ARM and CARM data li-
brary. http://www.csc.liv.ac.uk/~frans/KDD/Software/LUCS_KDD_DN (2003)

10. Ganter, B., Wille, R.: Formal Concept Analysis. Springer Berlin Heidel-
berg (1999). https://doi.org/10.1007/978-3-642-59830-2, http://dx.doi.org/10.
1007/978-3-642-59830-2

11. Hu, Q., Imielinski, T.: Alpine: Progressive itemset mining with definite guarantees.
In: Proceedings of the International Conference on Data Mining. pp. 63–71. SIAM
(2017)

12. Kuznetsov, S.O.: A fast algorithm for computing all intersections of objects
from an arbitrary semilattice. Nauchno-Tekhnicheskaya Informatsiya Seriya 2-
Informatsionnye Protsessy i Sistemy (1), 17–20 (1993)

13. Kuznetsov, S.O., Obiedkov, S.A.: Comparing performance of algorithms for gener-
ating concept lattices. Journal of Experimental & Theoretical Artificial Intelligence
14(2-3), 189–216 (2002)

49

14. Makhalova, T., Kuznetsov, S.O., Napoli, A.: On coupling FCA and MDL in pattern
mining. In: Proceedings of the 15th International Conference on Formal Concept
Analysis. pp. 332–340. Springer (2019)

15. Mampaey, M., Vreeken, J., Tatti, N.: Summarizing data succinctly with the most
informative itemsets. ACM Transactions on Knowledge Discovery from Data 6(4),
16 (2012)

16. Piatetsky-Shapiro, G.: Discovery, analysis, and presentation of strong rules. Knowl-
edge Discovery in Databases pp. 229–238 (1991)

17. Smets, K., Vreeken, J.: Slim: Directly mining descriptive patterns. In: Proceedings
of the International Conference on Data Mining. pp. 236–247. SIAM (2012)

18. Uno, T., Asai, T., Uchida, Y., Arimura, H.: An efficient algorithm for enumerating
closed patterns in transaction databases. In: Proceedings of the 7th International
Conference on Discovery Science. pp. 16–31. Springer (2004)

19. Vreeken, J., Tatti, N.: Interesting patterns. In: Aggarwal, C.C., Han, J. (eds.)
Frequent Pattern Mining, pp. 105–134. Springer (2014)

20. Vreeken, J., Van Leeuwen, M., Siebes, A.: Krimp: mining itemsets that compress.
Data Mining and Knowledge Discovery 23(1), 169–214 (2011)

21. Webb, G.I.: Self-sufficient itemsets: An approach to screening potentially interest-
ing associations between items. ACM Transactions on Knowledge Discovery from
Data 4(1), 1–20 (2010)

22. Zaki, M.J.: Generating non-redundant association rules. In: Proceedings of the 6th
International Conference on Knowledge Discovery and Data Mining. pp. 34–43.
ACM SIGKDD (2000)

50

Concept-based Chatbot for Interactive Query
Refinement in Product Search

Elizaveta Goncharova1[0000−0001−8358−9647], Dmitry
Ilvovsky1[0000−0002−5484−372X], and Boris Galitsky2[0000−0003−0670−8520]

1 National Research University Higher School of Economics, Moscow, Russia
{egoncharova,dilvovsky}@hse.ru
2 Oracle Inc., Redwood Shores, CA, USA
boris.galitsky@oracle.com

Abstract. Nowadays, retrieval-based dialogue engines witness a significant in-
terest in both industry and academic research. It is an important task to create
an automated question-answering engine that may assist a user in the purchas-
ing procedure. In this work, we describe a concept-based chatbot that utilizes a
knowledge model to navigate a user to a subset of relevant objects. The knowl-
edge model is built with pattern structures and organized to manipulate with both
standard numerical and textual attributes describing the observed products. We
provide an experimental evaluation of the introduced chatbot on the Flintkart e-
commerce dataset and compare its performance with the faceted search approach.

Keywords: Query refinement · Information retrieval · FCA · Pattern structure.

1 Introduction

This paper describes ongoing research on creating an information retrieval (IR) chatbot
that can assist customers in a search of suitable objects in the e-commerce database. IR
chatbots have been an area of intense investigation [21, 24] in many spheres, from web
search to electronic libraries. However, conventional search engines are still severely
restricted. For example, when a user needs to refine his or her initial general request,
a typical systems show either all attributes or the most frequently refined ones which
results in the information overload problem and demands many choices to be made until
the satisfactory result is found. Besides, such systems are not able to simultaneously
operate with different types of data, such as numerical and textual ones.

We base our chatbot on utilizing the knowledge model constructed with the theory
of Formal Concept Analysis (FCA) [22] and pattern structures (PS) [7] as its extension,
therefore, further in the paper, we will refer to the chatbot as the concept-based one.
The usage of the knowledge model allows a system to represent all the objects as hier-
archically organized groups (concepts) and the description common for them. Thus, the
chatbot can navigate a user through this model and following the specification or the
generalization path, introduce only the relevant characteristics of a product.

This paper introduces the main aspects of the designed model, specifically, a method
to combine the numerical and textual descriptions which are widely used to describe
objects in the e-commerce datasets (Section 3). As for textual descriptions, we also

51

introduce a new way to define the generalization operation for two textual attributes
that provide a better similarity assessment in comparison to the standard strict match
of the keywords. We describe the bot architecture in Section 4. Finally, experimental
evaluation of the introduced model on the e-commerce dataset is given in Section 5.

2 Related Work

The goal of IR is to find relevant objects that satisfy a user’s request and, probably, refine
it during a search procedure. Nowadays, the most popular IR systems are based on deep
learning (DL) techniques [23, 9, 20]. These models encode the information describing
an object with the neural network forming the object embeddings and, then, find the
closest vectors to a query embedding. In most cases, this approach is applied to the text
data. Lately, there have been some works proposing the neural networks for tabular data
as well [6]. Despite the popularity of these methods, they still suffer from insufficient
data representation, as we need to represent both a short query that reflects only partial
information about the desired object and the whole objects described by many attributes
within a vector of the same length.

FCA can serve as a natural mathematical tool for the knowledge-based semantic IR
systems with the ability to effectively sustain data as a set of robust and hierarchically
connected groups of objects and shared attributes. Traditionally, the studies that apply
FCA to IR consider retrieving information from the large collections of unstructured
documents, which is reasonable due to the analogy between the binary object-attribute
and document-term tables [14]. While the standard IR FCA-based methods have been
applied to the binary data which introduce some restrictions for real-life applications
[15], PS allowed this type of models to be extended to more complex data such as
numbers, graphs, or texts [13, 18, 5].

We claim that introducing a concept model to the e-commerce chatbot is benefi-
cial due to its ability to represent both the numerical and textual attributes of objects.
Moreover, the hierarchical organization of similar object groups can help the chatbot to
effectively refine insufficient users’ requests. However, first, we should define the rules
for computing common descriptions for text attributes. Besides, due to the high compu-
tational requirements for building the concept lattice, we need to understand at which
step of data exploration the concept model should be constructed.

3 Concept Model

A concept model is a principal part of the introduced IR chatbot as it is able to provide a
convenient data representation that reflects the relations among the concepts, data, and
entities. We build the model using PS, let us briefly recall its main definitions.

Formally, PS is defined as a triple (G, (D,u), δ), whereG is a set of objects, (D,u)
is a complete meet-semilattice of descriptions and δ → D is mapping of an object to
its description. The Galois connection between the powerset of objects and the ordered
set of descriptions is defined as follows A2 = ug∈Aδ (g), d2 = {g ∈ G|d v δ (g)} for
A ⊆ G, for d ∈ D. A pair (A, d) for which A2 = d and d2 = A is called a pattern
concept.

52

A pattern concept is a pair, where the first element is a set of objects (called pattern
extent) and the second element is the common description (called pattern intent) of
the objects from the set. As in standard FCA, the sub-concept relation is given by the
containment of extents. By defining the specific u for different types of attributes, we
can apply PS to processing complex heterogeneous data. For the introduced chatbot we
have two main types of attributes: the numerical and textual ones.

Numerical Attributes We start building the knowledge model by distinguishing a
subset of homogeneous objects Ah ⊆ G, i.e., the set of objects described by the
high rate of similar attributes and construct PS. A semilattice operation u is defined
attribute-wise. The values of numerical attributes are given by intervals. Let v1, v2 ⊆ R
be the values of a numerical attribute for two different products. Then, [v1, v1] and
[v2, v2] are their interval representations. The meet of these intervals is defined as
[v1, v1] u [v2, v2] = [min(v1, v2),max(v1, v2)]. For nominal attributes, the operation
u is defined as x u y = x if x = y and x u y = ∗ otherwise, where ∗ means “any
value”. The navigation model is constructed in the form of pattern concept lattice that
the chatbot can traverse during communication with a user. The example of this model
for the numerical attributes can be found in github3.

input : τ{a1t1}, τ{a2t1}— textual descriptions (a set of key words) of t1 attribute for
two objects a1 and a2.

output: τ({a1t1}, {a2t1}) — a common description of t1 attribute for two objects a1
and a2.

1 foreach key term kta1 of the key terms set τ({a1t1}) do
2 foreach key term kta2 of the key terms set τ({a2t1}) do
3 if kta1 == kta2 then
4 τ({a1t1}, {a2t1}).add(kta1);
5 else
6 if similarity(emb(kta1), emb(kta2)) > threshold then
7 τ({a1t1}, {a2t1}).add(kta1);
8 end
9 end

10 end
11 end
12 return τ({a1t1}, {a2t1});

Algorithm 1: Computing the intersection of two textual attributes

Textual Attributes To process text data we, first, need to define its description, in
our case we use simple keywords. Their usage is motivated by the specificity of the
data we analyze. Textual attributes in e-commerce datasets are usually defined by a
phrase or a sentence. Therefore, it is not necessary to utilize more complex descriptors,

3 https://github.com/lizagonch/Chatbot.git

53

such as parse trees [19] or parse thickets [4] for such small texts. To calculate common
description for two textual attributes (represented as the set of keywords), we define the
u operation as either a strict match between the keywords or by finding the synonyms
in these keywords sets. The synonymity is assessed via pre-trained word embeddings
(word2Vec [16] in our case). The algorithm 1 presents the procedure to calculate the
intersection for two textual attribute descriptions.

4 Chatbot Overview

The idea of the introduced model is as follows, a user starts a search with an imprecise
request, the search engine interactively refines a user’s request by moving him or her
down or up the lattice (concept model). The concept lattice is built using Close-By-One
algorithm [1]. The overall system architecture is shown in Figure 1. At each turn of the
dialogue, the user’s utterance written in natural language goes through the NLP pipeline
where sentence pre-processing is performed. This module is also responsible for iden-
tifying numerical attributes a user wants to refine and textual restrictions imposed on
the product. Thus, at the output, we get the user’s query description dq . Let us consider
each component in more detail.

Fig. 1. System architecture

4.1 NLP Pipeline

We use Stanford CoreNLP toolkit [12] to perform sentence splitting, tokenization, and
lemmatization. Then, the system reveals the restrictions on the numerical attributes.
This part is performed with a predefined set of rules that determine attributes names and
the values required by the user. Having retrieved these restrictions, we run the keyBERT
model to return the set of keywords representing the user’s request.

4.2 Intent Classifier

The proposed IR bot operates using the compiled hierarchical lattice-based knowledge
model. It means that the system can navigate a user up (in case of generalization intent),

54

or down (refinement intent) the lattice. If a user wants to change the direction of a
search, the bot should navigate him or her to another candidate concept at the same
level of the concept lattice, where the level is the shortest way from the root concept
to the current one. If a user clarifies some features proposed by the chatbot, then the
chatbot moves in the right direction. Otherwise, asking to return on the previous step
corresponds to generalization intent. We use manually constructed regular expressions
to recognize the navigational intent.

4.3 Search Procedure

After identification of the intent, the system navigates a user through the knowledge
model. Based on the user’s intent, the bot provides various procedures to query pro-
cessing. (i) If the user wants to refine his current position, the bot finds all most specific
concepts that satisfy an input query description and updates the State Table with new
candidate concepts. (ii) In the case of update intent the bot returns the user to the parent
concept of the current (Ai, di) concept. (iii) Change of interest makes the bot return to
the stack of promising concepts (State Table) and moves to the next candidate concept.

All candidate concepts in the State Table are ranked based on the stability measure
[2, 8, 11], and each feature in the concept intent is assessed with respect to its diversity.
The most stable concepts are introduced to the user first, whereas the most variable
characteristics are proposed to the user for further refinement.

5 Experiments

We present the preliminary experiments to compare the concept-based chatbot perfor-
mance with the faceted search4 technique which is a standard approach for e-commerce
IR. The experiments are performed on the publicly available Flipkart dataset5 that con-
tains information about more than 40000 objects from the e-commerce website. To
compare the chatbot with the faceted search, which is not able to process textual data,
we have retrieved 100 objects belonging to the category ‘Computers – Laptops’ de-
scribed only by the numerical attributes. To measure the effectiveness of the proposed
u operation for textual attributes we use the same concept-based bot, but define the gen-
eralization operation as the strict match of the keywords corresponding to the textual
attributes. For this experiment, we have retrieved 300 objects belonging to the ‘Cloth-
ing – Jeans’ category. The motivation for choosing these small datasets is that both
the faceted search and the IR-chatbot should be launched after a user found the specific
category of products that he or she is interested in that usually include up to 500 objects.

To assess the model performance we calculate the average number of iterations (IN)
a user needs to achieve a satisfactory result. The lower this number is the faster a user
finds relevant objects. Average Precision (AP) measures how many times during the
dialogue a user had a refinement navigational intent. We also evaluate the number of
cases where a user was not satisfied with the response of the bot and asked it to move
in another direction (Unsatisfactory Rate (UR)).

4 https://apex.oracle.com/en/
5 https://data.world/promptcloud/product-details-on-flipkart-com

55

So far, we have not conducted the conversation of the bot with real customers, thus,
in a preliminary experiment, we generated 60 random scenarios of possible users’ re-
quests. The scenario takes the form of a few relevant features and a range of their values
that the user should sequentially introduce to the system. Table 1 presents the results of
the experimental evaluation.

Table 1. Comparison of the knowledge-based search with the faceted search.

Laptops (only numerical attributes) Jeans (+ textual attributes)
Model AP UR IN AP UR IN

Concept-based bot 0.7 0.24 5.6 0.72 0.14 6.6
Faceted search — 0.31 6.2 — — —

Concept-based bot
(key words-strict match)

— — — 0.68 0.25 8.6

AP and UR metrics indicate the ability of the bot to rank the promising pattern
concepts and retrieve relevant features for refinement. The obtained results show that in
nearly 70% of cases attributes introduced by the chatbot were assessed as significant.
While, in almost 25% of cases in the “Laptops” category, a user had change of direction
intent. The main metric evaluating the effectiveness of the search engine is the average
number of dialogue turns (or clicks for the faceted search) that a user performed to
find the set of items that are needed. In our experiments, this metric is in favor of
the chatbot, 5.6 versus 6.2 respectively. For textual data processing, the approach that
applies embeddings techniques to u operation improves the performance of the model
and makes a search procedure more precise (6.6 versus 8.6 dialogue turns).

6 Conclusion

In this paper, we have introduced an IR chatbot that utilizes the concept-based knowl-
edge model to help users in finding a particular item in the e-commerce database. In
comparison to a standard search engine, this system can operate with both structured
data and textual descriptions that can also be obtained from any external resource.

We have compared the performance of the proposed model with that of the faceted
search using the small product database retrieved from the online store. In this work in
progress, we have not yet compared the performance of the model with the current state-
of-the-art IR systems and other promising query enrichment FCA-based techniques
[10, 17, 3], however, the obtained results based on the artificially generated scenarios
of user-machine interaction has shown that the number of steps required by the pro-
posed model is less than the one required by faceted browsing. In the future, we plan
to add more functionality to the model, such as more advanced processing of textual
information (e.g., a pre-defined set of syntactic patterns could be exchanged by the DL
conversational engine) and more intelligent search of relevant attributes that should be
introduced to the user. This can be achieved by encapsulating the history of users’ pur-
chases.

56

References

1. Andrews, S.: A partial-closure canonicity test to improve the performance of CbO-type al-
gorithms. Lecture Notes in Computer Science 8577 (2014)

2. Babin, M.A., Kuznetsov, S.O.: Approximating concept stability. In: Proceedings of ICFCA
2012. pp. 7–15 (2012)

3. Bendella, M., Quafafou, M.: Patterns based query expansion for enhanced search on twitter
data. In: CEUR Workshop Proceedings. vol. 2378 (2019)

4. Galitsky, B.A., Ilvovsky, D., Kuznetsov, S.O., Strok, F.: Finding maximal common sub-parse
thickets for multi-sentence search. In: Graph Structures for Knowledge Representation and
Reasoning. Lecture Notes in Computer Science. vol. 8323 (2014)

5. Hartmann, J., Stojanovic, N., Studer, R., Schmidt-Thieme, L.: Ontology-based query refine-
ment for semantic portals. In: Lecture Notes in Computer Science. vol. 3379, pp. 41–50
(2005)

6. Katzir, L., Elidan, G., El-Yaniv, R.: Net-DNF: Effective deep modeling of tabular data. In:
Proceeding of ICLR. vol. 125 (2021)

7. Kuznetsov, S.: Pattern structures for analyzing complex data. In: Rough Sets, Fuzzy Sets,
Data Mining and Granular Computing, 12th International Conference, RSFDGrC 2009.
Delhi, India

8. Kuznetsov, S.: Stability as an estimate of the degree of substantiation of hypotheses derived
on the basis of operational similarity. Nauchno-Tekhnicheskaya Informatsiya, ser. 2 - Infor-
matsionnye Protsessy i Sistemy pp. 21–29 (1990)

9. Li, J., Liu, C., Wang, J., Bing, L., Li, H., Liu, X., Zhao, D., Yan, R.: Cross-lingual low-
resource set-to-description retrieval for global e-commerce. Proceedings of the AAAI Con-
ference on Artificial Intelligence 34 (2020)

10. Lungley, D., Kruschwitz, U.: Automatically maintained domain knowledge: Initial findings.
In: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial In-
telligence and Lecture Notes in Bioinformatics). vol. 5478 (2009)

11. Makhalova, T., Ilvovsky, D., Galitsky, B.: Information retrieval chatbots based on conceptual
models. In: Proceedings of International Conference on Conceptual Structures. pp. 230–238.
Springer (2019)

12. Manning, C., Surdeanu, M., Bauer, J., Finkel, J., Bethard, S., McClosky, D.: The stanford
CoreNLP natural language processing toolkit. In: Proceedings of 52nd Annual Meeting
of the Association for Computational Linguistics: System Demonstrations. Association for
Computational Linguistics (2014)

13. Messai, N., Devignes, M., Napoli, A., Smaı̈l-Tabbone, M.: Many-valued concept lattices for
conceptual clustering and information retrieval. In: Proceedings of ECAI (2008)

14. Messai, N., Devignes, M.D., Napoli, A., Smail, M.: Concept lattices and ontologies to query
a directory of biological data sources (bioregistry). INFORSID 2005: Actes du XXIIIeme
Congres Informatique des Organisations et Systemes d’Information et de Decision (2005)

15. Messai, N., Devignes, M.D., Napoli, A., Smail, M.: Using domain knowledge to guide
lattice-based complex data exploration. In: Proceedings of the 2010 conference on ECAI
2010. pp. 847–852 (2010)

16. Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of
words and phrases and their compositionality. In: Advances in neural information processing
systems. pp. 3111–3119 (2013)

17. Pattison, T.: Interactive query refinement using formal concept analysis. In: International
Conference on Concept Lattices and Their Applications (2018)

18. Priss, U.: Lattice-based information retrieval. Knowledge Organization 27 (2000)

57

19. Punyakanok, V., Roth, D., Yih, W.T.: The necessity of syntactic parsing for semantic role
labeling. In: Proceedings of IJCAI International Joint Conference on Artificial Intelligence
(2005)

20. Song, S., Wang, C., Chen, H., Chen, H.: TCNN: Triple convolutional neural network models
for retrieval-based question answering system in e-commerce. In: The Web Conference 2020
- Companion of the World Wide Web Conference, WWW 2020 (2020)

21. Tunkelang, D.: Dynamic category sets: An approach for faceted search. In: Proceedings of
ACM SIGIR. vol. 6 (2006)

22. Wille, R.: Restructuring lattice theory: An approach based on hierarchies of concepts. Or-
dered Sets. NATO Advanced Study Institutes Series 83, 445–470 (1982)

23. Yilmaz, Z., Wang, S., Yang, W., Zhang, H., Lin, J.: Applying BERT to document retrieval
with Birch. In: Proceedings of IJCNLP 2019. pp. 19–24 (2019)

24. Zhang, L., Zhang, Y.: Interactive retrieval based on faceted feedback. In: Proceeding of the
33rd international ACM SIGIR conference on Research and development in information
retrieval - SIGIR '10. ACM Press (2010)

58

Variability Extraction
from Simulator I/O Data Schemata

in Agriculture Decision-Support Software

Thomas Georges1,2, Marianne Huchard1, Mélanie König2,
Clémentine Nebut1, and Chouki Tibermacine1

1 LIRMM, Univ Montpellier, CNRS, Montpellier, France
{firstname.lastname}@lirmm.fr

2 ITK, Montpellier, France
{firstname.lastname}@itk.fr

Abstract. The context of this work is the development of software sys-
tems that help in decision making in the agriculture domain at our indus-
trial partner, ITK. These software systems include simulators which help
farmers to understand and predict plants life cycle. Each plant and each
kind of prediction has its own parameters. For example, yield predic-
tion for wheat is very specific and different from vine disease prediction.
There are however some common characteristics, like the fact that these
simulators take as input weather data. The goal of the project on which
we work is to build a software product-line in order to: i) enable an easy
derivation of new products (by IT teams) with new simulators (built by
agronomist teams), and ii) simplify the maintenance of the existing large
code base of our industrial partner. The construction of this product-line
passes through the extraction of variable and common characteristics of
all existing products at ITK. The extraction process may be laborious
and time consuming. We study in this work the automation of this pro-
cess, by focusing on the schemata of data received as input and produced
as output by simulators. We hypothesize that Formal Concept Analysis
(FCA) is a useful tool for extracting software variability, i.e. highlight
commonalities and specifics for assisting IT/agronomist teams in soft-
ware construction. In this paper, we propose a process for variability
extraction. This process is based on a set of pre-processing steps to pre-
pare data for FCA tools. These tools build at the end of the process an
AOC-Poset, i.e. a conceptual structure derived from the concept lattice
in which we can identify common and variable characteristics. We im-
plemented this process and experimented it on a set of six simulators.
We obtained promising results towards the construction of the software
product-line.

Keywords: Formal Concept Analysis · Software engineering · Software
Product Line · Variability Extraction · Knowledge Extraction

59

1 Introduction

Many software companies face the problem of developing and maintaining a port-
folio of products with some common purpose and context. Capitalizing knowl-
edge acquired on the domain and on the previously developed software may be
a help for developing new ones in the same business domain, and rationalizing
the different activities around software. When software systems are sufficiently
similar, migrating to the software product line paradigm may be appropriate
for that capitalization. For example, our industrial partner ITK3 provides a
decision-support software systems platform for agriculture. It develops simula-
tors for different purposes as yield expectation or disease prediction. The plat-
form can be seen as a set of similar software systems, which allows a migration
to a software product line. The expected benefit is to assist the agronomist team
in the development of a new product, and speed up simulator integration by the
IT team. This requires extracting and organizing knowledge from the code base
and all existing documents. As a first step in that direction, this paper focuses
on extracting knowledge from part of this description, which is composed of an
input and an output data schema, with a tree structure embedding the data
hierarchical organisation. We use Formal Concept Analysis to highlight input
and output variability among the different simulators. We call variability the
ability of a software to be configured, customized, extended, or changed for a
specific context [3]. In our case, it concerns the variation in the data schemata of
simulators. In this paper, we explain the process that leads us from raw data to a
conceptual structure, here an AOC-Poset and how to exploit it. Concretely, the
contribution of this paper is an application of Formal Concept Analysis to iden-
tify variability. This paper is organized as follows. Section 2 gives an overview of
the approach. Section 3 addresses the dataset presentation. Section 4 explains
how the preprocessing is performed on Data schemata. Section 5 presents the
Formal Concept Analysis processing. Section 6 shows the results. Section 7 ex-
poses the related work and Section 8 concludes the paper with a summary of
the contribution and a few perspectives.

2 Overview of the approach

Research Question. The main question studied in this paper is: How to extract
software variability from simulator data schemata? To answer this question, we
need to use simulator data schemata to build a formal context usable with FCA,
and more specifically AOC-Poset building algorithms. This is performed by a
process, presented in the following subsection, which is able to exploit simulator
data schemata to get as much knowledge as possible.

Process. Figure 1 illustrates the process to get variability from raw data schemata.
First a pre-processing is performed, by cleaning, enriching and formatting data to
obtain a formal context. Then from the formal context, an FCA-based structure,

3 https://www.itk.fr/en/

60

Fig. 1. Process from simulators to variability

i.e the AOC-Poset [10] is used to highlight commonalities and specifics. So far,
only a partial variability model is created, with common terms and simulator-
specific terms. We have not yet studied the identification of logical rules relating
these terms, like implications, co-occurrences or mutual exclusions between two
terms, but we are quite confident that this is possible by applying techniques
proposed in previous work from our team [8].

An AOC-Poset has been chosen instead of a usual concept lattice because of
the simplicity of this model which makes it easily readable and understandable
in the context of variability analysis. The second theoretical reason is the com-
plexity of its construction, which is polynomial in contrast to the construction
of concept lattices that is exponential. The size of simulator data schemata is
relatively small for the moment in our study, but in the future if the process is to
be used with larger and numerous schemata, the construction of the variability
model would be made more efficient.

3 Simulator description

Each simulator used in ITK products has its own purpose. It receives some
data as input, like weather information or soil type. It produces some data as
output, like predictions of yield or disease. All ITK products are defined as Web
applications with simulators written mainly in Python. Input and output data
are defined in JSON format4 and have schemata defined in JSON too.

Output data schemata are in general less complex than input data ones and
can be absent in some cases, if there is only a number or a string as the output
from a simulator.

4 https://www.json.org/json-en.html

61

Our study is based on six different simulators:

– Cropwin simulator to estimate yield from annual culture as wheat or corn.
– Disease simulator to predict plant’s risk to contract a disease.
– Grapes simulator to estimate yield from grapes cultures.
– nferti simulator to predict plant’s stress, as the lack of nitrogen.
– Orchard simulator to estimate yield from sustainable culture as apricots or

walnuts.
– Vine disease simulator to predict vine’s risk to contract a specific disease.

Simulator description Each simulator has a documentation which is provided
by the agronomists who developed the simulator. This documentation includes
a wiki with a description of the simulation model (the mathematical model), the
API for using the simulator, its dependencies and its technical documentation,
among other elements. The simulation model provides the schema of the data
needed for running the simulator (input data) and also the schema of the data
provided as an output. These schemata are defined using a JSON dialect. We
collected the available schemata for the selected six simulators.

Input/output data schema. Each data schema is a tree of terms. From these
six simulators, we have six input data schemata and four output ones. Input
data schemata include from 31 to 127 different terms and output data schemata
include 22 to 95 different terms (see Table 1 for details).

Simulator nferti Cropwin Disease Grapes Orchard Vine dis-
ease

total

Inputs terms 119 126 127 31 50 11 464

Outputs terms 95 32 53 22 202

Table 1. Simulator input and output description size

4 Pre-processing Data schemata

Raw data schemata cannot be exploited directly in our process. They need to be
sanitized, formatted and prepared to be exploited by FCA. For this, we build a
dictionary to exclude unwanted/technical terms, a dictionary to associate new
terms to replace existing acronyms and abbreviations. In order to maximize
variability extraction, we choose to exploit tuples of terms. The results have
been formatted as a formal context.

The construction of our dictionaries by removing or associating more terms
was an iterative manual work. An analysis was made after each iteration. Redun-
dant and inappropriate terms were removed and new terms explaining existing
abbreviations were added.

In Figure 2, we outline the complete process that goes from raw data to a
formal context. First we transform raw data schemata in tree (Treeify) in order

62

Fig. 2. Process to transform raw data into formal contexts.

to make the following processing steps on a tree and not on a text document.
Then, we remove useless terms (Unwanted term removal). Next we replace ab-
breviations and acronyms (Associating new term) and we extract tuples from
the tree (Tuple Extraction). At the end, for all simulators, data schemata of each
kind (Input or Output) are merged and formatted as a formal context (Corpus
aggregation).

4.1 Excluding unwanted terms

Stopwords are useless terms, which do not need to be kept in our variability
extraction result. We choose to remove them to limit unnecessary too frequent
terms. Without removing unwanted terms, variability extraction would be less
relevant due to the introduced noise. To build the dictionary, we ranked all terms
by their frequency, in order to select and remove all too frequent unwanted terms.
We have used a well-known metric for that which is TF-IDF [16]. We built a
dictionary with 30 different terms to be removed.

Fig. 3. Removing unwanted terms example

Figure 3 depicts an example of this processing. Each term in a data schema is
searched in the unwanted terms dictionary and removed from the tree if present

63

(e.g. type and string). If the removed term is not a tree leaf, the subtree linked
to this removed node is linked to its parent directly.

4.2 Associating new terms

The goal of building this second dictionary is to extend abbreviations and replace
acronyms by the complete terms. The construction of this dictionary has been
done manually. We checked each term to decide if it was an acronym or an
abbreviation. If this was the case, we added it to the dictionary together with its
complete name. For example, irrig has been added and associated to the term
irrigation. The built dictionary includes around 30 different terms, 9/10 of them
coming from the agronomic domain and 1/10 from IT domain.

Fig. 4. Extending terms example

Figure 4 shows an example of this processing. Each term is compared with
the associated term in the dictionary. If it matches, the current term is replaced
by its complete version.

4.3 Tuple extraction

Extracting only single terms makes us loose the information about relationships
provided by the tree structure. To keep information from data we need to refine
the extraction. We extract each node alone, but also all father-son’s pairs follow-
ing a depth-first search method. The size of the extracted tuples is one or two
terms, and this is enough for our process. After empirical observations, we indeed
concluded that the use of tuples of size three or more terms does not help in iden-
tifying more commonalities in our data, because they are present in only one sim-
ulator. For example, the following tuple (parameters,phenology,irrigation)
is specific to a single simulator, which is nferti.

Besides this, we did not base our process on raw text data, and choose to
transform it into our own tree representation, in order to be independent from
any kind of data structure format, such as XML or JSON in our case.

Figure 5 depicts an example of tuple extraction. In this example, we can
observe the extraction of five tuples with a single term and four tuples with two
terms, starting from a tree of five nodes and four father-son edges.

64

Fig. 5. From cleaned and enriched data to formal attributes

4.4 Data Formatting

To use Formal Concept Analysis, a last transformation is required. We use here
FCA [12] as a knowledge engineering method, for its capacity to build formal
concepts from a formal context (FC) K = (G,M, I) that associates objects from
a set G to attributes from a set M through relation I ⊆ G×M . Object sets
and attribute sets are associated thanks to two operators, both denoted by ′.
For O ⊆ G, the set of attributes shared by the objects of O is O′ = {m|∀g ∈
O, (g,m) ∈ I}. For A ⊆ M , the set of objects that share the attributes of A is
A′ = {g|∀m ∈ A, (g,m) ∈ I}. A formal concept C = (Extent(C), Intent(C)) is a
maximal object group (extent) associated with their maximal shared attribute
group (intent), i.e. Extent(C) = Intent(C)′ (and equivalently Extent(C)′ =
Intent(C)). The concept order, denoted by �C is defined as follows: C1 �C C2
if Intent(C2) ⊆ Intent(C1) (and equivalently Extent(C1) ⊆ Extent(C2)). The
concept lattice is the set of all concepts, provided with �C . The lowest (w.r.t.
�C) concept owning one object is its introducer concept. The highest (w.r.t.
�C) concept owning one attribute is its introducer concept. The suborder of the
concept lattice restricted to these introducer concepts is called the AOC-Poset
(Attribute-Object Concept poset). In the following, we use the AOC-Posets,
which are a scalable alternative to concept lattices, as the conceptual structures
to highlight variability, as they contain all the information we need.

We need to generate two formal contexts from the extracted tuples. One for
the input and the other for the output data schemata. In each formal context, G
is the set of simulators, M is the set of tuples, i.e. 1-tuples for nodes or 2-tuples
for edges. (g,m) ∈ I if the tuple m exists in the data schema of the simulator g.

Figure 6 shows an example of the transformation. It starts from two simula-
tors and generates a formal context. A cross means that the simulator has the
tuple.

5 FCA processing

The cleaned data is now in the appropriate format to be processed by FCA tools.
Extracting the variability using FCA is efficient and the obtained conceptual
structures are a useful way to express this variability [6]. We used the RCA
plugin of Cogui5 to generate AOC-Posets [10]. For the input data schemata,

5 http://www.lirmm.fr/cogui/

65

Fig. 6. Example of raw data transformed into a formal context

we obtained the AOC-Poset depicted in Figure 7. This conceptual structure is
discussed in the following section.

Fig. 7. Excerpt of the AOC-Poset from input data schemata

6 Evaluation

The variability extracted from AOC-Posets is used to understand how close the
simulators are to each other.

6.1 Results

The excerpt of the AOC-Poset, presented in Figure 7, shows which simulators
parts are specific and which are common. Precisely, beginning from the most
common parts (from the top concepts of the AOC-Poset), we have:

66

– The concept 14 introducing attribute latitude, common to five simulators
out of six.

– The concept 13 introducing attribute weather, common to five simulators
out of six.

– The concept 23 introducing attribute variety, common to four simulators
out of six.

– The concept 21 introducing attributes temperature-max and temperature-
min, common to four simulators out of six.

Temperature and weather have a significant impact on cultures, each variety
has its own specificity and latitude is useful for sunshine impact. Looking on
agronomic domain, we can easily see why these are the most common terms.

We have 36 common terms to at least two simulators and 374 specific terms
over 410 in total. This means that simulators have eight per cent of terms in
common, all other concepts are only present once. These are specific to their own
simulator. The bottom part of the AOC-Poset is not shown in Figure 7 because
it contains useless information, which corresponds to six concepts that match
with the six simulators and all their specific attributes (not common with other
simulators). We can observe that the grouping of attributes in the AOC-Poset
concepts is variable and ranges from one in the top concepts, discussed above,
to seven in concept 10 of Figure 7. We can also observe that the latter concept
corresponds to an abstraction of simulators that process soil information, i.e.
there is a semantic cohesion between these seven attributes. Concept four (at
the left of the figure) groups four attributes semantically related too, and which
correspond to plant phenology.

For the outputs (the AOC-Poset is not shown in the paper for the sake of
space), we found only three common terms:

– The concept introducing attribute daily, common to three simulators out of
four.

– The concept introducing attribute phenology, common to three simulators
out of four.

– The concept introducing attribute yearly, common to three simulators out
of four.

We observed that there are only three common terms to at least two sim-
ulators and 195 terms specific over 198 in total. This means that simulators
have one per cent of terms in common, all other concepts are only present once.
This low degree of commonality was predictable since each simulator has its own
purpose and returns only useful data targeting that purpose.

As a final step in this evaluation work, we plan in the near future to initiate
a discussion with the agronomist teams in order to validate and potentially
improve the extraction result (AOC-Posets).

67

6.2 Discussion

Our work has multiple purposes. The first goal is to assist agronomists in the
design of new models and simulators, then support the simulator integration by
the IT team and allow a better migration towards a software product-line.

The second purpose is to provide a common vocabulary. In addition, the asso-
ciation dictionary helps to understand which terms are used including acronyms,
abbreviations or written in different ways and offer a new standardization. We
are quite confident that this will help agronomists when a new model has to be
built by providing a standardized vocabulary and naming conventions.

When the IT team has to develop a new application, its first task is the
simulator integration. This is a fastidious and error prone task based on manually
cloning an existing integration. Based on the generated variability, which will be
linked to code artefacts, cloning can be automated and simplified.

The last envisaged use is the migration of ITK software products to a Soft-
ware Product Line, considering the AOC-Poset as a step towards the production
of a complete feature/variability model. This migration will not be based on the
source code only but will be completed by ontologies [5]. The dictionaries and
AOC-Posets are relevant artifacts to this aim.

7 Related work

FCA has already been used for variability extraction in the domain of software
product lines, to synthesize a feature model by exploring the AOC-Poset, the
AC-Poset (Attribute-Concept Poset) or implicative systems [15, 17, 1, 7]. In these
works, the formal context associates software product configurations to features.
The feature model is a kind of logical tree exposing mandatory and optional fea-
tures, feature groups (Or, Xor), and feature refinement through tree edges [13].
Cross-tree constraints (such as binary implication or mutual exclusion) may
accompany the description. We ground the variability extraction on the same
principles, using FCA as the revealer of commonalities and specifics. Compared
to these works, the difference is that we do not focus on feature variability, but
on input/output data variability. This provides a complementary view on the
future product line.

Dealing with tree description could have been dealt taking inspiration from
genterms (labelled trees provided with a generalization relation) [9] or using the
pattern structure paradigm [11, 14]. The pattern structure paradigm is a way
we will explore. Nevertheless, it was initially not clear how to determine the
similarity and subsumption operators for our labelled directed (rooted) trees. In
this work, we preferred to conduct a first study using local information, based
on common nodes and edges, that can be encoded with basic formal contexts.
A drawback in our approach is that tree portions will have to be rebuilt in a
post-processing operation if we want to have a global view, but this has the
merit of providing a simple initial solution.

Finally, this work also shares similar objectives and techniques with database
schema integration [4], ontology merging [18], and common model extraction [2],

68

including the need for linguistic analysis, and designing an integrated view, here
on inputs or outputs of the simulators.

8 Conclusion

Linking software engineering and artificial intelligence with Formal Concept
Analysis provides new tools and methods to improve current practices. We pro-
posed to extract variability of simulators data schemata to improve future de-
velopment of new simulators and to assist their integration in a new application.

In the short term, we have to integrate these in the software product line mi-
gration process, and to share this knowledge with the agronomist/IT team. All
existing simulators do not have a data description schemata, especially outputs.
This causes a lack of details about variability and reduces result impact. Includ-
ing more data schemata coming from other simulators and asking the agronomist
team to detail the outputs when they are absent will improve the quality of the
results allowing us to give more assistance to ITK teams.

We plan in the future to work on variability extraction from source code
of existing applications and linking this variability with what we extract from
input/output data schemata. The ultimate goal is to provide a complete fea-
ture model which will enable agronomists and IT teams to easily configure new
products by working together on common assets and using a unified vocabulary.

References

1. Al-Msie’deen, R., Huchard, M., Seriai, A., Urtado, C., Vauttier, S.: Reverse engi-
neering feature models from software configurations using formal concept analysis.
In: Proceedings of the Eleventh International Conference on Concept Lattices and
Their Applications, Košice, Slovakia, October 7-10, 2014. pp. 95–106 (2014)

2. Amar, B., Guédi, A.O., Miralles, A., Huchard, M., Libourel, T., Nebut, C.: Using
formal concept analysis to extract a greatest common model. In: Maciaszek, L.A.,
Cuzzocrea, A., Cordeiro, J. (eds.) ICEIS 2012 - Proceedings of the 14th Interna-
tional Conference on Enterprise Information Systems, Volume 1, Wroclaw, Poland,
28 June - 1 July, 2012. pp. 27–37. SciTePress (2012)

3. Bachmann, F., Clements, P.: Variability in software product lines. Tech.
Rep. CMU/SEI-2005-TR-012, Software Engineering Institute, Carnegie Mel-
lon University, Pittsburgh, PA (2005), http://resources.sei.cmu.edu/library/asset-
view.cfm?AssetID=7675

4. Batini, C., Lenzerini, M., Navathe, S.B.: A comparative analysis of methodologies
for database schema integration. ACM Computer Survey 18, 323–364 (1986)

5. Bécan, G., Acher, M., Baudry, B., Ben Nasr, S.: Breathing ontological knowledge
into feature model synthesis: An empirical study. Empirical Software Engineering
21 (03 2015). https://doi.org/10.1007/s10664-014-9357-1

6. Carbonnel, J.: L’analyse formelle de concepts : un cadre structurel pour l’étude de
la variabilité de familles de logiciels. PhD Thesis, Université de Montpellier (2018)

7. Carbonnel, J., Huchard, M., Nebut, C.: Modelling equivalence classes of fea-
ture models with concept lattices to assist their extraction from product descrip-
tions. J. Syst. Softw. 152, 1–23 (2019). https://doi.org/10.1016/j.jss.2019.02.027,
https://doi.org/10.1016/j.jss.2019.02.027

69

8. Carbonnel, J., Huchard, M., Nebut, C.: Towards the Extraction of Vari-
ability Information to Assist Variability Modelling of Complex Product
Lines. In: Proceedings of the 12th International Workshop on Variabil-
ity Modelling of Software-Intensive Systems - VAMOS 2018. pp. 113–120.
ACM Press, Madrid, Spain (2018). https://doi.org/10.1145/3168365.3168378,
http://dl.acm.org/citation.cfm?doid=3168365.3168378

9. Daniel-Vatonne, M., Hemce, C.: On a tree-like representation for symbolic-
numeric data and its use in galois lattice method. In: Proceedings of
18th International Conference of the Chilean Computer Science Soci-
ety (SCCC ’98), November 12-14, 1998, Antofagasta, Chile. pp. 48–57.
IEEE Computer Society (1998). https://doi.org/10.1109/SCCC.1998.730782,
https://doi.org/10.1109/SCCC.1998.730782

10. Dolques, X., Le Ber, F., Huchard, M.: AOC-posets: a scalable alternative to Con-
cept Lattices for Relational Concept Analysis. In: CLA: Concept Lattices and their
Applications. pp. 129–140. La Rochelle, France (Oct 2013), https://hal.archives-
ouvertes.fr/hal-00916850

11. Ganter, B., Kuznetsov, S.O.: Pattern Structures and Their Projections. In: 9th Int.
Conference ICCS’01, Stanford, CA, USA. pp. 129–142 (2001)

12. Ganter, B., Wille, R.: Formal Concept Analysis - Mathematical Foundations.
Springer (1999)

13. Kang, K., Cohen, S., Hess, J., Novak, W., Peterson, A.: Feature-Oriented Domain
Analysis (FODA) Feasibility Study. Tech. Rep. CMU/SEI-90-TR-021 (1990)

14. Leeuwenberg, A., Buzmakov, A., Toussaint, Y., Napoli, A.: Exploring
pattern structures of syntactic trees for relation extraction. In: Baix-
eries, J., Sacarea, C., Ojeda-Aciego, M. (eds.) Formal Concept Analy-
sis - 13th International Conference, ICFCA 2015, Nerja, Spain, June 23-
26, 2015, Proceedings. Lecture Notes in Computer Science, vol. 9113,
pp. 153–168. Springer (2015). https://doi.org/10.1007/978-3-319-19545-2 10,
https://doi.org/10.1007/978-3-319-19545-2 10

15. Loesch, F., Ploedereder, E.: Restructuring variability in software product lines
using concept analysis of product configurations. In: 11th European Conference on
Software Maintenance and Reengineering, Software Evolution in Complex Software
Intensive Systems, CSMR 2007, 21-23 March 2007, Amsterdam, The Netherlands.
pp. 159–170 (2007). https://doi.org/10.1109/CSMR.2007.40

16. Ramos, J.: Using tf-idf to determine word relevance in document queries (01 2003)
17. Ryssel, U., Ploennigs, J., Kabitzsch, K.: Extraction of feature models from formal

contexts. In: Software Product Lines - 15th International Conference, SPLC 2011,
Munich, Germany, August 22-26, 2011. Workshop Proceedings (Volume 2). p. 4
(2011). https://doi.org/10.1145/2019136.2019141

18. Stumme, G., Maedche, A.: Ontology merging for federated ontologies on the se-
mantic web. In: International Workshop for Foundations of Models for Information
Integration (FMII-2001). pp. 413–418 (2001)

70

Multimodal Clustering with Evolutionary Algorithms

Mikhail Bogatyrev1[0000-0001-8477-6006], Dmitry Orlov1 and Tatyana Shestaka1

1 Tula State University, 92 Lenin ave., Tula, Russia
okkambo@mail.ru

Abstract. The paper considers the application of evolutionary clustering algo-
rithms on multidimensional formal contexts in order to solve fact extraction prob-
lem on database data. Formal contexts are built on the data that is the result of a
database query. Clustering on such contexts allows one to find certain data com-
binations in clusters that can be interpreted as facts. Evolutionary clustering al-
gorithm is chosen as an alternative to the FCA-based multimodal clustering al-
gorithms. It is applied in solving the problem of phenotyping complications of
myocardial infarction, formulated on the data of patient history, treatment meth-
ods and treatment results. The results of the work of evolutionary algorithms for
their various parameters are presented.

Keywords: Evolutionary Computation, formal context, multimodal clustering
fact extraction.

1 Introduction

A well-known problem in cluster analysis is the problem of interpreting results of clus-
tering. Any clustering algorithm uses some proximity measure defined on the set of
objects to be clustered. Therefore, the “meaning” of the resulting clusters is determined
primarily by the used measure: the objects united into one cluster because we found
them coinciding according to the chosen criterion. An attempt to interpret clusters from
any other positions, for example, user-oriented, actually means switching to another
proximity measure of the of objects, possibly more complex and not formalized.

Formal Concept Analysis (FCA) [3] offers a different approach to this problem. In
FCA, clustering is used not on one, but on two, three and, in general, on an arbitrary
number of sets, this is biclustering, triclustering and multimodal clustering [9]. Here,
each cluster is a combination of data from clustered sets. The very fact of combining
certain data in a cluster can be important from the user's point of view and carry new
information. This interpretation of clusters is not directly related to the proximity meas-
ure of objects. The methods of multimodal clustering of FCA do not use a proximity
measure in the traditional sense. Clustered objects are close if they are connected to
each other by means of a relation that defines a formal context, and satisfy certain con-
ditions of closure with respect to operators applied to elements of the data sets of formal
context. This can be, for example, the Galois transformation which beget formal con-
cepts or the prime and box operators which beget clusters [3, 13].

FCA-based methods of bi- and triclustering have been studied in sufficient detail [4,
7, 13]. There are also certain solutions for n-dimensional multimodal clustering [8, 9].

71

When applying FCA-based clustering methods to even not large data, a very large
number of clusters is usually obtained, which makes it difficult to interpret them. In
[18] and [19], a number of solutions to this problem have been proposed: algorithms
for finding clusters of a given density and clusters with close values were developed,
concept interestingness measures were introduced.

In this paper, it is proposed the solution of the problem of multimodal clustering of
data of formal contexts created on the results of queries to databases. A query to an
extensive database can return a large number of records with a large number of attrib-
utes. The representation of the query results in the form of a formal context with the
subsequent finding clusters on it allows us to solve the problem of fact extraction from
the database. Here, the facts are interpreted just as combinations of certain attributes in
clusters. An evolutionary computation is used as a clustering method since it has a some
advantages for applying in clustering, which are discussed below.

This work is a part of research aimed at modernizing the framework for evolutionary
modelling [17] and applying it to new data structures.

The rest of the paper is organized as follows. We do not expound the known FCA
statements, taking into account the topic of the workshop. In Section 2, there is brief
description of evolutionary approach to multimodal clustering. In the Section 3, rela-
tions between evolutionary clustering and FCA are highlighted. The results of experi-
mental study of proposed approach are presented in the Section 4. They are illustrated
on the task of phenotyping of disease of myocardial infarction.

2 Evolutionary Approach to Multimodal Clustering

Evolutionary Approach to Multimodal Clustering is based on Evolutionary Computa-
tion [12]. Evolutionary computation is a term referring to several methods of global
optimization, united by the fact that they all use the concept of the evolution of a set of
solutions to an optimization problem, leading to solutions corresponding to the extreme
value of some function that sets the optimization quality criterion. Evolutionary com-
putation is effective when working with multimodal functions. If such a function has a
global extremum, the evolutionary algorithm finds solutions corresponding to the range
of values of the quality function that are sufficiently close to the that global extremum.

2.1 Principle of Evolutionary Computation

Let X is a set of solutions of a problem. Every solution x ∈ X can be characterized by a
quality measure named as fitness function f (x).

Let solutions of a problem depend on a set of parameters P. Such a dependence may
be very complex and not being expressed analytically. In this case, it is convenient to
present the solution of the problem in the form of a black box. The black box inputs are
the values of the parameters, and at the outputs we get the corresponding solutions, for
which we calculate the values of the fitness function.

Most problems being solved by using Evolutionary Computation can be formulated
as the following optimization problem: it is required to find optimal values of parame-
ters p*which deliver maximum value of fitness function, so the following is true:

72

 ()
*

*
p P

p argmax f x
∈

= (1)

Parameter values indirectly determine the values of the fitness function calculated on
the black box output, so in the expression (1) they were defined as arguments of fitness
function.

Evolutionary approach to solving this problem consists in the following.
Building encoding scheme. Encoding scheme is the mapping φ: P → S where set

S contains objects which encode parameters from P. Genetic algorithms, which are
widely used in Evolutionary Computation often use binary encoding and every value
of p ∈ P is represented as binary string named as chromosome. Encoding scheme is not
necessarily binary (as it is not binary in Nature): every string position contains a symbol
(gene) from encoding alphabet, and there are variants of alphabets applied in encoding
schemata [11]. However, necessarily there exists an inverse mapping φ-1: S → P, so for
every s ∈ S there exists p ∈P.

Actually encoding is very important and represents the essence of evolutionary ap-
proach. There is an atomic principle of encoding which claims that encoding scheme
has to be such that it generates minimal elements which influence on the values of ele-
ments of the set of solutions X. As in biology, heredity theory claims that gene (strictly
gene combinations) is the minimal element which really determines individual charac-
teristics, as here, in Evolutionary computation, atomic encoding principle plays the
same role.

Evolutionary algorithm. For given encoding scheme, the following algorithm
solves the problem (1).

A. Randomly generate an initial set (population) S0 of objects from S.
B. Start evolution of the populations by applying a set of operators A to

population S0 and further iteratively so that for every Sk+1= A (Sk) exists
at least one

 f [φ-1(sk+1)] ≥ f [φ-1(sk)], (2)

where sk∈ Sk and sk+1∈ Sk+1.
C. Finish the evolution of the population in accordance with the stopping

criterion. Most often, the criterion for stopping is the immutability of
the fitness function values over several steps of evolution.

If the set of operators A consists of genetic operators of selection, mutation and recom-
bination (crossover) then evolutionary algorithm is named as genetic algorithm [11].

Selection works so that condition (2) is supported by the following “biological”
principle: good parents produce good offspring (that is not true in Nature). Therefore,
the higher fitness chromosomes have more opportunity to be selected than the lower
ones and good solution is always alive in the next generation.

Crossover is the genetic operator that mixes two chromosomes together to form a
new offspring. It does mixing by replacing fragments of chromosome’s code divided
in certain one or several randomly selected points.

Mutation involves modification of the gene values by randomly selecting new value
from the alphabet at random point in the strings of genes.

Being realized, the algorithm (A. – C.) provides a fast and fairly accurate solution
of the problem (1).

73

Fairly accurate means that evolutionary algorithm stops in a neighbourhood of
global extreme of fitness function f. The size of a neighbourhood around extreme de-
pends on the fitness function and parameters of genetic operators. When evolutionary
algorithm works too fast it may stop at local extreme. This feature is traditionally con-
sidered as the lack of the algorithm but it may be useful for clustering since local ex-
treme of quality measure may be semantically “better” than global extreme. In our ex-
periments we have observed just that situation.

Operating speed of genetic algorithms could not be high because they have to man-
age not one but a whole set of possible solutions and evaluate fitness function N times
on every step of evolution, where N is the size of population. Nevertheless, they are fast
as compared to other algorithms for solving the problem (1) [12].

2.2 Evolutionary Multimodal Clustering

Evolutionary approach to clustering has quite a long history [10] and has contemporary
applications [12]. Most applications belong to the field of gene expression analysis [2,
6, 12].

The gene expression data (GED) has been presented in two variants. These are either
matrices containing expression values corresponding to various experiment conditions,
or three-dimensional tensors, where a discrete time scale is used as the third dimension.
Genetic algorithms with a full set of selection, mutation and crossover operators are
used as evolutionary algorithms. The features of the genetic algorithms used here are
determined by the choice of the chromosome encoding scheme, the fitness function and
genetic operators.

In clustering, the encoding of chromosomes is the central problem on which the suc-
cess of problem solution depends. Several encoding schemes have been proposed in
this area [12]. Among them there are binary encoding and integer encoding. Some of
them is shown on the Fig. 1 [10, 17]. In the binary encoding scheme for clustering, the
length of chromosome may be very large if it corresponds to the number of clustering
objects. Integer encoding is more compact but it is naturally redundant since different
genotypes may correspond to the same clustering solution.

In [17] we have proposed the simple chain-encoding scheme also shown on the Fig.
1 which is not redundant and demonstrated its effectiveness in clustering when prox-
imity measure is Euclidean. Another important advantage of the proposed encoding is
that it provides quite fast work of the algorithm even on long chromosomes due to quasi
parallelization of calculations: several genes in the chromosome may point to the same
cluster simultaneously, so clusters are formed in a quasi parallel way. Below we also
tested this encoding scheme in the current research for non-Euclidean proximity meas-
ure.

74

Fig. 1. Some encoding schemes for chromosomes in evolutionary algorithms for clustering.

 As already mentioned, chromosomes in evolutionary clustering algorithm can have
a significant length. The natural solution, which is known from practice [12, 15], is the
use chromosomes with composite parts of which correspond to the data in the meas-
urements. For GED, such chromosomes have two or three sections corresponding to
genes and experiment conditions and third section corresponding to time stamps. Since
number of genes in experiments may be over dozens of thousands the length of GED
chromosomes may be giant. Nevertheless, the computational problem of processing
very long chromosomes (usually binary) is solved now [15].
 The application of genetic operators to such chromosomes has its own peculiarities.
In the studying of gene expression, the genetic crossover and mutation operators are
used in all sections of chromosomes. However, in other tasks, this is not justified, since
the permutations of genes in certain places of the chromosomes contradict the meaning
of the data and the atomic principle mentioned above.
 The application crossover and mutation in each section of the chromosome entails
large coverage of the search space and, possibly, fast convergence the algorithm to local
extrema. However, there are other options for the implementation of operators, not
necessarily covering all sections of the composite chromosomes. If, nevertheless, mul-
tisectional variants of genetic operators are used, parallelization of computations in ac-
cordance with the sectional arrangement of chromosomes is preferable.

In general, the most evolutionary clustering algorithms use fitness functions based
on the distance between objects and either clusters' centroids or medoids [12].

If formal contexts are used as input data, then such proximity measures are not very
effective, since instead of distances between objects and clusters (when centroids and
medoids are used), the quality of clustering is characterized by such cluster’ parameters
as cluster density and volume of clusters.

All these and some other conditions were taken into account by when we modified
our evolutionary modeling environment [17], which we used in this study.

75

3 Evolutionary Clustering and FCA

In the FCA, the application of Evolutionary Computation may be realized in two ways.
 In the first way, Evolutionary Computation is used in FCA algorithms for construct-

ing formal concepts, bi- and triclustering and for clustering of higher orders. Hybrid
algorithms on the basis of existing FCA ones are created, and certain parameters of
them are manipulated using Evolutionary Computation. The second way is creation of
evolutionary algorithms for processing formal contexts as an alternative to existing
FCA algorithms.

Our work relates mainly to the second way. However, we use OAC-triclustering [22]
when processing formal contexts, so formally our approach partially belongs to the first
way too.

A multidimensional, n-ary formal context is defined by a relation
on data domains . The context is an n +1 set:

 1 2= < , , ..., ,nK K K R> (3)

where . The data from domains is placed in a database and Ki
may be treated as results of queries to database. Using queries, we can form formal
contexts of certain dimension and content.

According to multimodal clustering, for any dimension of formal context, the pur-
pose of its processing is to find n - sets which have the closure property [9]:

 1 2 1 2(, ,...,) , , ..., ,n nu x x x X X X u R , (4)

11,2,..., , \ ,..., { }, ...,j j j j j nj n x D X X X x X does not satisfy (4). The sets

1 2, , ..., nH X X X constitute multimodal clusters. The multimodal n-adic con-
cepts of an n-dimensional context (3) are exactly the maximal n-tuples with respect to
component-wise set inclusion [8].

Two circumstances are important when applying multidimensional contexts to data
analysis. The first is that not only formal concepts, but also multidimensional clusters
are important for knowledge discovering from data. Multidimensional clusters are char-
acterized by density, and formal concepts are absolutely dense clusters [7, 14].

The second feature is important for the interpretation of clusters. Each cluster is a
combination of subsets of data from different domains. The very fact of combining
certain data with each other can be of interest. It is this version of fact extraction that
we use in this work. However, the higher the dimension of the cluster, the less certain
is the information that is represented by the combination of data, and additional analysis
of the clusters is required to refine it. Therefore, high-dimensional clusters are not built
and mainly three-dimensional formal contexts are the subject of research here [14, 22,
24]. For simplicity, we also illustrate our approach with three-dimensional formal con-
texts.

The three-dimensional triadic context (tricontext) of the form 1 2 3= (, , ,),K K K I
where 1 2 3I K K K⊆ × × is a ternary relation and in general 𝐼𝐼 ≉ 𝑅𝑅 after querying to

1 2 ... nR D D D 1 2, , ..., nD D D

1 2, , ..., nD D Di iK D⊆

76

database. Traditionally, subsets 1 2 3, ,K K K are interpreted as objects, attributes and
conditions (OAC), which have a specific meaning based on the content of the database.

The kind of triclusters as OAC-triclusters are studied in detail and demonstrated ef-
fectiveness in applications [22]. For triadic context 1 2 3= (, , ,)K K K I OAC-
tricluster is defined in the form

 1 2 3(, ,), , ,X Y Z X K Y K Z K= ⊆ ⊆ ⊆ (5)

 OAC-triclusters are characterized by cluster density [14], the presence of similar
values in clusters [18], and interestingness measures [19].

We use cluster density, and volume of a cluster in our evolutionary clustering algo-
rithm. The cluster density is defined as

 | () |()
| | | | | |
I X Y Zd
X Y Z
∩ × ×

=
× ×

 , (6)

and volume of a cluster has the following form

 v () | | | | | |X Y Z= × × (7)

3.1 Genetic Clustering Algorithm

Algorithm 1 shown below is genetic algorithm, which realizes evolutionary algorithm
A-C from the Section 2.1. Its chromosomes chrom may be encoded by two variants.

The first variant is classical one when processing GED. For three-dimensional for-
mal context of GED, there are three sections in chromosomes, for example, “genes”,
“conditions” and “time stamps”. Crossover and mutation operate in all three sections
to maximize search space coverage [11]. However, among the new chromosomes gen-
erated in this way, there may be incorrect chromosomes, which do not correspond to
the data in the original tensor. The doMultipleCrossover function accesses the original
tensor in order to filter out the wrong chromosomes.

In the second variant of encoding, chromosomes have only one section containing
positions of objects being clustering. Filtering out the wrong chromosomes is not
needed but the algorithm may produce not proper solutions corresponded to local op-
tima of fitness function. This variant of encoding is convenient for implementing FCA
operators for clustering. Population of chromosomes represents variants of clustering
and chromosomes contain only references to objects, so the corresponding them clus-
ters can be constructed, for example, using OAC operators [22].

doSelection function realizes selection chromosomes according to selection method.
There are proportional, random universal, tournament and truncation selection meth-
ods [11] realized in the algorithm.

The stopping criterion is that the fitness function of the population does not change
with a certain accuracy over several steps of evolution. It may fail, and then the algo-
rithm executes the specified maximum number of steps.

77

Algorithm 1 Genetic clustering algorithm

Input: tensor is multidimensional context as the set of n samples on the axes of meas-
urements;
Parameters:

sizePop is the size of population of chromosomes;
numpoints is the number of points of crossover;
mutationRate is the probability of mutation;
coefDensity is the cluster density-scaling factor;
coefSize is the cluster volume-scaling factor;
limitPop is the maximal number of populations;
sel is the type of selection;
countPop is the number of steps of evolution;
popFitness is the value of the fitness function for the entire population.

Output: clusters is the set of clusters in the form of a set of subsets.
 population createPopulation[tensor, sizePop] creating a population of
 chromosomes chrom

1: while countPop ≤ limitPop do
2: while stopping[population] is false do
3: for all chrom do
4: clusterDensity[chrom, tensor]
5: clusterVolume[chrom, tensor]
6: fitnessFunction[chrom, tensor, coefDensity, coefSize]
7: end
8: popFitness[population] calculating the value of the fitness function
 for the entire population.
9: doMultipleCrossover[{chrom1, chrom2}, numpoints, tensor]
10: doMutation[chrom, mutationRate, tensor]
11: doSelection[chrom, popFitness, sel]
12: for all chrom do
13: {clusters} getSubTensorChrom[chrom, tensor] forming
 clusters from tensor
14: end
15: end
16: end

 The purpose of other functions of the algorithm is clear from their names.

4 Experimental Study

Experimental study of the proposed approach was carried out in order to solve some
tasks related to the problem of phenotyping diseases. Disease phenotyping refers to the
determination of the form of the disease based on the clinical profile. A clinical profile

78

is a cluster that can include various data describing both the disease itself and the meth-
ods of its treatment, as well as the conditions of patients and sometimes the treatment
results.

Our goal was also to study the efficiency and performance of the evolutionary clus-
tering algorithm for its various parameters.

4.1 Data Sets

Usually the whole data about patients and disease is stored in clinical database and the
data sets for the study can be obtained by performing queries to the database.
Depending on the database model and the DBMS platform, queries may be intellectual
of some degree and DBMS generates corresponding complicated results in the output.
However, relational databases and the SQL query language are still commonly used
here. Standard results of the queries are tables, the fields of which contain data corre-
sponding to the attributes of patients, diseases and treatment methods. Such tables con-
stitute as binary as multi-valued formal contexts. Solving the clustering problem on
such contexts, we get combinations of objects and attributes in clusters, which are fur-
ther analyzed as sources of facts. A contexts of dimensions greater than two can be built
on the results of queries, if we are interested in additional attributes retrieved from the
database.

 We use Myocardial Infarction Complications Data Set [16] for experiments. It con-
tains information about 1700 patients having disease of myocardial infarction. All pa-
tients are anonymous and presented with identification numbers (ID). We use seven
formal contexts acquired from the whole set which number of objects and attributes are
shown in Table 1 where ECG is electrocardiogram. Among attributes, there are ones
about patients (ID only), their anamnesis, their treatment methods, and complications
after the treatment. An attribute may be binary or has a value as natural or real number.

Table 1. Number of objects and attributes of formal contexts

Context Objects Attributes
Anamnesis 1700 33
Therapy 1700 24
Analyzes 1700 19
Infarct 1700 6
ECG 1700 27
Therapy results 1700 14
Full data 1700 123

Some formal contexts such as Therapy, Analyzes and Therapy results have a third
dimension in the form of days. The standard maximum treatment time for myocar-
dial infarction is 21 days (in Russia), which defines the scale of the third dimension.

79

4.2 Evolutionary Clustering

Evolutionary clustering was performed using variants of genetic Algorithm 1 with two
different encoding schemes and various types of crossover.

Chromosome encoding. After analyzing the existing variants of chromosome en-
coding [12], we settled on two of them. The first variant is our chained integer-encoding
scheme [17] showed on Fig. 1.

The second encoding scheme is a binary scheme organized according to the princi-
ple of "one chromosome – one cluster". It has one, two or three sections in chromo-
somes according with the variant of encoding (see Section 3.1) and dimension of a
context. Chromosomes for three-dimensional contexts have sections "patients", "at-
trbutes” and "days". In the sections, a number of gene is the number of patient, number
of attribute from corresponding context from the Table 1 or number of a day according
with objects order in the corresponding subsets in formal tricontext. Different chromo-
somes form different clusters. Because of the evolution of many such chromosomes,
really k different chromosomes from n members of the population should remain. In
this case, it turns out that some objects will be included in different clusters, i.e. there
will be an intersection of clusters.

Fitness function. As in FCA, we control cluster density (6), its volume (7) and spe-
cial kind of interestingness. There is the trade-off problem between the density and the
volume of triclusters [7]. Depending on the data, density and volume may be contra-
dictory characteristics of clusters. Myocardial infarction data are sparse, and if we col-
lect enough units in a cluster, it will be simultaneously voluminous. Therefore, we do
not use the volume of clusters in the fitness function, but only use their density. Never-
theless we calculate cluster volumes during evolution.

For the binary encoding scheme, fitness function has the form:

1

1() ()
N

i i
i

f d d C
N

α
=

= ∑ , (8)

where αi is user defined coefficient, which in general depends on cluster density, N is
the number of chromosomes in population which is equal to the maximal number of
clusters.

For the chained integer-encoding scheme fitness function is the following:

1 1

1 1() ()
jKN

i i
j ij

f d d C
N K

α
= =

= ∑ ∑ (9)

where Kj is the number of clusters in the j-th chromosome.
Interestingness of a cluster. It is known in clustering analysis that "the criteria relate
quite indirectly to the major goal of clustering which is improving of our understanding
of the world" [21]. According to the fitness of the chromosomes, the whole fitness of
population is namely such criterion. It hides the features of individual chromosomes.
But if selection leaves chromosomes with maximum fitness, then there is a chance that
they will lead evolution to good solutions. Patient ID values found in clusters, other

80

attributes corresponding to them from the “treatment” and “treatment outcomes” do-
mains are evaluated for the presence of information in them that can be treated as facts.
The formal criteria for selecting such “interesting” clusters are:

─ the presence of a single cluster at the end of evolution;
─ the most dense clusters among the received;
─ clusters of the maximum volume among received;
─ clusters with given values of density and volume.

4.3 Fact Extraction with Clustering

The most serious complication of a myocardial infarction is a lethal outcome of the
disease. In our data set, the lethal outcome is set by the attribute LET_IS, which has
following 8 values: 0: unknown (alive), 1: cardiogenic shock, 2: pulmonary edema, 3:
myocardial rupture, 4: progress of congestive heart failure, 5: thromboembolism, 6:
asystole, 7: ventricular fibrillation. We selected attributes related to the treatment of
patients to find out whether the treatment affects the lethal outcome. For this purpose,
the formal context was constructed, containing 27 attributes and 110 objects as the
numbers of patients who had a lethal outcome of any of the 7 variants. A similar formal
context was also constructed for patients who did not have a lethal outcome. It contains
1590 objects. We have added a third dimension to these contexts, reflecting the use of
drugs on certain days. For example, a point with coordinates (7, NA_R_1_n, 1) corre-
sponds to a unit, which means that the patient number 7 got opioid drugs at the first day
of hospitality.

To solve the task of the effect of patient treatment on the lethal outcome, triclustering
was performed in both contexts using an evolutionary algorithm.

Facts Extracted. We were interested in special clusters. First of all, these are clus-
ters with large groups of patients characterized by certain combinations of attributes
from the domains "patient", "treatment", "treatment results". Several such groups were
obtained.

1. We have found that the lethal outcome of myocardial infarction is inherent in elderly
patients over 60 years of age. This fact is consistent with the known data of cardiol-
ogy.

2. In more detail, cases of heart attack in the anamnesis correlate with a fatal outcome,
which also looks natural.

For both this groups of patients, we found absolutely dense clusters built on tensors
with age and anamnesis attributes.
Unexpected result. We have found one unexpected result, which is as follows. On

the data of myocardial infarction, there are stable (not changing according with differ-
ent parameters of the genetic algorithm) and rather dense clusters in which a subgroup
of patients with a lethal outcome have not got certain drugs. At the same time, patients
with a non-lethal outcome had these drugs.

Comparison with Data-Peeler. We were also interested in absolutely dense clus-
ters, the formal concepts. As expected, there were few such clusters, which follows

81

from the sparsity of the data. One of them is shown in Fig. 2. In it, we see that 7 patients
had no fibrinolytic therapy by Streptodecase (attribute fibr_ter_08) what is confirmed
by the query to the database.

Fig. 2. The dense cluster and the query result.

To compare our results with well known another algorithm, we selected Data-Peeler

[9] and modernized its code [23] by adding graphical user interface. Comparison of the
results is shown in Table 2.

Table 2. Clustering results compared with Data-Peeler

Formal context Number of
clusters

Number of dense
clusters

Number of
Data-Peeler

concepts
Anamnesis 30 14 449639

Therapy 30 19 28599
Analyzes 30 17 162

Infarct 30 20 65
ECG 30 10 689011

Therapy results 30 12 7798
Full Data 30 4 12564890

The results in the last row of Table 2 can be explained by the high sparsity of data

in this formal context. Accordingly, the Data-Peeler algorithm has built a lot of small
concepts.

4.4 Algorithm Performance.

The results of the algorithm performance study are as follows.
1. The algorithm processes very long three-section chromosomes of about 2000

genes fairly quickly. This allowed us to perform experiments in a wide range of changes
in the parameters of the algorithm. Fig. 3 shows clustering execution time for each of

82

the seven contexts. On the Fig. 3-a it is shown for two-dimensional formal contexts and
on the Fig. 3-b it is shown for three-dimensional formal contexts. At the same time, in
some contexts, the third dimension was introduced artificially.

a)

b)

Fig. 3. Clustering execution time for several formal contexts.

The executions were performed on a standard PC 3.59 GHz with 4 Core-Processors and
8 GB RAM.

2. Encoding "one chromosome – one cluster" was more effective than chain encod-
ing on a non-Euclidean fitness functions (6), (7) combining the density and volume of
clusters. Since the chain encoding is more complex and multi-linked, the execution of
crossover operators on chromosomes led to the "mixing"of genes, the appearance of
many "incorrect" chromosomes, and as a result, a decrease in performance.

3. A multipoint crossover is more efficient than a single-point crossover. The use of
multipoint crossover in all three sections of chromosomes accelerated the convergence
of the algorithm and was effective namely on the encoding scheme "one chromosome
– one cluster".

5 Conclusion and Future Work

This paper proposes an approach to multimodal clustering on multidimensional formal
contexts using evolutionary computation. This approach is effective in experiments on
clustering three-dimensional formal contexts based on data of patients with myocardial

83

infarction. The genetic algorithm builds dense clusters in any case, even for a local
extrema of the fitness function.

The presented experimental results reflect the initial stage of research in this area. In
the future, it is planned to do the following.

1. Evaluate the informativeness of the obtained clusters not manually, but using a
user interface focused on doctors.

2. Experiments have confirmed that the criteria of cluster density and volume con-
tradict each other. Therefore, it is necessary to apply multi-objective evolutionary clus-
tering with appropriate algorithms.

3. Transition to the dimension of formal contexts greater than three. Separate groups
of parameters can be represented as dimensions. Then their combinations obtained in
clusters will reflect in more detail the relationships in heterogeneous data.

Acknowledgments. We thank anonymous reviewers for their remarkы and advices.

The reported study was funded by Russian Foundation of Basic Research, the research
project № 19-07-01178 and RFBR and Tula Region according to research project №
19-47-710007.

References

1. Hartigan J A. Direct clustering of a data matrix. Journal of the American statistical associa-
tion, 67(337): 123—129 (1972)

2. Madeira SC, Oliveira AL. Biclustering algorithms for biological data analysis: a survey.
IEEE/ACM Trans. Comput. Biol. Bioinform. Jan-Mar;1(1):24-45. (2004) DOI:
10.1109/TCBB.2004.2.

3. Ganter, Bernhard; Stumme, Gerd; Wille, Rudolf, eds., Formal Concept Analysis: Founda-
tions and Applications, Lecture Notes in Artificial Intelligence, No. 3626, Springer-Verlag.
Berlin (2005) DOI:10.1007/978-3-540-31881-1

4. Kaytoue, Mehdi, Kuznetsov, Sergei, Napoli, Amedeo. Biclustering Numerical Data in For-
mal Concept Analysis. 135-150. (2011). DOI: 10.1007/978-3-642-20514-9_12.

5. Ignatov D. I., Kuznetsov S. O., Zhukov L. E., Poelmans J., Can triconcepts become triclus-
ters? // International Journal of General Systems, Vol. 42. No. 6 (2013)

6. Henriques R., Madeira S. Triclustering Algorithms for Three-Dimensional Data Analysis:
A Comprehensive Survey. ACM Comput. Surv. V. 51. № 5. P. 1–43. (2019) DOI:
10.1145/3195833.

7. Dmitry V. Gnatyshak, Dmitry I. Ignatov, Sergei O. Kuznetsov, From Triadic FCA to
Triclustering: Experimental Comparison of Some Triclustering Algorithms. In: Proceedings
of the Tenth International Conference on Concept Lattices and Their Applications
(CLA'2013), La Rochelle: Laboratory L3i, University of La Rochelle, pp. 249-260, (2013)

8. Voutsadakis, G. Polyadic concept analysis. – Order. Vol. 19 (3). Pp. 295–304 (2002)
9. Cerf, L., Besson, J., Robardet, C., Boulicaut, J.F.: Closed Patterns Meet N-ary Relations. In:

ACM Trans. Knowl. Discov. Data. 3, 1, Article 3, 36 p. (2009)
10. R. M. Cole, Clustering with Genetic Algorithms, MSc Thesis, University of Western Aus-

tralia, Australia (1998)
11. Goldberg D.E. Genetic Algorithms in Search Optimization and Machine Learning. Addi-

son-Wesley, Reading, MA, USA (1989)
12. Hruschka E., Campello R., Freitas A., de Carballo A. A Survey of Evolutionary Algorithms

for Clustering. Systems, Man, and Cybernetics, Part C: Applications and Reviews, IEEE

84

Transactions on Evolutionary Computation. V. 39. P. 133–155. (2009) DOI:
10.1109/TSMCC.2008.2007252.

13. S.O. Kuznetsov and S.A. Obiedkov, Comparing Performance of Algorithms for Generating
Concept Lattices. Journal of Experimental and Theoretical Artificial Intelligence, Vol. 14,
no. 2-3, pp. 189-216, 2002.

14. Ignatov D. I., Gnatyshak D. V., Sergei O. Kuznetsov, Boris G. Mirkin, Triadic Formal Con-
cept Analysis and triclustering: searching for optimal patterns. In: Machine Learning, April,
2015, pp. 1-32.

15. Ma P., Chan K., Yao X., Chiu D. An evolutionary clustering algorithm for gene expression
microarray data analysis. IEEE Transactions on Evolutionary Computation. V. 10. P. 296–
314 (2006) doi: 10.1109/TEVC.2005.859371.

16. Myocardial infarction complications Data Set. http://archive.ics.uci.edu/ml/machine-learn-
ing-databases/00579/

17. M. Y. Bogatyrev, A. P. Terekhov. Framework for Evolutionary Modelling in Text Mining.
- Proceedings of the SENSE’09 - Conceptual Structures for Extracting Natural Language
Semantics. Workshop at 17th International Conference on Conceptual Structures
(ICCS'09), p.p. 26-37 (2009)

18. Mehdi Kaytoue, Sergei O. Kuznetsov, Juraj Macko, Wagner Meira Jr., Amedeo Napoli,
Mining Biclusters of Similar Values with Triadic Concept Analysis. In: Proc. 8th Interna-
tional Conference on Concept Lattices and Their Applications (CLA 2011), INRIA Nancy
- Grand Est and LORIA, pp. 175 - 190, 2011.

19. Kuznetsov S., Makhalova T. Concept interestingness measures: a comparative study, in:
Proceedings of the Twelfth International Conference on Concept Lattices and Their Appli-
cations Clermont-Ferrand, France, October 13-16, 2015 Vol. 1466. Clermont-Ferrand :
CEUR Workshop Proceedings. P. 59-72 (2015)

20. Mirkin, B. G., & Kramarenko, A. V. Approximate bicluster and tricluster boxes in the
analysis of binary data. In Rough sets, fuzzy sets, data mining and granular computing,
LNCS, Vol. 6743, pp. 248–256. (2011)

21. Mirkin, Boris, Muchnik, Ilya. Combinatoral Optimization in Clustering. Handbook of
Combinatorial Optimization. D.-Z. Du and P.M. Pardalos (Eds.) pp. 261-329 (2000)

22. Dmitry I. Ignatov, Alexander Semenov, Daria Komissarova, Dmitry V. Gnatyshak: Multi-
modal Clustering for Community Detection. Formal Concept Analysis of Social Networks
2017: 59-96

23. https://github.com/ibrahim85/d-peeler

85

86

On Suboptimality of GreConD for Boolean
Matrix Factorisation of Contranominal Scales

Dmitry I. Ignatov1,2 and Alexandra Yakovleva1

1 National Research University Higher School of Economics, Moscow
2 St. Petersburg Department of Steklov Mathematical Institute of Russian Academy

of Sciences, Russia
dignatov@hse.ru,yakovlevalexandra@yandex.ru

Abstract. In this paper we study certain properties of the GreConD
algorithm for Boolean matrix factorisation, a popular technique in Data
Mining with binary relational data. This greedy algorithm was inspired
by the fact that the optimal number of factors for the Boolean matrix
factorisation can be chosen among the formal concepts of the correspond-
ing formal context. In particular, we consider one of the hardest cases (in
terms of the numerous of possible factors), the so-called contranominal
scales, and show that the output of GreConD is not optimal in this case.
Moreover, we formally analyse its output by means of recurrences and
generating functions and provide the reader with the closed form for the
returned number of factors. An algorithm generating the optimal num-
ber of factors and the corresponding product matrices P and Q is also
provided by us for the case of contranominal scales.

Keywords: Boolean Matrix Factorisation, Formal Concept Analysis,
Schein rank, generating functions, greedy algorithms

1 Introduction

Boolean data analysis and Formal Concept Analysis are closely related [1]. For
example, Boolean matrices describing binary relations can be considered as for-
mal contexts and vice versa, and decomposition of Boolean matrices into the
product of two Boolean matrices of possibly smaller sizes is one of such cross-
roads where two disciplines meet each other. Thus, it was shown that the optimal
number of factors, that is the minimal size of common dimension of these two
product matrices, can be found based on the family of corresponding formal con-
cepts considered as factors for the original Boolean matrix [2]. Decomposition
of object-attribute matrices into products of object-factor and factor-attribute
matrices plays important role in Machine Learning and Data Mining [3]. One of
the desired properties is the dimensional reduction that normally preserves with
high accuracy similarly between objects or attributes in terms of dot product
and makes it possible to recover the input matrix [4]. For example, in collab-
orative filtering domain Boolean Matrix Factorisation (BMF) was on par with
the (truncated) Singular Value Decomposition approach in terms of obtained

87

quality metrics [5,6]. It speeds up the computation on the decomposed matrices
and allows finding homogeneous taste communities as those latent factors.

Another fruitful property of Boolean matrices is their cheap bit represen-
tation and related bit operations. The only obstacle for Boolean Matrix Fac-
torisation to be widely adopted technique so far is that of determination of the
optimal number factors k for Boolean matrices or Schein rank is NP-hard prob-
lem [7,2]. So, every good approximate algorithm geared towards minimisation of
the number of factors can be taken into account [8].

One of the earlier proposed algorithm for BMF is GreConD. It follows a
greedy strategy adding attributes one-by-one with subsequent computation of
their closures and is not optimal in general. In this paper we address one very
important for practice case of the input for this algorithm, the contranominal
scale of arbitrary size n, i.e. square Boolean matrix with all ones except the main
diagonal [9]. It is well-known that the number of patterns (formal concepts) for
this case is 2n. It is easy to show experimentally that GreConD is not optimal for
this particular case by comparing its output with the theoretically deduced values
of Schein rank for contranominal scales. However, the output solution follows an
interesting pattern deserving a special treatment in terms of recurrences and
generating functions. It allows us to formally analyse the discrepancy between
this suboptimal solution and theoretically optimal one. Moreover, to know the
theoretically optimal solution as the number of factors does not mean to provide
a concrete factorisation. To fill the gap, we sketch a correct algorithm to this
end.

The paper is organised as follows. In Section 2, we recall the reader the basic
definitions of FCA and BMF and describe GreConD algorithm. In Section 3,
we shortly describe GreConD with its pseudocode. In Section 4, we provide the
reader with our experimental and theoretical analyses of the algorithm’s subop-
timality. The penultimate section, Section 5, presents the optimal algorithm to
find BMF for formal contexts of contranominal scales. Finally, Section 6 briefly
discusses future prospects and concludes the paper.

2 Boolean Matrix Factorisation and GreConD

2.1 BMF based on Formal Concept Analysis

Basic FCA definitions. Formal Concept Analysis (FCA) is a branch of ap-
plied algebra and it studies (formal) concepts and their hierarchies [10]. The
adjective “formal” indicates a strict mathematical definition of a pair of sets,
called, the extent and intent. This formalisation is possible because of the use of
the algebraic lattice theory.

Definition 1. Formal context K is a triple (G,M, I), where G is a set of ob-
jects, M is a set of attributes, and I ⊆ G×M is an incidence binary relation.

The binary relation I is interpreted as follows: for g ∈ G, m ∈ M we write
gIm if the object g has the attribute m.

88

For a formal context K = (G,M, I) and any A ⊆ G and B ⊆ M a pair of
mappings is defined:

A↑ = {m ∈M | gIm for all g ∈ A}, B↓ = {g ∈ G | gIm for all m ∈ B},
these mappings define Galois connection between partially ordered sets (2G,⊆)
and (2M ,⊆) on disjunctive union of G and M . The set A is called closed set, if
A↑↓ = A [11].

Definition 2. A formal concept of the formal context K = (G,M, I) is a pair
(A,B), where A ⊆ G, B ⊆ M , A↑ = B and B↓ = A. The set A is called the
extent, and B is the intent of the formal concept (A,B).

It is evident that the extent and intent of any formal concept are closed sets.
The set of all formal concepts of a context K is denoted by B(G,M, I).
The state-of-the-art surveys on advances in FCA theory and its applications

can be found in [12,13].

Description of FCA-based BMF. Boolean Matrix Factorisation is a decom-
position of the original matrix I ∈ {0, 1}n×m, where Iij ∈ {0, 1}, into a Boolean
matrix product P ◦ Q of binary matrices P ∈ {0, 1}n×k and Q ∈ {0, 1}k×m for
the smallest possible number of k. We define Boolean matrix product as follows:

(P ◦Q)ij =

k∨

l=1

Pil ·Qlj ,

where
∨

denotes disjunction, and · conjunction.
For example, in collaborative filtering, matrix I can be considered as a matrix

of binary relation between set X of objects (users), and a set Y of attributes
(items that users have evaluated). In this case, we assume that xIy iff the user
x evaluated object y. The triple (X,Y, I) naturally forms a formal context.

Consider a set F ⊆ B(X,Y, I), a subset of all formal concepts of context
(X,Y, I), and introduce matrices PF and QF :

(PF)il =

{
1, i ∈ Al,
0, i /∈ Al,

(QF)lj =

{
1, j ∈ Bl,
0, j /∈ Bl.

,

where (Al, Bl) is a formal concept from F . We can consider decomposition of
the matrix I into binary matrix product PF and QF as described above. The
following theorems are proved in [2]:

Theorem 1. (Universality of formal concepts as factors). For every I there
is F ⊆ B(X,Y, I), such that I = PF ◦QF .
Theorem 2. (Optimality of formal concepts as factors). Let I = P ◦Q for
n×k and k×m binary matrices P and Q. Then there exists a F ⊆ B(X,Y, I)
of formal concepts of I such that |F| ≤ k and for the n × |F| and |F| ×m
binary matrices PF and QF we have I = PF ◦QF .

There are several algorithms for finding PF and QF by calculating formal con-
cepts based on these theorems [2].

89

3 GreConD

There are several algorithms for finding PF and QF by calculating formal con-
cepts based on aforementioned theorems [2]. This paper studies the work of
GreConD (Algoritm 2 from [2]), one of the existing algorithms for BMF. Gre-
ConD avoids computation of all possible formal concepts and therefore works
much faster [2]. Time estimation of the calculations in the worst case yields
O(k|G||M |3) [5], where k is the number of found factors (and can be omitted as
a constant term), |G| is the number of objects, |M | is the number of attributes.

Define U = {〈i, j〉|Ii,j = 1} for a Boolean matrix I. The main idea of the
algorithm is to maximize the set

D ⊕ y := ((D ∪ {y})↓ × (D ∪ {y})↓↑) ∩ U

successively adding columns to intent D of formal concept (C,D).
Below we provide pseudocode for GreConD.

Algorithm 3.1 GreConD

1: INPUT: I (Boolean matrix)
2: OUTPUT: F (set of factor concepts)
3:
4: U ← {〈i, j〉|Ii,j = 1}
5: F ← ∅
6: while U 6= ∅ do
7: D ← ∅
8: V ← 0
9: while there is j /∈ D such that |D ⊕ j| > V do

10: select j /∈ D that maximizes |D ⊕ j|
11: D ← (D ∪ {j})↓↑
12: V ← |(D↓ ×D) ∩ U|
13: end while
14: C ← D↓

15: add (C,D) to F
16: for each 〈i, j〉 ∈ C ×D do
17: remove 〈i, j〉 from U
18: end for
19: end while
20: return F

The set U contains not yet covered object-attribute pairs by any of the pre-
viously found factors. When the newly found factor (C,D) is added to F , all
the pairs from C ×D should be deleted from U (lines 15-18). When U is empty,
the GreConD terminates (line 6, the main loop). The inner loop (lines 9–13)
maximizes the cardinality D⊕ j while it is still possible by examining attributes
not in D.

90

4 GreConD on contranominal scale

In this section we show that GreConD is optimal for ordinal and nominal scales,
but not optimal on contranominal scale. We also construct an optimal algorithm
for contranominal scale.

4.1 Optimality on ordinal and nominal scales

In FCA, scales are used to represent the so-called multi-valued contexts (cf.
relational tables in databases) as one-valued contexts; the latter we also consider
here as Boolean matrices.

First, let us consider two elementary scales. The nominal scale is defined as
a formal context Nn = ({1, . . . , n}, {1, . . . , n},=) and is used to scale mutually
exclusive attributes like traffic light signals (red, green, yellow). The ordinal scale
is defined as On = ({1, . . . , n}, {1, . . . , n},≤) and is applied in cases where the
values are ordered like university grades (poor, normal, good, excellent).

It follows from our experiment that the number of factors obtained by Gre-
ConD on ordinal and nominal scales are equal to the size of scales. We can prove
that these numbers are optimal.

Proposition 1. The number of factors n obtained by GreConD for a nominal
scale Nn is optimal.

Proof. Note that for a nominal scale of size n any concept with nonempty extent
and intent has the form ({i}, {i}) (i ∈ {1, . . . , n}). Furthermore, the number of
formal concepts is equal to the number of factors by definition. ut

Proposition 2. The number of factors n obtained by GreConD for an ordinal
On is optimal.

Proof. Note that for the ordinal scale of size n and for any nonempty A ⊆
{max(A), . . . , n} it holds that A↑ = {1, . . . , n}. Besides, {max(A), . . . , n}↓ =
{1, . . . ,max(A)}. Therefore, concepts for the ordinal scale are ({1, . . . , k}, {k, . . . , n})
for k ∈ {1, . . . , n}. Since GreConD needs to cover every object-attribute pair,
each pair ({i}, {i}) for i ∈ {1, . . . , n} should be covered as well, which requires
exactly n concepts ({1, . . . , i}, {i, . . . , n}). ut

4.2 Suboptimality on contranominal scale

For every set S the contranominal scale is defined as Nc
S = (S, S, 6=). In what

follows, we consider Nc
n with S = {1, . . . , n} without loss of generality.

Factorizing contranominal scales of sizes from 1 to 128 by GreConD3 we ob-
tain a sequence of the number of factors an (n is the size of a scale):

a1 = 0, a2 = 2, a3 = 3, a4 = 4,

3 Our Python implementation of GreConD for these experiments: https://bit.ly/
GreConDsub

91

Fig. 1. The number of factors for GreConD and its theoretical optimum for contra-
nominal scales of increasing size.

a5 = a6 = a7 = 5, a8 = 6,

a9 = · · · = a15 = 7, a16 = 8,

a17 = · · · = a31 = 9, a32 = 10,

a33 = · · · = a63 = 11, a64 = 12,

a65 = · · · = a127 = 13, a128 = 14 . . .

Note that the number of obtained factors increases by one when the size of
a scale is a power of two or a power of two plus one.

The sequence can be defined as follows:

a1 = 0, a2 = 2,

an = 2 log2 n if ∃k : n = 2k,

an = a2blog2 nc + 1 for other n.

Thus analytic form for the sequence is the following.

Conjecture. The number of factors obtained by GreConD on contranominal
scale is described by the sequence

an = 2 · blog2 nc+ 1− [n = 2blog2 nc],

92

n being the size of a scale.
One way to obtain a simpler closed form of the considered sequence is to

analyse its generating function [14].
Let G(z) =

∑
n
anz

n is the associated generating function for the sequence

an. The sequence an can be rewritten in the following way: a1 = 0, a2 = 2, while
an = an−1+blog2 nc−blog2(n−1)c+dlog2 ne−dlog2(n−1)e. One can check that
one of the respective differences of rounded logarithms takes on 1 when n = 2k

or n− 1 = 2k for some k > 0.
Let us sum anz

n as follows:

∑

n≥2
anz

n =
∑

n≥2
an−1z

n+
∑

n≥2
(blog2 nc−blog2(n−1)c+dlog2 ne−dlog2(n−1)e)zn

Let Un = dlog2ne and Ln = blog2nc, then

G(z) = zG(z) +
∑

n≥2
Lnz

n −
∑

n≥2
Ln−1z

n +
∑

n≥2
Unz

n −
∑

n≥2
Un−1z

n .

Now, let L(z) =
∑
n≥2

Lnz
n and U(z)

∑
n≥2

Unz
n, then

G(z) = zG(z) + L(z)− zL(z) + U(z)− zU(z) or

G(z)(1− z) = (L(z) + U(z))(1− z) .

For z 6= 1 we have

an = [zn]G(z) = blog2 nc+ dlog2 ne .

Next, we show that the number of factors obtained by GreConD on contra-
nominal scale is not optimal.

First, we provide the definition of Schein rank.

Definition 3. [15] For vectors v, w the matrix (viwj) is called cross-vector4.

Definition 4. [15] Schein rank of a Boolean matrix A is the least number of
Boolean cross-vectors summing up to A.

Theorem 3. [16] Schein rank of contranominal scale of size n equals N(n),
where l = N(k) (k ∈ N) is defined as the least number, such that k ≤

(
l
bl/2c

)
.

We also provide several first values of N(n)5:
N(1) = 1, N(2) = 2, N(3) = 3, N(4) = N(5) = N(6) = 4, N(7) = · · · = N(10) =

4 Note that we deal with column vectors according to data analysis conventions; so,
(viwj) is the outer product of v and w.

5 See also OEIS sequence A305233: https://oeis.org/A305233

93

5,
N(11) = · · · = N(20) = 6, N(21) = · · · = N(35) = 7, N(36) = · · · = N(70) = 8,
N(71) = · · · = N(126) = 9, N(127) = · · · = N(252) = 10 . . .
Note that for contranominal scales of sizes 2, 3, 4, 7 GreConD does find Schein
rank, i.e. optimal number of factors. However, for the remaining sizes (n > 1)
GreConD finds suboptimal number of factors.

5 Optimal algorithm for contranominal scale

Let us construct an algorithm that would factorize contranominal scale with
optimal number of factors. We use Sperner’s theorem.

Definition 5. A family of incomparable (with respect to set inclusion) sets is
called a Sperner family, or an antichain of sets.

Theorem 4. [17] (Sperner) For an n-element set the size of a largest antichain
does not exceed

(
n
bn/2c

)
.

Equality holds iff an antichain consists of all subsets of size dn/2e or all subsets
of size bn/2c.

Theorem 3 [16] states that the optimal number of factors for contranominal
scale of size n is equal to N(n). Therefore, BMF with the optimal number of
factors (we call it optimal BMF) has object-factor matrix of size n×N(n). From
the proof [16] it follows that the minimal set of factors for contranominal scale
is an antichain. Next, we show how to find an antichain of a given length n.

Let us find all combinations of elements from the set {1, . . . , N(n)} by bN(n)/2c
elements (for example, by Algorithm T from [18][p. 359]). Note that by Sperner’s
theorem a set of those combinations is the largest antichain for the N(n)-element

set of factors. Also,
(

N(n)
bN(n)/2c

)
≥ n by definition of N(n). Next, for every com-

bination we make a binary vector r of length N(n) with ri = 1 ⇐⇒ the
corresponding combination contains the element i. Finally, we obtain object-
factor matrix by choosing an n-element subset of binary vectors and placing it
in object-factor matrix.

Based on the constructed object-factor matrix, we find the factor-attribute
matrix. We apply the derivation operator ↓ to every factor f in the object-
factor matrix, then we apply the derivation operator operator ↑ to the set of the
obtained objects in object-attribute matrix. Finally, we make binary row for the
obtained set of attributes and place it in f -row in factor-attribute matrix.

Thus, we get optimal BMF for contranominal scale.
Note that we can simplify the procedure of construction of the factor-attribute

matrix using the following property.

Property 1. For contranominal scale of size n and any subsets A and B of sets
of objects and attributes respectively it holds that

A↑ = {1, . . . , n}\A;B↓ = {1, . . . , n}\B.

94

Proof. Using the definition of contranominal scale and the derivation operator(s)
we get:
A↑ = ∩a∈A({1, . . . , n}\a) = {1, . . . , n}\A.
The proof for B is similar. ut

Now we can remake the recovering of factor-attribute B matrix from object-
factor matrix A. If Ak is the k-th column in the matrix A, then ∼ Ak (here ∼
is a logical negation) is a k-th row in the matrix B.

Example. Let us demonstrate our algorithm on contranominal scale of size
5.

N(5) = 4, hence BMF has 4 factors. Generate 5 different combinations from
the set {1, 2, 3, 4}: {1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}. Therefore, we obtain the
object-factor matrix A:

A =

1 1 0 0
1 0 1 0
1 0 0 1
0 1 1 0
0 1 0 1

. The first column of matrix A consists of vector
(
1, 1, 1, 0, 0

)T
,

so vector
(
0, 0, 0, 1, 1

)
is the first row of factor-attribute matrix. Similarly, we fill

the rest of the rows in matrix B and obtain the optimal BMF:

0 1 1 1 1
1 0 1 1 1
1 1 0 1 1
1 1 1 0 1
1 1 1 1 0

=

1 1 0 0
1 0 1 0
1 0 0 1
0 1 1 0
0 1 0 1

◦

0 0 0 1 1
0 1 1 0 0
1 0 1 0 1
1 1 0 1 0

Proposition 3. The number of optimal BMFs (found by the proposed algo-

rithm) of the contranominal scale of size n > 0 is n!
(
q
n

)
, where q =

(
N(n)
bN(n)/2c

)
.

Proof. Recall that we choose an n-element set from all the combinations of
numbers from the set {1, . . . , N(n)} by bN(n)/2c elements in order to get rows
of an object-factor matrix. Further, there are n! ways to arrange every obtained
n-element set of combinations as rows of object-factor matrix.

We conclude the proof noting that there is a unique way to build the factor-
attribute matrix having the object-factor matrix. ut

Note that the case n = 1, i.e. when I = (0), has two more solutions in
addition to P ◦Q = (1) ◦ (0); namely, (0) ◦ (1) = (0) ◦ (0).

6 Conclusion

In the paper we considered important case for Boolean matrix factorisation based
on our experimental and theoretical analyses of the behaviour of the GreConD
algorithm. We hypothesise that the number of output factors for the contranom-
inal scales in case of GreConD is blog2 nc + dlog2 ne based on the substantial
observed fragment of its output for different values of the scale size n.

95

We have also proposed an optimal algorithm w.r.t. Schein rank to find one out
of n!

(
q
n

)
optimal Boolean matrix factorisation for this case, where q =

(
N(n)
bN(n)/2c

)
.

As a future research direction we would like to continue our previous investi-
gations of Boolean matrix factorisation for collaborative filtering problems [5,6]
with an updated knowledge on suboptimality in case of contranominal scales
presence as well to extend this approach to Boolean tensors.

Acknowledgments. The paper was prepared within the framework of the HSE
University Basic Research Program and was also supported in part through com-
putational resources of HPC facilities at HSE University. The first author was
also supported by Russian Science Foundation under grant 17-11-01276 at St.
Petersburg Department of Steklov Mathematical Institute of Russian Academy
of Sciences, Russia and by RFBR (Russian Foundation for Basic Research) ac-
cording to the research project No 19-29-01151. The foundations had no role in
study design, data collection and analysis, writing the manuscript, and decision
to publish.

We would like to thank Profs. Radim Belohlavek, Jan Outrata, Martin Tr-
necka, and Vilem Vychodil for lasting collaboration and Prof. Donald Knuth
for personal written explanation of a nontrivial piece from Concrete Mathemat-
ics [14] regarding summation properties.

References

1. Janostik, R., Konecny, J., Krajca, P.: Interface between Logical Analysis of Data
and Formal Concept Analysis. Eur. J. Oper. Res. 284(2) (2020) 792–800

2. Belohlavek, R., Vychodil, V.: Discovery of optimal factors in binary data via a
novel method of matrix decomposition. Journal of Computer and System Sciences
76(1) (2010) 3 – 20 Special Issue on Intelligent Data Analysis.

3. Miettinen, P., Neumann, S.: Recent Developments in Boolean Matrix Factoriza-
tion. In Bessiere, C., ed.: Proceedings of the Twenty-Ninth International Joint
Conference on Artificial Intelligence, IJCAI 2020, ijcai.org (2020) 4922–4928

4. Belohlávek, R., Outrata, J., Trnecka, M.: Impact of Boolean factorization as pre-
processing methods for classification of Boolean data. Ann. Math. Artif. Intell.
72(1-2) (2014) 3–22

5. Ignatov, D.I., Nenova, E., Konstantinova, N., Konstantinov, A.V.: Boolean Matrix
Factorisation for Collaborative Filtering: An FCA-Based Approach. In Agre, G.,
Hitzler, P., Krisnadhi, A.A., Kuznetsov, S.O., eds.: Artificial Intelligence: Method-
ology, Systems, and Applications - 16th International Conference, AIMSA 2014,
Varna, Bulgaria, September 11-13, 2014. Proceedings. Volume 8722 of Lecture
Notes in Computer Science., Springer (2014) 47–58

6. Akhmatnurov, M., Ignatov, D.I.: Context-Aware Recommender System Based on
Boolean Matrix Factorisation. In Yahia, S.B., Konecny, J., eds.: Proceedings of
the Twelfth International Conference on Concept Lattices and Their Applications,
Clermont-Ferrand, France, October 13-16, 2015. Volume 1466 of CEUR Workshop
Proceedings., CEUR-WS.org (2015) 99–110

7. Miettinen, P., Mielikäinen, T., Gionis, A., Das, G., Mannila, H.: The discrete basis
problem. IEEE Trans. Knowl. Data Eng. 20(10) (2008) 1348–1362

96

8. Miettinen, P., Vreeken, J.: MDL4BMF: Minimum Description Length for Boolean
Matrix Factorization. ACM Trans. Knowl. Discov. Data 8(4) (2014) 18:1–18:31

9. Albano, A., Chornomaz, B.: Why concept lattices are large: extremal theory for
generators, concepts, and VC-dimension. Int. J. Gen. Syst. 46(5) (2017) 440–457

10. Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundations.
Springer, Berlin/Heidelberg (1999)

11. Birkhoff, G.: Lattice Theory. 11th printing edn. Harvard University, Cambridge,
MA (2011)

12. Poelmans, J., Ignatov, D.I., Kuznetsov, S.O., Dedene, G.: Formal concept analysis
in knowledge processing: A survey on applications. Expert Syst. Appl. 40(16)
(2013) 6538–6560

13. Poelmans, J., Kuznetsov, S.O., Ignatov, D.I., Dedene, G.: Formal concept analysis
in knowledge processing: A survey on models and techniques. Expert Syst. Appl.
40(16) (2013) 6601–6623

14. Graham, R.L., Knuth, D.E., Patashnik, O.: Concrete Mathematics: A Foundation
for Computer Science, 2nd Ed. Addison-Wesley (1994)

15. Kim, K.H.: Boolean matrix theory and applications. Marcel Dekker, New York
and Basel (1982)

16. Marenich, E.: Determining the Schein Rank of Boolean Matrices. Matrix Methods:
Theory, Algorithms and Applications (2010) 85–103

17. Sperner, E.: Ein Satz über Untermengen einer endlichen Menge. Math Z 27 (1928)
544–548

18. Knuth, D.E.: Combinatorial Algorithms. Volume 4A of The Art of Computer
Programming. Addison-Wesley Professional (January 2011)

97

98

Summation of Decision Trees

Egor Dudyrev1[0000−0002−2144−3308]

Sergei O. Kuznetsov1[0000−0003−3284−9001]

National Research University Higher School of Economics, Moscow, Russia

Abstract. Ensembles of decision trees, like Random Forests are efficient
machine learning models with state-of-the-art prediction quality. How-
ever, their predictions are much less transparent than those of a single
decision tree. In this paper, we describe a prediction model based on a
single decision tree in terms of Formal Concept Analysis. We define a
differential way to describing a decision rule. We conclude by present-
ing an approach to summing an ensemble of decision trees into a single
decision semilattice with the same predictions.

Keywords: Ensembles of Decision Trees · Formal Concept Analysis ·
Supervised Machine Learning.

1 Introduction

A decision tree [4] is a popular machine learning model. It can help face the chal-
lenge of interpretable machine learning. However, usually it is too simplistic to
show good learning performance. Ensembles of decision trees show better learn-
ing quality. Some of them – such as random forest [3] and gradient boosting [7] –
are considered state-of-the-art. However, ensembles miss the high interpretability
of a single decision tree.

Formal Concept Analysis (FCA) [8] is a mathematically well-founded theory
aimed at data analysis. In [1], [2], [9], [10], researchers show the connection
between decision trees and FCA.

This paper continues our study on the connection between FCA and decision
trees started in [6]. In that paper, we have presented the following pipeline. First,
we convert a decision tree into a concept lattice. Second, we fuse an ensemble
of concept lattices into a single concept lattice. Third, we convert a concept
lattice into a decision (semi)lattice: a supervised machine learning model with
prediction quality non-inferior to that of ensembles of decision trees.

In what follows, we present a method for constructing a decision semilattice
that outputs the same predictions as an ensemble of decision trees. We propose
a differential way for describing a decision rule and, consequently, a decision tree
and a decision semilattice. We finish by summing the ensemble of decision trees
into a single decision semilattice.

99

2 Basic definitions

For standard definitions of FCA and decision trees, we refer the reader to [8]
and [4], respectively.

Here we use binary attributes to describe the algorithms. In the experimental
section, we extend the algorithm to processing numerical data with interval
pattern structures [11].

The standard FCA framework operates with a set M of binary attributes.
In what follows we often replace a set of attributes M by a set M? that consists
both of attributes m ∈M and their complements m (“not m”):

M? = M ∪ {m | ∀m ∈M} (1)

3 The proposed approach

3.1 Decision tree and decision semilattice

Definition 1. A decision rule (p, t) is a pair of a subset of attributes p ⊆ M?

called a premise and a real number t ∈ R called a target. The attributes in the
premise p are non-complementary, i.e. ∀m ∈M? : if m ∈ p then m /∈ p .

Given a description x ⊆M?, a decision rule can be expressed as “if x contains
p: p ⊆ x then predict t”.

We order decision rules (p, t), (p̃, t̃) by the reverse inclusion of their premises:

(p, t) < (p̃, t̃)⇔ p ⊃ p̃ (2)

We cannot apply a single decision rule to any possible description x ⊆ M?.
Therefore, we should use a set of decision rules. A popular means of structuring
decision rules in a set is a decision tree DT .

Definition 2. Decision tree DT is an ordered set of decision rules satisfying the
following properties: (a) each premise in DT is unique, (b) DT contains a root
decision rule with the empty premise, (c) each non-root decision rule in DT has
exactly one direct bigger neighbour (“parent”), and one direct smaller neighbour
of a parent (“sibling”) which differ by one complementary attribute:

a) ∀(p, t) ∈ DT @t̃ ∈ R, t̃ 6= t : (p, t̃) ∈ DT (3)

b) ∃t ∈ R : (∅, t) ∈ DT (4)

c) ∀(p, t) ∈ DT, p 6= ∅, ∃!(ppar, tpar), (psib, tsib) ∈ DT,m ∈ p : (5)

(ppar, tpar) � (p, t), (ppar, tpar) � (psib, tsib), psib 6= p

ppar = p \ {m}, psib = p \ {m} ∪ {m}

We propose a more general type of the ordered set of decision rules: a decision
semilattice DSL. To define it, we relax the property ”c” of a decision tree DT .

100

Definition 3. Decision semilattice DSL is an ordered set of decision rules sat-
isfying properties a-b (eq. 3-4) from Definition 2.

A decision tree DT is a special case of a decision semilattice DSL. Thus,
any operation defined for a decision semilattice can also be applied to a decision
tree.

We define a “prediction” function φ(DSL, x) as a function outputting a single
target prediction for a description x ⊆M? based on a decision semilattice DSL:

φ(DSL, x) =
1

|DSLxmin|
∑

(p,t)∈DSLx
min

t (6)

where DSLxmin = {(p, t) ∈ DSLx | @(p̃, t̃) ∈ DSLx : (p̃, t̃) < (p, t)} (7)

DSLx = {(p, t) ∈ DSL | p ⊆ x} (8)

3.2 Differential decision tree

In this subsection we define a “differential” way for describing a decision rule:
(given a prior prediction ŷ ∈ R) “if x contains p : p ⊆ x then add t to the
prediction ŷ”.

We define a function φ∆(DSL, x) which outputs a single target prediction
for a description x ⊆ M? based on a decision semilattice DSL and differential
approach:

φ∆(DSL, x) =
∑

(p,t)∈DSLx

t (9)

It is unclear how to construct “differential” decision trees and semilattices.
We suggest a solution to the former task. To construct a differential decision
tree, one can construct a decision tree DT and then “differentiate” it with a
function δ:

δ(DT) = {(p, t− t̃) | (p, t), (p̃, t̃) ∈ DT : (p, t) ≺ (p̃, t̃)} ∪ {(∅, t) ∈ DT} (10)

Proposition 1. For a decision tree DTa prediction φ(DT, x) matches the pre-
diction φ∆(δ(DT), x) for any x.

Proof. The proof is derived from two facts: (i) a decision tree DT always uses
only one decision rule to make a final prediction: |DT xmin| = 1,∀x ⊆M? (ii) each
target of a decision rule in δ(DT) represents the difference between the target
of the corresponding decision rule in DT and the target of its parent.

3.3 Summation of differential decision semilattices

We define an addition operation on decision semilattices in the following way:

DSL1 +DSL2 = {(p, t1 + t2) | ∀(p, t1) ∈ DSL1, t2 ∈ R : (p, t2) ∈ DSL2}
∪ {(p, t1) ∈ DSL1 | ∀t2 ∈ R : (p, t2) /∈ DSL2}
∪ {(p, t2) ∈ DSL2 | ∀t1 ∈ R : (p, t1) /∈ DSL1}

(11)

The addition operation leads to an important proposition:

101

Proposition 2. Given a set of n decision semilattices {DSLi}ni=1, the “differ-
ential” prediction of the sum of decision semilattices matches the sum of “dif-
ferential” predictions of the summand decision semilattices :

φ∆(
n∑

i=1

DSLi, x) =
n∑

i=1

φ∆(DSLi, x), ∀x ⊆M? (12)

Proof. The proof follows from the definitions of the addition operation (eq. 11)
and the function φ∆ (eq. 9).

The summation of several identical decision semilattices can be represented
as multiplication by a real number:

DSL ∗ k =
k∑

i=1

DSL = {(p, t ∗ k) | (p, t) ∈ DSL}, ∀k ∈ R (13)

3.4 Ensembles of decision trees as decision semilattices

Random forest RF and gradient boosting GB are state-of-the-art ensembles of
decision trees. They both operate with a set of decision trees {DTi}ni=1 and,
optionally, real-valued hyperparameters. Although the ensembles construct the
set of decision trees differently, their prediction functions φRF and φGB are
similar as they both sum the predictions of the underlying decision trees:

φRF ({DT}ni=1, x) =
1

n

n∑

i=1

φ(DTi, x) (14)

φGB (({DT}ni=1, α, λ), x) = α+ λ

n∑

i=1

φ(DTi, x), α, λ ∈ R (15)

Proposition 3. Given a set of n decision trees {DTi}ni=1 and real numbers
α, λ ∈ R, there is (i) a decision semilattice DSLRF such that the prediction
φ∆(DSLRF , x) matches the prediction φRF ({DTi}ni=1, x) for any description x ⊆
M?; (ii) a decision semilattice DSLGB such that the prediction φ∆(DSLGB , x)
matches the prediction φGB({DTi}ni=1, x) for any description x ⊆M?:

1) ∀x ⊆M? φ∆(DSLRF , x) = φRF ({DTi}ni=1, x) (16)

DSLRF =
1

n

n∑

i=1

δ(DTi) (17)

2) ∀x ⊆M? φ∆(DSLGB , x) = φGB
(
({DTi}ni=1, α, λ), x

)
(18)

DSLGB = {(∅, α)}+ λ
n∑

i=1

δ(DTi) (19)

Proof. (i) By proposition 1, for any decision tree DTi, there is a differential
decision tree δ(DTi) : φ(DTi, x) = φ∆(δ(DTi), x), ∀x ⊆M?, (ii) By proposition
2, one can sum a set of differential decision trees into a single differential decision
semilattice keeping predictions unchanged.

102

4 Experiments

This section presents an empirical proof that a decision semilattice can produce
the same predictions as ensembles of decision trees. The experiments are run via
FCApy1 python package.

The experimental setup is as follows. First, we construct the “base” models:
a decision tree, a random forest, a gradient boosting from sci-kit learn pack-
age [12], and a gradient boosting from XGBoost package [5]. Then we convert
each decision tree of these models into a unified decision tree format used in
FCApy. Finally, we aggregate the unified decision trees of ensemble models into
a decision semilattice as defined in equations 17, 19.

We use three real-world datasets for regression to compare the models. They
are: Boston Housing Data2(“Bost.”), California Housing dataset3(“Cal.”), Dia-
betes Data4(“Diab.”).

To construct each decision semilattice in less than a minute (on average), we
limit each ensemble model by only ten decision trees with a maximum depth of
six. The sole decision tree models are limited by a maximal depth of ten.

Table 1 shows the weighted average percentage error (WAPE) of the decision
semilattices copying the predictions of the base models on both train and test
parts of a dataset. The error does not exceed 1.9%.

The slight difference in the errors comes from the real-valued nature of the
datasets. The premises of decision trees built on such data are of the form either
“is m ≤ θ” or “is m > θ” where m is a real-valued attribute and θ ∈ R. These
premises are sensitive to the precision of θ. They also use both closed and open
intervals, while our FCA-based implementation operates only the former ones.
We replace each premise of the form “is m > θ” by the premise “is m ≥ θ+10−9”.

Base model DecisionTree GradientBoosting RandomForest XGBoost

Dataset Bost. Cal. Diab. Bost. Cal. Diab. Bost. Cal. Diab. Bost. Cal. Diab.

Train error 0.00 0.00 0.00 0.44 0.00 0.35 0.88 1.75 0.10 0.00 0.00 0.00

Test error 0.02 0.01 0.25 0.63 0.00 0.31 0.84 1.88 0.30 0.22 0.03 0.59

Table 1. WAPE (in %) of the decision semilattices copying the predictions of the base
models

5 Conclusion

In this paper, we have introduced a method for summing an ensemble of decision
trees into a single decision semilattice model with the same predictions. To do so,

1 https://github.com/EgorDudyrev/FCApy
2 https://archive.ics.uci.edu/ml/machine-learning-databases/housing
3 https://scikit-learn.org/stable/datasets/real world.html#california-housing-dataset
4 https://www4.stat.ncsu.edu/~boos/var.select/diabetes.html

103

we have presented a “differential” way to describe decision rules and a function
for differentiating a single decision tree.

In the future work, we plan to extend this approach to decision semilat-
tices. We also plan to study the application of decision semilattice to improving
interpretability of ensembles of decision trees.

Acknowledgments

The work of Sergei O. Kuznetsov on the paper was carried out at St. Petersburg
Department of Steklov Mathematical Institute of Russian Academy of Science
and supported by the Russian Science Foundation grant no. 17-11-01276

References

1. Assaghir, Z., Kaytoue, M., Jr., W.M., Villerd, J.: Extracting decision trees from
interval pattern concept lattices. In: Napoli, A., Vychodil, V. (eds.) Proc. 8th Int.
Conf. Concept Lattices and Their Applications, Nancy, France, October 17-20,
2011. CEUR Workshop Proc., vol. 959, pp. 319–332. CEUR-WS.org (2011)

2. Belohlávek, R., Baets, B.D., Outrata, J., Vychodil, V.: Inducing decision trees via
concept lattices. Int. J. of General Systems 38(4), 455–467 (2009)

3. Breiman, L.: Random forests. Machine Learning 45(1), 5–32 (10 2001)
4. Breiman, L., Friedman, J.H., Olshen, R.A., Stone, C.J.: Classification and Regres-

sion Trees. Wadsworth (1984)
5. Chen, T., Guestrin, C.: Xgboost. Proc. 22nd ACM SIGKDD Int. Conf. on Knowl-

edge Discovery and Data Mining (08 2016)
6. Dudyrev, E., Kuznetsov, S.O.: Decision concept lattice vs. decision trees and ran-

dom forests. In: Braud, A., Buzmakov, A., Hanika, T., Ber, F.L. (eds.) Formal
Concept Analysis - 16th Int. Conf., ICFCA 2021, Strasbourg, France, June 29 -
July 2, 2021, Proc. LNCS, vol. 12733, pp. 252–260. Springer (2021)

7. Friedman, J.: Greedy function approximation: A gradient boosting machine. An-
nals of Statistics 29, 1189–1232 (10 2001)

8. Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundations.
Springer Berlin Heidelberg (1999)

9. Krause, T., Lumpe, L., Schmidt, S.E.: A link between pattern structures and ran-
dom forests. In: Valverde-Albacete, F.J., Trnecka, M. (eds.) Proc. 15th Int. Conf.
Concept Lattices and Their Applications, Tallinn, Estonia, June 29-July 1, 2020.
CEUR Workshop Proc., vol. 2668, pp. 131–143. CEUR-WS.org (2020)

10. Kuznetsov, S.O.: Machine learning and formal concept analysis. In: Eklund, P.W.
(ed.) Concept Lattices, 2nd Int. Conf. on Formal Concept Analysis, ICFCA 2004,
Sydney, Australia, February 23-26, 2004, Proc. LNCS, vol. 2961, pp. 287–312.
Springer (2004)

11. Kuznetsov, S.O.: Pattern structures for analyzing complex data. In: Sakai, H.,
Chakraborty, M.K., Hassanien, A.E., Slezak, D., Zhu, W. (eds.) Rough Sets, Fuzzy
Sets, Data Mining and Granular Computing, 12th Int. Conf., RSFDGrC 2009,
Delhi, India, December 15-18, 2009. Proc. LNCS, vol. 5908, pp. 33–44. Springer
(12 2009)

12. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,
Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine
learning in python. J. of machine learning research 12(Oct), 2825–2830 (2011)

104

Ensemble Techniques for Lazy Classification
Based on Pattern Structures

Ilya Semenkov1 and Sergei O. Kuznetsov1

Higher School of Economics – National Research University, Moscow, Myasnitskaya
street 20, 101000, Russia

Abstract. This paper presents different versions of classification en-
semble methods based on pattern structures. Each of these methods is
described and tested on multiple datasets (including datasets with exclu-
sively numerical and exclusively nominal features). As a baseline model
Random Forest generation is used. For some classification tasks the clas-
sification algorithms based on pattern structures showed better perfor-
mance than Random Forest. The quality of the algorithms is noticeably
dependent on ensemble aggregation function and on boosting weighting
scheme.

Keywords: Formal Concept Analysis (FCA) · pattern structures · boost-
ing algorithms · ensemble algorithms

1 Introduction

Pattern structures were introduced in [1] for the analysis of data with complex
structure. In [6] [5] a model of lazy (query-based) classification using pattern
structures was proposed. The model shows quite good performance, which, how-
ever, is lower than that of ensemble classifiers that employ boosting techniques.
The main goal of this paper is to study various ensemble approaches based on
pattern structures, boosting, and different aggregation functions. The model is
known for good interpretability, so we would try to use ensemble techniques to
improve its prediction quality.

2 Model description

2.1 Pattern structures

The main idea of the pattern structures is the use of intersection (similarity) op-
eration, with the properties of a lower semilattice, defined on object descriptions
to avoid binarization (discretization) prone to creating artifacts [1]. An opera-
tion of this kind allows one to define Galois connection and closure operator,
which can be used to extend standard FCA-based tools of knowledge discovery
to non-binary data without scaling (binarizing) them.

At the first step of the model we transform features in the following way:
consider x ∈ Rn to be an observation, then we transform it using the following

105

transformation T : (x1, x2, ..., xn) → ((x1, x1), (x2, x2), ..., (xn, xn)). Basically,
for each feature j, its value in the observation x gets transformed from a number
xi into a 2-dimensional vector (xi, xi) with the same value repeated twice. This
is used later in the definition of similarity operation.

After the transformation each observation x has 2 values for each feature i,
namely xi,1 and xi,2. In this paper, we define the similarity of two transformed
observations x, y in the standard way of interval pattern structures [4] [5] [6]:

x u y = ((min(x1,1, y1,1),max(x1,2, y1,2)), ..., (min(xn,1, yn,1),max(xn,2, yn,2)))

where in xi,j and yi,j i indicates a feature and j indicates one of two values
for a feature. In other words for each feature i there were xi = (xi,1, xi,2), yi =
(yi,1, yi,2). After similarity operation (x u y)i = (min(xi,1, yi,1),max(xi,2, yi,2)).
Below, for simplicity this operation will be called intersection.

The subsumption relation is defined as the natural order of the semilattice:
x @ y ≡ x u y = x.

A hypothesis for a description x is a description xh ∈ Cj : @y ∈ Ci(i 6=
j) : (x u xh) @ y, where Ci stands for a set of elements from class i. So, if a
description xh does not fit any observation from classes Cj (j 6= i), but fits at
least 1 observation of the class Ci, then it is considered to be a hypothesis for
the class Ci.

The aggregation function is applied either to the whole set of all intersections
between a test observation and every element of the training sample, or to the
set of hypotheses (extracted from the training set).

Aggregation functions There are many reasonable aggregation functions. In
our experiments we have used the following ones:

1. avglengths: C = argminCi

1∑
k∈ACi

wk

∑
k∈ACi

dist (k), where

dist (k) =
∑n

j=1 (kj,2 − kj,1), wk, the weight of k-th observation in a training
set;

2. k per class closest avg: C = argminCi

1∑
k∈Lm,C

wk

∑
k∈Lm,C

dist (k), where

dist (k) =
∑n

j=1 (kj,2 − kj,1), Lm,C is the set of m elements from class C
which are closest to the prediction observation, m is a hyperparameter;

3. k closest: C = argmaxCi

∑
k∈Lm

wk · 1 (k = Ci), where

dist (k) =
∑n

j=1 (kj,2 − kj,1), Lm, the set of m elements which are closest to
the prediction observation regardless of their class, m is a hyperparameter;

4. count with threshold t: C = argmaxCi

∑
k∈ACi

1
(

dist(k)
wk

< t
)

, where

dist (k) =
∑n

j=1 (kj,2 − kj,1), t, a threshold.

Note: in each case ACi is a set of intersections of the test observation with
each observation in a class Ci, ACi = {xtest u x : (x ∈ Xtrain) ∧ (c(x) = Ci)} if
hypotheses are not used and ACi

= {xtest u xh : (xh ∈ Xtrain) ∧ (c(xh) = Ci)}
if hypotheses are used (specified in tables with results if they are used), c(x) is
a function which returns class of training object.

106

2.2 SAMME pattern structures

It is not possible to directly use the gradient boosting techniques as there is no
loss function which gets directly optimized. Thus, an analog of AdaBoost is used
as we know how to implement weighted datasets in pattern structures.

The general scheme called Stagewise Additive Modeling using a Multi-Class
Exponential loss function or SAMME is presented in [3]. After adapting it to
pattern structures it looks as follows:

Algorithm 1: SAMME for pattern structures analysis, training

Input: (X, y), training dataset, M is the number of models in ensemble
;

initialize wi = 1
n , n - number of objects in X;

for m ∈ 1, ...,M do
initialize model T (m);
classify each observation in X using weighted dataset with a new
model;

calculate error:

errm =
1∑n

i=1 wi

n∑

i=1

wi1
(
yi 6= T (m) (xi)

)

calculate model weight:

αm = log

(
1− errm
errm

)
+ log (K − 1)

where K is the amount of classes;
recalculate object weights:

wi ← wi · e am·1 (yi 6=T (m) (xi)) , i ∈ { 1, . . . , n }

end

Prediction of ensemble:

C (x) = argmax
k

M∑

m=1

αm · 1
(
T (m) (x) = k

)

Methods of weighting models Additionally to the original method of calcu-
lation of α, others were used such as:

1. Uniform: αm = 1
M

2. Linear: αm = 1∑n
i=1 wi

∑n
i=1 wi1

(
yi = T (m) (xi)

)

3. Exponential: αm =
∑n

i=1 e
wi1(yi=T (m)(xi))
∑n

i=1 ewi

4. Logarithmic: αm = log (1 + (1− errm)) = log (2− errm)
5. Iternum: αm = 1

m

107

3 Datasets description

3.1 Cardiotocography Data Set

The dataset consists of preprocessed 2126 fetal cardiotocograms (CTGs). It con-
tains 23 numerical attributes with no missing values. It could be used for 3 class
prediction as well as a 10 class classification (classes are more specific). The
dataset is available here [7]. The dataset is unbalanced. Before the classifica-
tion, data was standartized.

3.2 Male Fertility dataset

The dataset [8] consists of 9 features about patient health, injuries, lifestyle
and bad habits. All features are nominal. There are 100 observations in the
dataset. The final goal is binary classification: normal semen sample or sample
with deviations.

3.3 Divorces

The dataset [9] consists of 54 features which are the answers to questions about
relationship experience. All features are nominal. There are 170 observations in
the dataset. The final goal is binary classification: got divorced or not.

4 Random Forest

For each dataset Random Forest was chosen as a baseline, since this algorithm is
an efficient ensemble of decision trees (which are also good in explanation) [2].

In this algorithm the ensemble of Decision trees is built, where each tree is
tuned using random subsample from the training sample (Bagging) and random
subsample of features.

Gridsearch with crossvalidation was used to tune it.

5 Results

Accuracy, precision, recall and F1-score were chosen as quality metrics. For
datasets with more than 2 target classes, precision, recall and F1-score were
calculated for each class separately and averaged afterwards.

Metrics are measured on a randomly chosen test set.
SAMME was also run with the aggregation function k per class closest avg,

since it has shown good performance.
Due to space limitations, we present only results of the most interesting

experiments, together with the baseline model Random Forest.
In the table pattern structures are referred to as FCA and SAMME pattern

structures is referred to as SAMME FCA.

108

Table 1. Cardiotocography Data Set (3 classes)

Algorithm Accuracy Precision Recall F1-score Ensemble size

SAMME FCA (‘k per class closest avg’ original method) 0.934 0.892 0.833 0.858 5
FCA (‘k per class closest avg’) 0.934 0.892 0.833 0.858 1
Random Forest 0.925 0.867 0.839 0.852 100
SAMME FCA (‘k per class closest avg’ uniform method) 0.925 0.877 0.829 0.848 5
SAMME FCA (‘k per class closest avg’ linear method) 0.906 0.838 0.804 0.819 5
SAMME FCA (‘k per class closest avg’ exponential method) 0.761 0.582 0.630 0.602 5
SAMME FCA (‘k per class closest avg’ logarithmic method) 0.864 0.760 0.735 0.747 5
SAMME FCA (‘k per class closest avg’ iternum method) 0.897 0.828 0.784 0.803 5

Table 2. Cardiotocography Data Set (10 classes)

Algorithm Accuracy Precision Recall F1-score Ensemble size

SAMME FCA (‘k per class closest avg’ original method) 0.784 0.803 0.680 0.712 5
FCA (‘k per class closest avg’ original method) 0.784 0.803 0.680 0.712 1
Random Forest 0.793 0.720 0.723 0.704 100
SAMME FCA (‘k per class closest avg’ uniform method) 0.765 0.727 0.636 0.66 5
SAMME FCA (‘k per class closest avg’ linear method) 0.681 0.609 0.591 0.594 5
SAMME FCA (‘k per class closest avg’ exponential method) 0.465 0.423 0.412 0.409 5
SAMME FCA (‘k per class closest avg’ logarithmic method) 0.728 0.652 0.623 0.629 5
SAMME FCA (‘k per class closest avg’ iternum method) 0.643 0.602 0.575 0.582 5

As it can be seen in Table 1 and Table 2, with original weighting the metrics
are identical to the simple FCA one-model. This happens because the first model
has a significantly bigger α1 and dominates others in ensemble. That is why other
model weightings are tested.

However, in both cases best SAMME FCA and FCA models have higher
average F1-score than the tuned baseline and for the first case they also win
in terms of accuracy. Comparing SAMME FCA models it can be seen that the
original weighting is better in terms of the presented metrics even though it
effectively uses the first model only. In both SAMME and FCA the ensemble
size is smaller than in the random forest.

On the divorces dataset (Table 3) due to its size and simplicity Random
Forest manages to come out as an absolute winner having 100% in every score.
A lot of SAMME FCA and FCA models show the same relatively high scores.
SAMME again uses only the first model with original weights. However, a lot of
other weighting techniques have similar metric values on this dataset. Because
of that even though random forest uses 5 models, FCA can use less models.

On the fertility dataset (Table 4) the tuned Random Forest wins again. Espe-
cially the difference is significant in F1-score, precision and recall. The behaviour
of the SAMME FCA metrics is similar to the previous dataset: different model
weighting methods give similar results. In both SAMME and FCA the ensemble
size is smaller than in random forest.

109

Table 3. Divorce Predictors Data Set

Algorithm Accuracy Precision Recall F1-score Ensemble size

FCA ”avglengths” 0.953 0.958 0.952 0.953 1
FCA ”k per class closest avg” 0.953 0.958 0.952 0.953 1
FCA ”k closest” 0.953 0.958 0.952 0.953 1
FCA ”count with treshold t” 0.674 0.806 0.667 0.629 1
FCA ”avglengths” (with hypotheses) 0.953 0.958 0.952 0.953 1
FCA ”k per class closest avg” (with hypotheses) 0.953 0.958 0.952 0.953 1
FCA ”k closest” (with hypotheses) 0.953 0.958 0.952 0.953 1
FCA ”count with treshold t” (with hypotheses) 0.512 0.256 0.500 0.338 1
SAMME FCA ”avglengths” 0.953 0.958 0.952 0.953 5
SAMME FCA original ”k per class closest avg” 0.953 0.958 0.952 0.953 5
SAMME FCA ”k closest” 0.953 0.958 0.952 0.953 5
SAMME FCA ”count with treshold t” 0.674 0.806 0.667 0.629 5
SAMME FCA ”avglengths” (with hypotheses) 0.953 0.958 0.952 0.953 5
SAMME FCA ”k per class closest avg” (with hypotheses) 0.953 0.958 0.952 0.953 5
SAMME FCA ”k closest” (with hypotheses) 0.953 0.958 0.952 0.953 5
SAMME FCA ”count with treshold t” (with hypotheses) 0.512 0.256 0.500 0.338 5
Random Forest 1.0 1.0 1.0 1.0 5
SAMME FCA uniform ”k per class closest avg” 0.953 0.958 0.952 0.953 5
SAMME FCA linear ”k per class closest avg” 0.953 0.958 0.952 0.953 5
SAMME FCA exponential ”k per class closest avg” 0.953 0.958 0.952 0.953 5
SAMME FCA logarithmic ”k per class closest avg” 0.953 0.958 0.952 0.953 5
SAMME FCA iternum ”k per class closest avg” 0.953 0.958 0.952 0.953 5

6 Conclusion

Even though the model itself seems promising, right now it has multiple issues.
First, SAMME boosting technique does not give additional quality. The original
SAMME method of calculating α effectively uses only the first classifier, while
the other weighting methods do not give stronger metric values than the original
method. The problem seems to be in the fact that classifiers with indices > 1 in
ensemble are just not good enough. So, there is a reason while original methods
stick to the first classifier instead of using all of them. While other weighting
might use several parts of the ensemble, it does not improve the metrics, because
the classifiers built after the first one have bad metrics most of the time. The
potential room for improvement is to make consequent classifiers to produce a
better quality results possibly by changing the way dataset gets weighted.

Secondly, we can see that this algorithm performed worse on several datasets.
Even though it was better than Random Forest on the complex ones, there is still
a room for improvement for simpler ones. This again can be done by improving
the quality of the whole ensemble, which Random Forest seems to efficiently
perform.

SAMME FCA works slower than Random Forest. However, SAMME FCA
has much better explainability: it generates only 5 classifiers (in some cases

110

Table 4. Fertility Data Set

Algorithm Accuracy Precision Recall F1-score Ensemble size

FCA ”avglengths” 0.680 0.600 0.826 0.561 1
FCA ”k per class closest avg” 0.920 0.460 0.500 0.479 1
FCA ”k closest” 0.920 0.460 0.500 0.479 1
FCA ”count with treshold t” 0.560 0.577 0.761 0.476 1
FCA ”avglengths” (with hypotheses) 0.760 0.557 0.641 0.554 1
FCA ”k per class closest avg” (with hypotheses) 0.080 0.272 0.272 0.080 1
FCA ”k closest” (with hypotheses) 0.920 0.460 0.500 0.479 1
FCA ”count with treshold t” (with hypotheses) 0.520 0.571 0.739 0.449 1
SAMME FCA ”avglengths” 0.920 0.460 0.500 0.479 5
SAMME FCA ”k per class closest avg” 0.920 0.460 0.500 0.479 5
SAMME FCA ”k closest” 0.920 0.460 0.500 0.479 5
SAMME FCA ”count with treshold t” 0.920 0.460 0.500 0.479 5
SAMME FCA ”avglengths” (with hypotheses) 0.760 0.557 0.641 0.554 5
SAMME FCA ”k per class closest avg” (with hypotheses) 0.800 0.455 0.435 0.444 5
SAMME FCA ”k closest” (with hypotheses) 0.920 0.460 0.500 0.479 5
SAMME FCA ”count with treshold t” (with hypotheses) 0.920 0.460 0.500 0.479 5
Random Forest 0.960 0.979 0.750 0.823 100
SAMME FCA uniform ”k per class closest avg” 0.920 0.460 0.500 0.479 5
SAMME FCA linear ”k per class closest avg” 0.920 0.460 0.500 0.479 5
SAMME FCA exponential ”k per class closest avg” 0.920 0.460 0.500 0.479 5
SAMME FCA logarithmic ”k per class closest avg” 0.920 0.460 0.500 0.479 5
SAMME FCA iternum ”k per class closest avg” 0.920 0.460 0.500 0.479 5

effectively uses only one of them), while Random Forest consists of 5 trees only
on Divorces dataset and consists of 100 trees in every other case.

111

References

1. Bernhard Ganter, Sergei O. Kuznetsov. Pattern Structures and Their Projections.
In: Delugach H.S., Stumme G. (eds) Conceptual Structures: Broadening the Base.
ICCS 2001. Lecture Notes in Computer Science, Volume 2120 (2001). Springer,
Berlin, Heidelberg.

2. Leo Breiman. Random Forests. Machine Learning, Volume 45 (2001), 5–32.
3. Ji Zhu, Hui Zou, Saharon Rosset, Trevor Hastie. Multi-class AdaBoost. Statistics

and Its Interface, Volume 2 (2009), 349–360.
4. Mehdi Kaytoue, Sergei O. Kuznetsov, Amedeo Napoli, Sébastien Duplessis. Mining

gene expression data with pattern structures in formal concept analysis. Information
Sciences, Volume 181 (2011), Issue 10, 1989-2001.

5. Sergei O. Kuznetsov. Fitting Pattern Structures to Knowledge Discovery in Big
Data. In: Cellier P., Distel F., Ganter B. (eds) Formal Concept Analysis. ICFCA
2013. Lecture Notes in Computer Science, Volume 7880 (2013). Springer, Berlin,
Heidelberg.

6. Sergei O. Kuznetsov. Scalable Knowledge Discovery in Complex Data with Pattern
Structures. In: Maji P., Ghosh A., Murty M.N., Ghosh K., Pal S.K. (eds) Pattern
Recognition and Machine Intelligence. PReMI 2013. Lecture Notes in Computer
Science, Volume 8251 (2013). Springer, Berlin, Heidelberg.

7. UCI Machine Learning Repository. URL: https://archive.ics.uci.edu/ml/

datasets/Cardiotocography [date of access: 27.08.2020].
8. UCI Machine Learning Repository. URL: https://archive.ics.uci.edu/ml/

datasets/Divorce+Predictors+data+set [date of access: 21.03.2021].
9. UCI Machine Learning Repository. URL: https://archive.ics.uci.edu/ml/

datasets/Fertility [date of access: 21.03.2021].

112

A Cоncept of Self-Supervised Logical Rule Inference in
Symbolic Classifications

Xenia Naidenova1[0000-0003-2377-7093] and Vladimir Parkhomenko2[0000-0001-7757-377X]

1 Military Medical Academy, Saint Petersburg, Russian Federation
E-mail: ksennaidd@gmail.com

2 Peter the Great St. Petersburg Polytechnic University, Saint Petersburg, Russian Federation
E-mail: parhomenko.v@gmail.com

Abstract. An approach to modelling self-supervised learning for automated in-
ferring good classification tests is proposed. The concepts of internal and exter-
nal learning contexts are formulated. A model of intelligent agent, capable of
improving own learning process of inferring good classification tests in the ex-
ternal context is advanced. Internal evaluation is used in an internal process of
learning with the aim of tuning the external learning process. The same learning
algorithm is used for supervised learning both in the external context and in the
internal context. The structure of good test inferring is described and a proce-
dure to recognize the end of inferring process is proposed.

Keywords: Self-supervised learning, Good classification tests, Internal context,
External context, Intelligent agent, Deep learning.

1 Introduction

Self-learning embodies one of the essential properties of human intelligence related to
an internal evaluation of the mental process quality. A deeper level of learning – self-
learning – allows to manage the learning process in an external context in terms of its
effectiveness through the internal evaluation and developing rules to select the best
learning strategies and parameters without a teacher.

We shall understand self-learning as a process of improvement of an agent's (or
system’s) actions on the basis of self-evaluation of his (its) actions in a variable con-
text. When the agent selects sub-contexts and some actions in learning process, he (it)
uses some criteria. The self-learning is related to the ability to change these criteria, to
form new criteria, which is essentially to improve the learning algorithms, making
them more consistent with the external context and more effective.

The purpose of this paper is to model a self-learning process in the logical or sym-
bolic supervised algorithms of machine learning. This mode of learning covers min-
ing logical rules and dependencies from data: “if-then” rules, decision trees, function-
al, implicative and associative dependencies. We shall consider a special kind of
symbolic machine learning, namely, inferring good tests from data [1] in multi-valued
dynamic contexts (external contexts) for recognizing classes of objects represented by

113

their symbolic descriptions. The self-learning at the internal (deep) level implements
the analysis and internal evaluation of classification rule inferring in the external con-
text and allows one to reveal the relationships between the external contexts (sub-
contexts) and the parameters of learning. The implementation of self-learning in the
internal context can be based on the same algorithm of symbolic machine learning
that works in the external context.

The paper is organized as follows. The related works are discussed in Section 2.
Sections 3 and 4 deal with defining a software agent capable of self-learning and the
structure of the internal context. Sections 5, 6, and 7 cover the description of self-
learning in inferring good maximally redundant classification tests from data. To
complete the paper, we give a short conclusion.

2 Related works

The analysis of modern researches has been implemented in the following directions:
modeling of self-learning (self-supervised learning), deep learning [2] and models of
learning in robots and robotic systems.

In the first direction, it is particularly interesting [3] the principles and technologies
of creating a robot that can move in the environment, manipulate objects and avoid
obstacles. The robot is designed as an autonomous system. It requires from the robot a
good spatial and semantic understanding of the environment. The self-learning robot
should be aware of its own localization and realize an internal reflection of spatial
situation taking into account different scenes (semantic understanding) in order to
recognize new objects. It is declared by the author that the robot should be self-
esteemed and self-managed on the basis of previous experience. It must constantly
adapt its spatial and semantic models in order to improve the performance of its tasks.
Some concepts and algorithms are proposed to evaluate the robot's own movement
(Self-Supervised Visual Ego Motion Learning) [4]. Note that the concept of self-
learning proposed in [3] coincides with the concept of self-learning offered by us.

In [5], the role of curiosity in self-learning is analyzed and the concepts of self-
learning with the phenomenon of curiosity are developed.

It is an ordinary practice to associate self-learning with deep learning. Impressive
successes in deep learning achieved in simulation games [6] and image analysis [7-
16]. However, deep learning does not mean self-learning. Using neural networks for
segmenting images traditionally requires a large quantity of training data marked
manually. In [14] an algorithm is proposed on the basis of which 130000 images were
generated with automatic marking for 39 objects. In [15], a robot’s internal evaluation
of its future path cost is based on the probabilistic Bayesian method.

Neural networks recognize classes of objects and form a feature hierarchy of clas-
ses, but do not form their symbolic logical descriptions or rules to recognize them.
There are a number of works in which attempts are made to find the interconnection
between artificial neural networks and symbolic machine learning within the frame-
work of the analysis of formal concepts (FCA) [17-20]. The main purpose of these
works is to use the algorithms of constructing the concept lattice to configure the

114

artificial neural networks in order to make it interpretable in terms of concepts. How-
ever, an improvement of the artificial neural network learnability has not yet obtained.

In some works, the authors propose the use of robot’s manipulation reflection in
learning algorithms for improving and accelerating robot’s training. For example,
industrial Robot of Japanese Company Fanuc uses a method known as "training with
reinforcement" to grab objects by a manipulator. In this process, the robot fixes its
work on video and uses this video for correcting own activity. Domestic development
of robots is also based on the use of artificial neural networks [21-24].

3 Software agent capable of self-learning

Intelligence acts always in a changing context. Several examples of changing contexts
can be: the descriptions of patient's conditions supplemented by doctor's decisions and
patient's responses, images of the Earth's surface, and student personal characteristics.
The task of self-learnable individual or an automatic device in a such changing con-
text is to support any purposeful action or function (search of food, search for exit
from a labyrinth, etc.). Intelligence must have some abilities to act in the context by
choosing sub-contexts and/or actions in them, as well as by assessing the extent to
which its actions bring it closer to the goal. We shall refer to the context in which an
intellectual being or device is acting as the external context.

The objects in the external context (training samples) are described in terms of
their properties (features, attributes) and they are specified by splitting into classes.
The task of learning is to find rules in a given space of object descriptions in order to
repeat the classification of objects represented by splitting objects into disjoint clas-
ses. Good tests approximate the specified object classification in the best way and
give the minimum sets of attributes (values) that carry out the greatest possible gener-
alization within object classes and distinguish in pairs all objects from different clas-
ses [1]. As a task in the external context, we have chosen the task of constructing
good maximally redundant classification (diagnostic) texts, because the algorithms
developed for this task have a number of convenient properties for self-monitoring the
process of inferring tests [25]:

- external context is partitioned into sub-contexts in which good tests are inferred
independently;

- sub-contexts are chosen and formed by the logical rules based on analyzing sub-
contexts’ characteristics; the choice of sub-context determines the speed and efficien-
cy of classification task.

The strategies for selecting sub-contexts of the external context and the algorithms
to find good tests in them are easy to describe (to represent) with the use of special
multi-valued attributes. In what follows, we shall call the intellectual being an agent,
although it does not mean that we identify it with the agent in multiagent systems.
Summing up the foregoing, we conclude that for self-learning the agent should have:

1. A display of the external context in terms of the internal context);
2. A set of rules (possible actions) for selecting context (sub-context);
3. A display of the desired target (state);

115

4. An operation (a function) for comparing the desired target with the achieved
result.

During the training process, the agent must develop a sequence of actions that will
lead to the goal. We shall consider the permanent external context and its changes
only in connection with the activity of the agent, for example, a sub-context can be
deleted when the agent has completely solved the problem for this sub-context. De-
composition of contexts into sub-contexts in the tasks of inferring good classification
tests have been considered in [25-26].

When the agent selects sub-contexts and its (his) actions in learning process, it (he)
uses some criteria. These criteria can be: the number of sub-contexts to be considered,
the number of tests already extracted in sub-context, the number of objects and values
of attributes in sub-context, the number of essential objects and values of attributes
(attributes) in sub-context [1], temporal characteristics and some others. The agent
needs to memorize the situations of learning and the activity associated with them.

Let us assume that the internal context necessarily contains:
1. Description of selected sub-context in terms of its properties;
2. Description of selected action and the rule for its selection;
3. Internal estimation of learning process with the use of some criteria of its ef-

ficiency.

4 The structure of the internal context and realizing self-
learning

Let K be the descriptions of external sub-context via its properties, А = {A1, A2, ….
An} be the descriptions of algorithms of good tests inferring via their properties in this
sub-context, R = {R1, R2, …,.Rm} be the set of rules for selecting sub-contexts, and V
= {V1, V2, …, Vq) be the set of rules for evaluating the process of good test inferring.
Then the internal context is described by the direct product of sets K, A, R and its
mapping on V: K × A × R → V. There are more simple variants of the internal con-
text: K × A → V and K × R → V.

The same algorithm can be used in both the external and the internal context in or-
der to infer the logical rules for distinguishing the variants of learning in the external
context evaluated as good ones from the variants evaluated as not good ones. A few
algorithms for good test inferring have been elaborated: ASTRA [27], DIAGARA,
NIAGARA, and, INGOMAR [28].

We come to the realization of deep learning for the symbolic machine learning
tasks. The internal context is a memory of the agent, the rules extracted from the in-
ternal context represent the agent's knowledge about the effectiveness of its actions in
the external context. Actions in the internal and external contexts can be represented
as actions of two agents functioning in parallel and exchange data (Fig. 1).

Agent A1 transmits the data (the descriptions of contexts, algorithms, rules for se-
lecting sub-contexts) to Agent A2. Agent A2 acts in the internal context (obtained
from agent A1) and passes to agent A1 the rules, which the latter applies to select the
best variant of learning with each new external sub-context.

116

Figure 1. Scheme of self-learning with the interaction of two agents

For Agent A2, the internal context (memory) should not be empty, but this agent

(as well as Agent A1) can use an incremental mode of learning [28]. A few incremen-
tal algorithms for good test inferring in symbolic contexts are described in [28].

5 The structure of good maximally redundant test inferring

Good test analysis (GTA) deals with the formation of best descriptions of a given
object class (class of positive objects) against the objects do not belonging to this
class (class of negative objects) on the basis of lattice theory. We assume that objects
(or patterns) are described in terms of values of a given set U of attributes. The key
notion of GTA is the notion of classification. To give a target classification of objects,
we use an additional attribute k ∉ U. This attribute partitions a given set of objects
into disjoint classes the number of which is equal to the number of values of this at-
tribute. We need in the following series of definitions.

Denote by M the set of attribute values such that M = ∪a∈U rng(a), where rng(a) is
the set of all values of a. Let G = G+ ∪ G− be the set of objects, where G+ and G− are
the sets of positive and negative objects, respectively.

Let T be a table with many-valued data, where lines correspond to objects and col-
umns correspond to attributes. For representing data, we do not use any scaling.

Denote a description of g ∈ G by δ(g), and descriptions of positive and negative
objects by D+ = {δ(g)| g ∈ G+} and D− = {δ(g)| g ∈ G−}, respectively. The Galois
connections [29] between the ordered sets (2G, ⊆) and (2M, ⊆), i.e. 2G → 2M and 2M →
2G, are defined by the following mappings called derivation operators [30]:

for A ⊆ G and B ⊆ M, val(A) = ∩g∈A δ(g) and
obj(B) = {g| B ⊆ δ(g), g ∈ G}.
There are two closure operators [30, 31]: generalization_of(B) = val(obj(B)) and

generalization_of(A) = obj(val(A)). A is closed if A = obj(val(A)) and B is closed if
B = val(obj(B)). If (val(A) = B) & (obj(B) = A), then a pair (A,B) is called a formal
concept [30, 32], subsets A and B of which are called concept extent and intent, re-
spectively. A triplet (G,M,I), where I is a binary relation between G and M, is a for-
mal context K. According to the values of a goal attribute, we get some possible

117

forms of the formal contexts: Kε := (Gε,M,Iε) and Iε := I ∩ (Gε × M), where ε ∈
rng(k), rng(k) = {+,−} (if necessary the value τ can be added to provide undefined
objects) [32]. A classification context K± is formed by the sub-position of contexts K+
and K−, and the apposition of the resulted context with (G±, k, G±×k), i.e. after add-
ing the classification attribute k. Let us rewrite the definitions of tests by using nota-
tion of classification contexts and semi-concepts [33]: pairs like (obj(B),B), B ⊆ M,
the left side of which is called an extent, and pairs like (A,val(A)), A ⊆ G, the right
side of which is called an intent. Here and later words “diagnostic test” (and GMRT)
will be used for semi-concepts (or concepts), the right part of which is a test.

Definition 1. A diagnostic test (DT) for K+ is a pair (A,B) such that B ⊆ M, A =
obj(B) ≠ ∅, A ⊆ G+, and obj(B)∩G ≠ ∅.

Definition 2. A diagnostic test (A,B) for K+ is to be said maximally redundant if
obj(B∪m) ⊂ A for all m ∈ M \B.

Definition 3. A diagnostic test (A,B) for K+ is to be said good iff any extension A1
= A∪i, i ∈ G+ \A, implies that (A1,val(A1)) is not a DT for K+ .

A maximally redundant test which is simultaneously good is called a good maxi-
mally redundant test (GMRT).

Definitions of tests (as well as other definitions), associated with K+, are applicable
to K−.

If a good DT (A,B) for K+ is maximally redundant, then any extension B1 = B ∪
m, m ∉ B, m ∈ M implies that (obj(B1),B1) is not a good DT for K+.

In the general case a set B is not closed for DT (A,B), consequently, DT is not ob-
ligatorily a formal concept. A GMRT can be regarded as a special type of formal
concept [1]. Note that the definition of GMRTs is equivalent to the definition of in-
clusion-minimal concept-based hypothesis in the FCA [30].

To transform inferring GMRTs into an incremental process, we introduce two
kinds of subtasks for K+ (K−), called subtasks of the first and second kind, respective-
ly [34]:

1. Given a positive object g, find all GMRTs (obj(B),B) for K+ such that B is con-
tained in δ(g). In the general case, instead of δ(g) we can consider any subset of val-
ues B1, such that B1 ⊆ M, obj(B1) ≠ ∅, B1 ⊈ δ(g), ∀g ∈ G−.

2. Given a non-empty set of values B ⊆ M such that (obj(B),B) is not a DT for pos-
itive objects, find all GMRTs (obj(B1),B1) such that B ⊂ B1.

Accordingly, we define two kinds of sub-contexts of a given classification context
called object and attribute value projections, respectively. If (G,M,I) is a context and
if H ⊆ G, and N ⊆ M, then (H,N,I∩H×N) is called a sub-context of (G,M,I) [35].

Definition 4. The object projection ψ(K+,g) returns sub-context (N,δ(g),J), where
N = {n ∈ G+ | n satisfies (δ(n) ∩ δ(g) is a test for K+)}, J = I+ ∩(N×δ(g)).

Definition 5. The attribute value projection ψ(K+,B) returns sub-context (N,B,J),
where N = {n ∈ G+ | n satisfies (B ⊆ δ(n))}, J = I+∩(N×B). In the case of negative
objects, symbol + is replaced by symbol − and vice versa.

The decomposition of inferring GMRTs into the subtasks requires the following
actions:

1. Select an object or value to form a subtask.
2. Form the subtask.

118

3. Reduce the subtask.
4. Delete the object or value when the subtask is over.
The following theorem gives the foundation for reducing sub-contexts formed by

object and attribute value projections [27, 28].
Theorem 1. Let B ⊆ M, (obj(B),B) be a maximally redundant DT for positive ob-

jects and obj(m) ⊆ obj(B), m ∈ M. Then m cannot belong to any GMRT for positive
objects different from (obj(B),B).

6 A procedure for mining the all GMRTs in the projections of
both kinds

Let Sgood+ (Sgood−) be the partially ordered set of obj+(m), m ∈ M satisfying the
condition that (obj+(m), val(obj+(m))) is a current good DT for K+ (K−). The basic
recursive procedure (BRP) for K+ is defined in Fig. 2, where

• the first step of recursion is omitted for simplicity;
• the output Sgood+ is implicitly given via a globally defined set, which is modified

during the procedure; algorithm formSgood is given in Fig. 3;
• variable ψtype has two possible values: object or attribute value projection;
• algorithm choiceOfprojection returns ψtype, and X, which can be either g or B

w.r.t. value of ψtype;
• algorithm formSubcontext implements a definition of object or attribute value

projection and returns new subcontext K∗; conditions for the end of recursion are
described in steps 7, 25;

• after the end of the current recursion iteration the control goes to the previous re-
cursion iteration from steps 13, 31;

• checking whether (obj+(m),val(obj+(m))) is a DT for K+ is performed as fol-
lows: val(obj+(m)) is a test for K+ iff obj(val(obj+(m))) = obj+ (m).

Procedure BRP
 Input: K+,K−,Sgood+
 Output: Sgood+
1. f := 0;
2. forall m ∈ M do
3. if val(obj+(m)) is a test for K+ then
4. formSgood(obj+(m),Sgood+);
5. M := M \m, f := 1;
6. end
7. if |M|≤ 1 then
8. return;
9. if f = 0 then
10. ψtype, X choiceOfprojection (K+,K−);
11. K∗ + formSubcontext(ψtype,X,K+);
12. BRP (K∗ +,K−,Sgood+);
13. if ψtype = object projection then

119

14. G+ := G+ \X; 15. else
16. M := M \X;
17. else
18. f := 0;
19. end
20. forall g ∈ G+ do
21. if val(g) is not a test for K+ then
22. G+ := G+ \g;
23. f := 1;
24. end
25. if |G+|≤ 1 then
26. return;
27. if f = 0 then
28. ψtype, X choiceOfprojection (K+,K−);
29. K∗ + formSubcontext(ψtype,X,K+);
30. BRP (K∗ +,K−,Sgood+);
31. if ψtype = object projection then
32. G+ := G+ \X;
33. else
34. M := M \X;
35. else
36. go to 1;
37. end

Figure 2. Pseudo code of basic recursive procedure

7 Forming SGOOD as the main problem of good test inferring

Essentially, the process of forming Sgood is an incremental procedure of finding all
maximal elements of a partially ordered (by inclusion relation) set. It is based on
topological sorting of partially ordered sets. Thus, when the algorithm is over, Sgood
contains the extents of all the GMRTs for K+ (for K−) and only them. The operation
of inserting an element A∗ into Sgood (in algorithm formSgood) under lexicograph-
ical ordering of these sets is reduced to lexicographically sorting a sequence of k-
element collections of integers.

A sequence of n-collections whose components are represented by integers from 1
to |M|, is sorted in time of O(|M| + L), where L is the sum of lengths of all the collec-
tions of this sequence [36]. Consequently, if Lgood is the sum of lengths of all the
collections A of Sgood, then the time complexity of inserting an element A∗ into
Sgood is of order O(|M| + Lgood). The set Tgood of all the GMRTs is obtained as
follows: Tgood = {t|t = (A,val(A)), A ∈ Sgood}.

Algorithm formSgood
Input: A∗ ⊆ G+,Sgood+
Output: Sgood+

120

1. forall A ∈ Sgood do
2. if A ⊂ A∗ then
3. Sgood+ := Sgood+ \A;
4. else
5. if A∗ ⊆ A then
6. return;
7. end
8. Sgood+ := Sgood+ ∪A∗;
9. return;

Figure 3. Pseudo code of algorithm formSgood

8 Some problem to be solved

In self-learning, it is very important determining the nearness of the current result to
the goal of learning process. The goal in mining GMRTs is to find the all GMRTs for
a given external context. Generally, a situation can be when there exist sub-contexts
of the external context to be solved, but the saturation of SGOOD is already achieved (i.
e., all GMRTs are obtained). A procedure of determining the saturation of SGOOD can
be based on the properties of the set of all GMRTs of a formal context to be the
Sperner System [37].

It is important to formulate some unsolved and nontrivial problems related to the
decomposition considered in this paper. These problems are:

• How to recognize a situation that current formal context contains only the
GMRTs already obtained?

• How to evaluate the number of recurrences necessary to resolve a subtask in
inferring GMRTs? (in case we use a recursive algorithm like DIAGARA)?

• How to evaluate the perspective of a selected sub-context with respect to
finding any new GMRT?

These problems are interconnected and the subject of our further research. The ef-
fectiveness of the decomposition depends on the properties of the initial classification
context (initial data). Now we can propose some characteristics of data (contexts and
sub-contexts) useful for choosing a projection:

• The number of objects;
• The number of attribute values;
• The number of the GMRTs already obtained and covered by this projection.

Some unsolved problems cited above are difficult for analytical solution. It is pos-
sible that realizing the proposed approach to self-improving learning algorithms per-
mits one to investigate these problems and enables us to overcame the above difficul-
ties.

One of the advantages of our approach is related to the possibilities to reduce the
process of choosing sub-contexts and to obtain the best variant of learning to the plau-
sible deductive reasoning, one of the models of which is described in [28]. Modeling
of on-line human reasoning is a key problem in creating intelligent computer systems.

121

However, any attention is hardly paid to this topic in computer science. Knowledge
engineering has arisen from a paradigm in which knowledge is considered as some-
thing to be separated from its bearer and to function autonomously with a problem-
solving application. This paradigm ignores the very essential feature of intelligence,
namely, its continuous cognitive activity. Knowledge is corrected constantly. This
means that the mechanism of using knowledge cannot be separated from the mecha-
nism of discovering knowledge. The future realization of our approach to self-
improving good test inferring will support using logical rules extracted from the in-
ternal context for deductive process of choosing variants of learning.

9 Conclusions

The concept of self-learning in the processes of inferring good classification tests is
proposed in the paper. The inferring of good classification tests is a task of symbolic
machine learning, for which the questions of self-learning has been not considered
earlier. The results of this article are the following:

A model of self-learning was proposed allowing to manage the process of inferring
good tests in terms of its effectiveness through an internal evaluation of the learning
process and the development of rules for choosing the best strategies, algorithms, and
learning characteristics.

The concepts of internal and external learning contexts were formulated.
The structure of the internal context was proposed.
A model of intelligent agent, capable of improving own learning process of infer-

ring good classification tests in the external context was advanced;
It was shown that the same learning algorithm can be used for supervised learning

both in the external context and in the internal context. The proposed approach is a
model of deep learning implemented by inferring logical rules from examples.

Acknowledgments. The research is partially supported by RFR grant № 18-07-
00098A.

References

1. Naidenova, X.: Good diagnostic tests as formal concepts. In: F. Domenach, D.I. Ignatov, J.
Poelmans (eds.) ICFCA-2012, LNCS vol. 7278, Springer, pp. 211-226 (2012).

2. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. The MIT Press (2016).
3. Pillai, S.: Towards richer and self-supervised perception in robots. PhD Thesis Proposal

(2017) http://people.csail.mit.edu/spillai/research/ and
http://people.csail.mit.edu/spillai/data/papers/2017-phdthesis-proposal-nocover.pdf

4. Pillai, S., Leonard, J.: Towards Visual Ego-motion Learning in Robots. Submitted to
IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS) (2017).
http://people.csail.mit.edu/spillai/learning-egomotion/learning-egomotion.pdf

5. Pathak, D., Agraval, P., Efros, A., Darrell, T.: Curiosity-driven exploration by self-
supervised prediction. In: Proc. of the 34th Int. Conf. on Machine Learning, JMR: W&CP,
pp. 12 (2017) https://pathak22.github.io/noreward-rl/

122

6. Silver, D., Huang, A., Maddison, Ch. J. et al.: Mastering the game of Go with deep neural
networks and tree search. Nature 529, 484-489 (2016). doi: 1038/nature 16961

7. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image
recognition. arXiv: 1409.1556v6 [cs.CV] (2015).

8. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. Comput-
er Vision and Pattern Recognition, arXiv:1512.03385v1[cs.CV] (2015).

9. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolu-
tional neural networks. In: F. Pereira, C.J.C. Burges et al. (eds.) Advances in neural infor-
mation processing systems, pp. 1097-1105 (2012).

10. Potapov, A., Batishcheva, V., Pan Shu: Improving the quality of recognition in deep learn-
ing networks using the method of simulation of annealing. Scientific and Technical Bulle-
tin of Information Technologies, Mechanics, and Optics, 17(4), (2017). (in Russian)

11. Hossain, D., Capi, G. Jinday, M.: Evolution of Deep Belief Neural Network Parameters for
Robot Object Recognition and Grasping. Procedia Computer Science 105, 153-157 (2017).

12. Schmidt, T., Newcombe, R., Fox, D.: Self-supervised Visual Descriptor Learning for
Dense Correspondence. IEEE Robotics and Automation Letters, 2(2), 420-427 (2016). doi:
10. 1109/LRA.2016.2634089

13. Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R., Guadarrama, S.,
Darrell, T.: Caffe: Convolutional architecture for fast feature embedding. arXiv:1408.5093
[cs.CV] (2014).

14. Zeng, A., Yu, Kuan-Ting, Song, S., Suo, D., Walker, Ed., Rodrigues, A., Xiao, J.: Multi-
View Self -Supervised Learning for 6D Pose Estimation in the Amazon Picking Challenge.
In: Proceedings of IEEE International conference on Robotics and Automation (ICRA),
pp. 1986-1993 (2017). doi: 10.1109/ICRA.2017.7989165

15. Sofman, B., Line, E. et al.: Improving Robot Navigation Through Self-Supervised Online
Learning. Journal of Field Robotics, 23(11-12), 1059-1075 (2016). doi: 10.1002/rob.20169

16. Long, J., Shelhamer, E., Darrell, T.: Fully Convolutional Networks for Semantic Segmen-
tation. arXiv:1605.06211v1 [cs.CV] (2016).

17. Endres, D., Foldiak, P.: Interpreting the neural code with formal concept analysis. In:
Koller, D., Schuurmans, D., Bengio, Y., Bottou, L. (eds.) Advances in Neural Information
Processing Systems, vol. 21, pp. 425–432. MIT Press, Cambridge (2008).

18. Kuznetsov, S.O., Makhazhanov, N., Ushakov, M.: On Neural Network Architecture Based
on Concept Lattices, LNAI, vol. 10352, pp. 653–663 (2017). Available
https//doi.org/10.1007/978-3-319-60438-1_64

19. Rudolph, S.: Using FCA for Encoding Closure Operators into Neural Networks. In: Priss,
U., Polovina, S., Hill, R. (eds.) ICCS 2007, LNAI, vol. 4604, pp. 321–332. Springer, Ber-
lin- Heidelberg (2007).

20. Tsopzé, N., Nguifo, E.M., Tindo, G.: CLANN: Concept lattice-based artificial neural net-
work for supervised classification. In: Proceedings of the Fifth International Conference on
Concept Lattices and Their Applications, vol. 331, pp. 153–164 (2007).

21. Pavlovsky, V. Savitsky, A: A Quadrocopter neural network control algorithm on typical
trajectories. Nonlinear World, 13(6), 47-54 (2016). (in Russian)

22. Aliseychik, A., Orlov, I., Pavlovsky, V., Smolin, V., Podoprosvetov, A., Shishova, M.:
Pneumatic manipulation with neural network control. LNCS, vol. 9719, pp. 292-301
(2016).

23. Savitsky, A. V., Pavlovsky, V. E.: Model of quadrotor and algorithm of vehicle control
based on neural network. Keldysh Institute preprint 077 (2017).
http://library.keldysh.ru/preprint.asp?id=2017-77 (in Russian)

123

24. Pavlovsky, V.E., Pavlovsky V.V.: Technologies SLAM for moving robots: State and Pro-
spects. Mechatronics, Automation, Management, 17(6), 384-394 (2016). (in Russian)

25. Naidenova, X., Parkhomenko, V., Shvetsov, K.: Context-Dependent Incremental Learning
Good Maximally Redundant Tests. SAI Intelligent Systems Conference 2015, pp. 1-6.
London, UK: IEEE (2015). DOI:10.11.1109/IntelliSys.2015.7361258
https://www.researchgate.net/publication/292608731_Context-
Dependent_Incremental_Learning_of_Good_Maximally_Redundant_Tests

26. Naidenova, X., Parkhomenko, V.: Context-Dependent Classification Reasoning Based on
Good Diagnostic Tests. Proc. of FCA&A’ 2015 (co-located with ICFCA’2015), J. Baixe-
ries, Ch. Sacarea, and M. Ojeda-Aciego (eds), pp. 65-80. University de Malaga (2015).
ISSN-84-606-7410-8. http://ceur-ws.org/Vol-1434/proceedings-fcaa.pdf

27. Naidenova, X., Plaksin, M. Shagalov, V.: Inductive inferring all good classification tests.
Proceedings of International Conference “Knowledge-Dialog-Solution”, vol. 1, pp.79-84.
Jalta, Ukraine (1995).

28. Naidenova, X.: An incremental learning algorithm for inferring logical rules from exam-
ples in the framework of the common reasoning process. In: Triantaphyllou, E., & Felici,
G. (eds.), Data mining and knowledge discovery approaches based on rule induction tech-
niques, pp. 89–146. New York, NY: Springer. (2006).

29. Ore, O.: Galois connections. Trans. Amer. Math. Soc 55 (1944) 494–513.
30. Ganter, G., Kuznetsov, S. O.: Pattern Structures and Their Projections. In: H. S. Delugach,

G. Stumme (eds.), Conceptual Structures: Broadening the Base, Proceedings of the 9th In-
ternational Conference on Conceptual Structures, 129–142 (2001).

31. Naidenova, X.: The Data-Knowledge Transformation. In: V. Solovyev (ed.), Text Pro-
cessing and Cognitive Technologies, vol. 3, Pushchino, 130–151 (1999).

32. Ganter, B., Kuznetsov, S. O.: Formalizing Hypotheses with Concepts. In: Conceptual
Structures: Logical, Linguistic, and Computational Issues, Proceedings of the 8th Interna-
tional Conference on Conceptual Structures, 342–356 (2000).

33. Luksch, P., Wille, R.: A Mathematical Model for Conceptual Knowledge Systems. In: H.-
H. Bock, P. Ihm (eds.), Proceedings of the 14th Annual Conference of the Gesellschaft fur
Klassifikation (GfKl 1990), 156–162 (1991).

34. Naidenova, X., Parkhomenko, V.: Attributive and Object Sub-contexts in Inferring Good
Maximally Redundant Tests. In: K. Bertet, S. Rudolph (eds.), Proceedings of the Eleventh
International Conference on Concept Lattices and their Applications, Košice, Slovakia,
October 7-10, 2014., vol. 1252 of CEUR Workshop Proceedings, 181–193 (2014).

35. Ganter, B., Wille, R.: Formal concept analysis: mathematical foundations. Springer, Berlin
(1999).

36. Aho, A. V., Hopcroft, J.E., Ullman, J.D.: The design and analysis of computer algorithms.
Addison-Wesley (1975).

37. Sperner, E.: Ein Satz über Untermenge einer Endlichen Menge. Math. Z. 27, 544-548
(1928).

124

Non-Redundant Link Keys in RDF Data:
Preliminary Steps

Nacira Abbas1, Alexandre Bazin1, Jérôme David2, and Amedeo Napoli1

1 Université de Lorraine, CNRS, Inria, Loria, F-54000 Nancy, France
Nacira.Abbas@inria.fr, Alexandre.Bazin@loria.fr, Amedeo.Napoli@loria.fr

2 Université Grenoble Alpes, Inria, CNRS, Grenoble INP, LIG, F-38000 Grenoble,
France Jerome.David@inria.fr

Abstract. A link key between two RDF datasets D1 and D2 is a set of
pairs of properties allowing to identify pairs of individuals, say x1 in D1

and x2 in D2, which can be materialized as a x1 owl:sameAs x2 identity
link. There exist several ways to mine such link keys but no one takes
into account the fact that owl:sameAs is an equivalence relation, which
leads to the discovery of non-redundant link keys. Accordingly, in this
paper, we present the link key discovery based on Pattern Structures
(PS). PS output a pattern concept lattice where every concept has an
extent representing a set of pairs of individuals and an intent representing
the related link key candidate. Then, we discuss the equivalence relation
induced by a link key and we introduce the notion of non-redundant link
key candidate.

Keywords: Linked Data · RDF · Link Key · Formal Concept Analysis
· Pattern Structures.

1 Introduction

In this paper, we are interested in data interlinking which goal is to discover
identity links across two RDF datasets over the web of data [5,8]. The same real
world entity can be represented in two RDF datasets by different subjects in RDF
triples (subject,property,value) (instead of “object” usually used in RDF data
we will use “value”). It is important to be able to detect such identities, for exam-
ple using rules expressing sufficient conditions for two subjects to be identical.
A link key takes the form of two sets of pairs of properties associated with a pair
of classes. The pairs of properties express sufficient conditions for two subjects,
from the associated pair of classes, to be the same. An example of a link key is
({(designation, title)}, {(designation, title), (creator, author)}, (Book, Novel))

which states that whenever an instance a of the class Book has the same (non
empty) values for the property designation as an instance b of the class Novel
for the property title (universal quantification), and that a and b share at least
one value for the properties creator and author (existential quantification), then
a and b denote the same entity, i.e., an owl:sameAs relation can be established
between a and b.

125

A link key can be understood as a “closed set” in the sense that it is maximal
w.r.t. the set of pairs of individuals to which it applies. This was firstly discussed
in [2] and then extended in [3]. Hence the question of relying on Formal Concept
Analysis (FCA [7]) to discover link keys is straightforward as FCA is based on
a closure operator. Then, given two RDF datasets, FCA is applied in [3] to a
binary table where rows correspond to pairs of individuals and columns to pairs
of properties. The intent of a concept is a link key candidate which should be
validated thanks to suitable quality measures. The extent of the concept is the
set of identity links between individuals. Furthermore, a generalization of the
former approach proposed in [1] is based on pattern structures [6] and takes into
account different pairs of classes at the same time in the discovery of link keys.

Link key candidates over two RDF datasets have to generate different and
maximal link sets. However it appears that two different link key candidates may
generate the same link set. This means that there exists some redundancy be-
tween the two link key candidates, that they should be considered as equivalent
and merged. This can be achieved by looking at owl:sameAs which is an equiv-
alence relation stating that two individual should be identified. The owl:sameAs
relation generates partitions among pairs of individuals that can be used to
detect redundant link key candidates and thus reduce their number, i.e., two
candidates relying on the same partition are declared as redundant and thus
merged.

In this paper, we present the discovery of link key candidates within the
framework of pattern structure. Then, we introduce the notion of non-redundant
link key candidate based on the equivalence relation induced by a link key can-
didate. Finally, we discuss how these candidates can be merged to reduce the
search space of link keys.

2 Basics and Notations

2.1 RDF data

In this work, we deal with RDF datasets which are defined as follows:

Definition 1 (RDF dataset).
Let U be a set of IRIs (Internationalized Resource Identifier), B a set of

blank nodes and L a set of literals. An RDF dataset is a set of triples (s, p, v) ∈
(U ∪B)× U × (U ∪B ∪ L).

Given a dataset D, we denote by:

– I(D) = {s | ∃p, v (s, p, v) ∈ D} the set of individual identifiers,
– P (D) = {p | ∃s, v (s, p, v) ∈ D} the set of property identifiers,
– C(D) = {c | ∃s (s, rdf:type, c) ∈ D} the set of class identifiers. A triple

(s, rdf:type, c) means that the subject s is an instance of the class c.
– I(c) = {s | (s, rdf:type, c) ∈ D} the set of instances of c ∈ C(D),
– p(s) = {v | (s, p, v) ∈ D} is the set of values (or “RDF objects”) related to s

through p.

126

An identity link is an RDF triple (a, owl:sameAs, b) stating that the IRIs a
and b refer to the same real-world entity. Fig. 1 represents two RDF datasets
D1 and D2, where P (D1) = {p1, p2, p3, p4} and P (D2) = {q1, q2, q3, q4}. Then
C(D1) = {c1} and C(D2) = {c2} with I(c1) = {a1, a2, a3, a4, a5} and I(c2) =
{b1, b2, b3, b4, b5}. For example, the set of values of b3 for the property q2 is
q2(b3) = {v8, v9}.

a1

a2

a3

a4

a5

v1

v2

v3

v4

v5

v6

v7

v8

v9

v10

v11

v12

v13

b1

b2

b3

b4

b5

p1 q1
p2 q2
p2

q2
p1

q1

p2 q2
p1 q1

p1 q1
p2 q2

q2

p3 q3

p
4

q4

p
3 q3

p4

q4

c1 c2

D1 D2

Fig. 1. Example of two RDF datasets. On the left-hand side, the dataset D1 is pop-
ulated with instances of the class c1, and on the right-hand side the dataset D2 is
populated with instances of the class c2.

2.2 Link Keys

Link keys are logical constructors allowing to deduce identity links (owl:sameAs).
In this paper we will call link key expression the syntactic formulation of a link
key, when we do not know whether the expression is a valid link key. For example,
the link key expression ({}, {(nbrOfPages, nbrOfBeds)}, (Book, Hospital)) will not
satisfy the link key semantics since an instance of class Book and an instance
of class Hospital cannot represent the same entity since Book and Hospital are
disjoint classes.

Definition 2 (Link key expression, link key candidate). Let D1 and D2

be two RDF datasets, k = (Eq, In, (c1, c2)) is a link key expression (over D1

and D2) iff In ⊆ P (D1)× P (D2), Eq ⊆ In, c1 ∈ C(D1) and c2 ∈ C(D2).

127

The set of links L(k) (directly) generated by k is the set of pairs of instances
(a, b) ∈ I(c1)× I(c2) satisfying:
(i) for all (p, q) ∈ Eq, p(a) = q(b) and p(a) 6= ∅,
(ii) for all (p, q) ∈ In \ Eq, p(a) ∩ q(b) 6= ∅.

A link key expression k1 = (Eq1, In1, (c1, c2)) is a link key candidate if:

(iii) L(k1) 6= ∅,
(iv) k1 is maximal i.e. there does not exist another link key expression k2 =

(Eq2, In2, (c1, c2)) such that Eq1 ⊂ Eq2, In1 ⊂ In2, and L(k1) = L(k2).

The number of link key expressions may be exponential w.r.t. the number of
properties. Then link key discovery algorithms only consider link key candidates
which are link key expressions generating at least one link and that are maximal
w.r.t. the set of links they generate.

3 Link Key Discovery

Here after we assume that all link key expressions are defined on the same pair
of datasets D1 and D2 w.r.t. one pair of classes, yielding link key expressions
of the form k = (Eq, In, (c1, c2)). In the following, we show how link keys may
be discovered within the formalism of pattern structures (see details in [1]) and
then we discuss the notion of non-redundant link keys.

Example 1. Let us consider the pattern structure (G, (E,u), δ) displayed in Ta-
ble 1. Here we skip the details for building this table and the related PS lattice
which can be found in [1].

The rows termed “PS objects” correspond to the set of objects G of the
pattern structure and include pairs of related instances. The set of descriptions
(E,u) includes all possible pairs of properties preceded either by ∀ or ∃. The
mapping δ relates a pair of instances (a, b) ∈ I(c1) × I(c2) to a description as
follows: (i) δ(a, b) includes ∀(p, q) whenever p(a) = q(b) and p(a) 6= ∅, (ii) δ(a, b)
includes ∃(p, q) whenever p(a) ∩ q(b) 6= ∅. Then the descriptions correspond to
link key expressions (Eq, In) w.r.t. the pairs of classes (c1, c2). It should be
noticed that it is possible to simultaneously work with several pairs of classes as
explained in [1].

We have that δ(a1, b1) = {∃(p1, q1),∃(p2, q2)} because p1(a1) ∩ q1(b1) 6= ∅
and p2(a1)∩ q2(b1) 6= ∅ while δ(a2, b1) = {∃(p1, q1)} because p1(a2)∩ q1(b1) 6= ∅.
Then δ(a1, b1) u δ(a2, b1) = {∃(p1, q1)} and thus δ(a2, b1) v δ(a1, b1). This can
be read in the pattern concept lattice where the pattern concept pc5 is subsumed
by the pattern concept pc4, i.e., the extent of pc5 {(a1, b1), (a2, b2), (a3, b3)} is
included in the extent of pc4 {(a1, b1), (a2, b1), (a2, b2), (a3, b3)}, while the intent
{∃(p1, q1)} of pc4 is included in the intent of pc5, {∃(p1, q1),∃(p2, q2)}.

The set of all pattern concepts is organized within the pattern concept lattice
lkps-lattice displayed in Fig. 2. Moreover, all potential link key candidates are
lying in the intents of the pattern concepts in the lattice. The corresponding set
of link key candidates is denoted by lkc.

128

PS objects (g) descriptions (δ(g))
(a1, b1) {∃(p1, q1), ∃(p2, q2)}
(a1, b2) {∃(p2, q2)}
(a2, b1) {∃(p1, q1)}
(a2, b2) {∃(p1, q1), ∃(p2, q2)}
(a3, b3) {∀(p1, q1), ∃(p1, q1), ∃(p2, q2)}
(a4, b4) {∀(p3, q3), ∃(p3, q3)}
(a4, b5) {∀(p4, q4), ∃(p4, q4)}
(a5, b4) {∀(p4, q4), ∃(p4, q4)}
(a5, b5) {∀(p3, q3), ∃(p3, q3)}

Table 1. The pattern structure related to link key discovery over c1 and c2 introduced
in Fig. 1.

I(c1) × I(c2)

∅

pc0

{(a4, b5), (a5, b4)}

k1 = {∀(p4, q4), ∃(p4, q4)}

pc1

{(a4, b4), (a5, b5)}

k2 = {∀(p3, q3), ∃(p3, q3)}

pc2
{(a1, b1), (a1, b2),
(a2, b2), (a3, b3)}

k3 = {∃(p2, q2)}

pc3

{(a1, b1), (a2, b1),
(a2, b2), (a3, b3)}

k4 = {∃(p1, q1)}

pc4

{(a1, b1), (a2, b2), (a3, b3)}

k5 = {∃(p1, q1), ∃(p2, q2)}

pc5

{(a3, b3)}

k6 = {∀(p1, q1), ∃(p1, q1),
∃(p2, q2)}

pc6

∅
P (D1) × P (D2)

pc7

Fig. 2. The pattern concept intents in the pattern concept lattice lkps-lattice include
the complete set of link key candidates.

Let us consider the so-called lkps-lattice and pc = (L(k), k) a pattern con-
cept, where the extent L(k) corresponds to the set of links generated by k,
and the intent k corresponds to a link key candidate. Let I denotes the set
of instances I = I(c1) ∪ I(c2) and the binary relation 'k⊆ I × I such as
(a, b) ∈ L(k) → a 'k b. The interpretation of a 'k b is: "k states that there
exists a owl:sameAs relation between a and b". Actually 'k is an equivalence re-
lation based on the fact that owl:sameAs itself is an equivalence relation. We say
that k induces the equivalence relation 'k over I. Moreover 'k forms a partition
over I where each element of this partition is an equivalence class. In fact the 'k
equivalence relation will help us to build more concise set of link key candidates
since it allows to identify non-redundant link key candidates termed nr-lkc. A
link key candidate k1 is a nr-lkc in lkc if there is no other candidate k2 in lkc
such that 'k1 and 'k2 form the same partition. Otherwise, k1 is redundant.

129

In Fig. 2, it can be observed that 'k3 and 'k4 form the same partition,
namely {(a1, b1, a2, b2), (a3, b3)} (it should be noticed that singletons are omitted
for the sake of readability). Then the link key candidates k3 and k4 are redundant.
By contrast, k1 is a nr-lkc because there is no other candidate k in lkc such
that 'k1 and 'k form the same partition.

Let us briefly explain how 'k3 and 'k4 are inducing the same partition,
namely {(a1, b1, a2, b2), (a3, b3)}. The extent of k3 in lkps-lattice is given by
{(a1, b1), (a1, b2), (a2, b2), (a3, b3)}. By transitivity and symmetry of owl:sameAs,
we have that (a1, b2) and (b2, a2) yields (a1, a2), then (a2, a1) and (a1, b1) yields
(a2, b1), and finally (b1, a2) and (a2, b2) yields (b1, b2) and the complete graph
between (a1, a2, b1, b2). The same thing applies when we consider k4 instead of
k3. This intuitively shows how 'k3 and 'k4 are inducing the same partition.

One main straightforward application of identifying nr-lkc is the ability to
reduce the search space of link keys since the set of nr-lkc is included in lkc.
Indeed, this can be seen as a refinement where redundant link key candidates
inducing the same partition are merged. For example, since 'k3 and 'k4 form
the same partition, then, k3 and k4 can be merged into a nr-lkc k34 = {k3, k4}.
Among the perspectives is to consolidate the theory and practice of link key
discovery based on partition pattern structures initially introduced for mining
functional dependencies in [4].

References

1. Abbas, N., David, J., Napoli, A.: Discovery of link keys in RDF data based on
pattern structures: Preliminary steps. In: Proceedings of ICFCA. CEUR Workshop
Proceedings, vol. 2668, pp. 235–246. CEUR-WS.org (2020)

2. Atencia, M., David, J., Euzenat, J.: Data interlinking through robust linkkey ex-
traction. In: Proceedings of ECAI. pp. 15–20 (2014)

3. Atencia, M., David, J., Euzenat, J., Napoli, A., Vizzini, J.: Link key candidate
extraction with relational concept analysis. Discrete applied mathematics 273, 2–
20 (2020)

4. Baixeries, J., Kaytoue, M., Napoli, A.: Characterizing functional dependencies in
formal concept analysis with pattern structures. Annals of Mathematics and Arti-
ficial Intelligence 72, 129–149 (2014)

5. Ferrara, A., Nikolov, A., Scharffe, F.: Data Linking for the Semantic Web. Interna-
tional Journal of Semantic Web and Information Systems 7(3), 46–76 (2011)

6. Ganter, B., Kuznetsov, S.O.: Pattern Structures and Their Projections. In: Proceed-
ings of the International Conference on Conceptual Structures (ICCS). pp. 129–142.
LNCS 2120, Springer (2001)

7. Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundations.
Springer (1999)

8. Nentwig, M., Hartung, M., Ngonga Ngomo, A.C., Rahm, E.: A survey
of current link discovery frameworks. Semantic Web 8(3), 419–436 (2017).
https://doi.org/10.3233/SW-150210

130

Formal Concept Analysis for Semantic Compression of
Knowledge Graph Versions

Damien Graux1,2 , Diego Collarana3,4 , Fabrizio Orlandi2

1 Inria, Université Côte d’Azur, CNRS, I3S, France
2 ADAPT SFI Centre, Trinity College Dublin, Ireland

3 Fraunhofer IAIS, Sankt Augustin, Germany
4 Universidad Privada Boliviana, Bolivia

damien.graux@inria.fr, orlandif@tcd.ie,
diego.collarana.vargas@iais.fraunhofer.de

Abstract. Recent years have witnessed the increase of openly available knowl-
edge graphs online. These graphs are often structured according to the W3C se-
mantic web standard RDF. With this availability of information comes the chal-
lenge of coping with dataset versions as information may change in time and
therefore deprecates the former knowledge graph. Several solutions have been
proposed to deal with data versioning, mainly based on computing data deltas
and having an incremental approach to keep track of the version history. In this
article, we describe a novel method that relies on aggregating graph versions to
obtain one single complete graph. Our solution semantically compresses simi-
lar and common edges together to obtain a final graph smaller than the sum of
the distinct versioned ones. Technically, our method takes advantage of FCA to
match graph elements together. We also describe how this compressed graph can
be queried without being unzipped, using standard methods.

1 Introduction

Knowledge Graphs (KG) are becoming the preferred data model for integrating het-
erogeneous data into actionable knowledge. General domain knowledge graphs such
as Wikidata [21] and DBpedia [16] have been used as core knowledge sources to de-
velop intelligent applications. Moreover, domain-specific knowledge graphs are being
constructed in almost all domains. Knowledge graphs provide a flexible data model
allowing the addition and deletion of facts in the graph. Therefore, KGs are dynamic
and evolve over time: facts are either added or removed. Such a paradigm leads to the
availability of several versions of the same KG e.g. each version may correspond to a
specific release published by the data providers.

Practically, KGs are often modeled according to the RDF standard, proposed by the
W3C. In a nutshell, the RDF1 data model implements multi-relational directed labelled
graphs using triples. Indeed, a triple t = (subject, predicate, object) encodes a fact,
e.g., ex:CR7 ex:born ex:Madeira states that Cristiano Ronaldo was born in
Madeira (Figure 1). To efficiently handle the continuously growing knowledge graphs,
there is a need for efficient compression techniques to allow practitioners to share and

1 https://www.w3.org/TR/rdf11-primer/

131

Cristiano Ronaldo

Football Player

Portuguese
English
Spanish

Model

Madeira

Juve

Cristiano
Jr.

Georgina
Rodriguez

Cristiano Ronaldo

Football Player

Portuguese

Madeira

Sporting

Cristiano Ronaldo

Football Player

Portuguese

Madeira

Man.
United

English

Fashion Entrepreneur

Cristiano Ronaldo

Football Player

Portuguese
English
Spanish

Model

Madeira

Real
Madrid

Cristiano
Jr.

Irina
Shayk

KG-2002 (5 triples)
ex:CR7 ex:name “Cristiano Ronaldo” .
ex:CR7 ex:born ex:Madeira .
ex:CR7 ex:occupation “Football_Player” .
ex:CR7 ex:playsFor ex:Sporting_CP .
ex:CR7 ex:speaks “Portuguese” .

KG-Compression based on the URIs standardisation (6 triples)
ex:CR7 ex:name?v=02-20 “Cristiano Ronaldo” .
ex:CR7 ex:born?v=02-20 ex:Madeira .
ex:CR7 ex:occupation?v=02-20#08,20#13 “Football_Player#Entrepreneur#Model” .
ex:CR7 ex:playsFor?v=02#08#13#20
ex:Sporting_CP#ex:Man_United#ex:Real_Madrid#ex:Juve .
ex:CR7 ex:speaks?v=02-20#08-20#13-20 “Portuguese#English#Spanish” .
ex:CR7 ex:fatherOf?v=13-20 ex:Cristiano_Jr .

KG-2008 (7 triples)
ex:CR7 ex:name “Cristiano Ronaldo” .
ex:CR7 ex:born ex:Madeira .
ex:CR7 ex:occupation “Football_Player” .
ex:CR7 ex:occupation “Entrepreneur” .
ex:CR7 ex:playsFor ex:Man_United .
ex:CR7 ex:speaks “Portuguese” .
ex:CR7 ex:speaks "English” .

(a) 30 triples in total

KG-2013 (9 triples)
ex:CR7 ex:name “Cristiano Ronaldo” .
ex:CR7 ex:born ex:Madeira .
ex:CR7 ex:occupation “Football_Player” .
ex:CR7 ex:occupation “Model” .
ex:CR7 ex:playsFor ex:Real_Madrid .
ex:CR7 ex:speaks “Portuguese” .
ex:CR7 ex:speaks “English” .
ex:CR7 ex:speaks “Spanish” .
ex:CR7 ex:fatherOf ex:Cristiano_Jr .

KG-2020 (9 triples)
ex:CR7 ex:name “Cristiano Ronaldo” .
ex:CR7 ex:born ex:Madeira .
ex:CR7 ex:occupation “Football_Player” .
ex:CR7 ex:occupation “Entrepreneur” .
ex:CR7 ex:playsFor ex:Juve .
ex:CR7 ex:speaks “Portuguese” .
ex:CR7 ex:speaks “English” .
ex:CR7 ex:speaks “Spanish” .
ex:CR7 ex:fatherOf ex:Cristiano_Jr .

(b) 6 triples in total (~80% of compression)

Fig. 1: Motivating example: (a) shows four different KG deltas of CR7 entity contain-
ing 30 triples in total. (b) depicts our vision of a semantically compressed KG with six
triples gaining 80%. The most critical challenge is searching for implicational depen-
dencies in the different deltas. Hence, FCA plays a crucial role in our approach.

store their graphs more easily. Ideally, knowledge graph compression algorithms should
serialize RDF data compacting RDF representation in a manner that still allows for
querying. By doing so, it should then be possible to query directly compressed graphs
without having to “unzip” them prior; this strategy would thereby save memory.

To date, most RDF compression approaches focus on syntactic compression, with
systems that modify the standard RDF data model. These systems require the imple-
mentation of complex encoders and decoders to deal with various KG versions, com-
puting deltas of triples to capture changes spanning across several versions. For exam-
ple, Álvarez-García et al. [2] implement algorithms directly in the storage solution. The
authors apply compact tree structures to the well-known vertical-partitioning technique
reaching a great compression degree. However, additional data structures are needed,
including a mapping dictionary and adjacency matrices. In this work, we focus on a
semantic compression of a set of RDF KGs, i.e., reducing the number of triples by
replacing or grouping repetitive parts observed in the various graphs of the set. Tech-
nically, our method takes advantage of formal concept analysis (FCA) to match graph
elements together. Moreover, our method allows to aggregate together concepts consid-
ered as “similar” according to a chosen similarity metric.

2 CR7’s career as a motivating example

First, let us take as example four different versions of the same small knowledge graph
(Figure 1) encoding facts about Cristiano Ronaldo (URI = ex:CR7). These versions
provide facts about CR7 at various moments of his career: in 2002, 2008, 2013 & 2020.

We notice that there are redundant facts among the knowledge graph versions, e.g.,
ex:CR7 ex:name "Cristiano Ronaldo" is present in all of them. Intuitively,
a compressed graph of these four versions should carry only once this specific state-

132

ment, mentioning that it is present in each of the considered versions. Such mentions
could be done by enriching the URIs of both predicates and objects, specifying e.g. the
range of the version where the statement holds. Similarly, the ex:playsFor concept
changes across versions as Cristiano played for a different team in each version. Our se-
mantic compression, using the same kind of URI annotation, encompasses such changes
to wrap all these statements within a single triple (cf. the 4th triple of Figure 1-b).

At the end of this process, the four versions of the CR7 graph are compressed into 6
triples. Moreover, the overall information contained in the obtained compressed KG is
strictly the same as the sum of the information available in the various distinct versions.
Therefore, for this basic example, our approach allows practitioners to carry one small
KG of 6 triples instead of 4 distinct KGs gathering 30 triples.

3 Definitions

In this section, we introduce the main concepts used for our description of the approach
and formally define them adapting existing definitions from the literature. First we de-
fine the concepts related to RDF Knowledge Graphs and then those related to FCA.

3.1 Knowledge Graph

Definition 1. Sets: Let U and L be the mutually disjoint sets of URI references and
literals, respectively. Let P ⊆ U be the set of all properties.

Definition 2. RDF triple: An RDF triple t = (s, p, o) ∈ U ×P × (U ∪L) displays the
statement that the subject s is related to the object o via the predicate p. In this work,
we do not consider blank nodes as speficied in the W3C RDF standard.

Definition 3. RDF Knowledge Graph: An RDF Knowledge Graph G is a finite set of
RDF triples, where t = (s, p, o) ∈ G. An RDF graph can also be viewed as a finite set
of edges t, of the form s

p−→ o, in a directed edge-labelled graph.

3.2 Formal Concept Analysis

Formal concept analysis (FCA) is a methodology for extracting a concept hierarchy
from sets of entities and their properties [22]. In other words, FCA is based on extracting
formal concepts from formal contexts. Adapting the definitions in [8,14]:

Definition 4. Formal Context: A formal context is a triple X = (E, A, I), where E is
a set of entities, A is a set of attributes, and I ⊆ E × A is the incidence: a set of pairs
such that (e, a) ∈ I if and only if the attribute a is defined for entity e.

Definition 5. Formal Concept: Let X = (E, A, I) be a formal context; for a subset of
entities F ⊂ E, let H(F) := {a ∈ A | ∀f ∈ F : (f, a) ∈ I}, conversely, for a subset
of attributes G ⊂ A, let K(G) := {e ∈ E | ∀g ∈ G : (e, g) ∈ I}. A formal concept of
the formal context X is an ordered pair (F, G) such that H(F) = G and K(G) = F .
If (F, G) and (F1, G1) are formal concepts of X , then (F, G) ≤ (F1, G1) if F ⊂ F1
or, equivalently, if G1 ⊂ G.

133

KGv1,
KGv2,
KGv3,
… ,

KGvn

Formal Context
Mapper

KGcompressed
FCA

Engine
Rule-based Grammar

Compressor

a1 a2 a3 aN

e1 X X

e2 X X

eN X X X

Entity Formal Context Table Entity Summary Lattice

Fig. 2: Zip function: our compression approach creates a formal context from the same
entities in different KG deltas. Then, we apply FCA to obtain an entity summary lattice.
Finally, we execute a rule-based grammar to produce a compressed KG as output.

Definition 6. Concept Lattice: Let X = (E, A, I) be a formal context. The set of all
formal concepts of X with the partial ordering defined in Definition 5 is called the
concept lattice of X .

4 An approach for zipping Knowledge Graph versions together

Grounded on FCA, we propose a zip function for compressing RDF knowledge graphs
providing a solution to the problem of semantically compressing RDF graphs. Figure 2
depicts the main steps defined for our zip function. Our zip function follows a three-
fold approach. We receive as input a set of KG versions i.e. several complete versions of
the same Knowledge Graph (containing thereby redundant triples). First, we compute
and prepare the formal context. Then, we run an FCA Engine to produce the formal
concepts. Finally, we apply a set grammar rules to synthesize a (single) semantically
compressed KG from the initial set of graphs.

Formal Context Mapper: First, from the set of KG deltas, we create a formal context,
as defined in Definition 4. As E we consider objects of the same type in the KG deltas
to be the entities. As A we consider all the properties in E to be the attributes, and
the incidence I is given by the use of that property as a predicate on the given subject.
Table 1 presents the entity formal context for the example introduced in Section 2, for
instance, the RDF triple “ex:CR7 ex:playsFor ex:Juve” is only stated in ‘KG-
2020’ as marked in the bottom-right corner cell.

FCA Engine: Second, we apply an FCA implementation to compute the formal
concepts out of the formal context as defined in Definition 5. More visually, Figure 3
provides a concept lattice (Definition 6) corresponding to the Section 2 example. For
instance at a glance one may see that “name-CR, born-Madeira, occu-Player,
speak-Por” are statements made in every versions of the Knowledge Graph (practi-
cally it would be useful to store only once this information instead of four times).

Rule-based Grammar Compressor: Taking the formal concepts output by the FCA
Engine, the idea to obtain a single compressed Knowledge Graph is to “group” the
redundancies by subjects: meaning that for each distinct subject of the versions we
establish the list of (predicate,object) available and then we tag the predicates and the
object using the version name. In practice, we take advantage of the fact that the URIs

134

name-
CR

born-
Madeira

occu-
Player

plays-
Sporting

speaks-
Por

occu-
Enter

plays-
MU

speaks-
En

occu-
Model

plays-
Madrid

speaks-
Es

father-
CRJ

plays-
Juve

CR7-02 x x x x x
CR7-08 x x x x x x x
CR7-13 x x x x x x x x x
CR7-20 x x x x x x x x x
Table 1: Example of the entity formal context that our approach creates for CR7 entity.

name-CR, born-Madeira, occu-Player, speak-Por, speak-En,
occ-Model, plays-Madrid, speak-Spanish, father-CRJ
cr7-13

name-CR, born-Madeira, occu-Player, plays-Sporting, speak-Por, occu-Enter, plays-MU,
speak-En, occ-Model, plays-Madrid, speak-Spanish, father-CRJ, plays-Juve

name-CR, born-Madeira, occu-Player, speak-Por
cr7-02, cr7-08, cr7-13, cr7-20

name-CR, born-Madeira, occu-Player, plays-Sporting, speak-Por
cr7-02

name-CR, born-Madeira, occu-Player, speak-Por, speak-En
cr7-08, cr7-13, cr7-20

name-CR, born-Madeira, occu-Player, speak-Por, speak-En, speak-Spanish, father-CRJ
cr7-13, cr7-20

name-CR, born-Madeira, occu-Player, speak-Por, occu-Enter, speak-En, speak-Spanish, father-CRJ, plays-Juve
cr7-20

name-CR, born-Madeira, occu-Player, speak-Por, occu-Enter, speak-En
cr7-08, cr7-20

name-CR, born-Madeira, occu-Player, speak-Por, occu-Enter, plays-MU, speak-En
cr7-08

Fig. 3: Example of a resulting lattice after applying FCA to an entity formal context.
We browse this lattice, employing rules to compress facts into a compressed KG.

used in RDF can be enriched, and we apply (on the predicates and the objects) the
following rule-based grammar to compress the KGs semantically.

– Hash “#” is used for ordered separation of version numbers and their correspond-
ing objects, both in new predicate IRIs and new concatenated object IRIs;

– Hyphen “-” indicates a continuous range of versions (i.e. from-to);
– Comma “,” indicates a discrete list of individual versions.

For example, in Figure 1, “ex:CR7 ex:born?v=02-20 ex:Madeira” means that
“ex:CR7 ex:born ex:Madeira” was present in all the versions from ‘02’ to ‘20’.

5 Querying the compressed Knowledge Graph

Fernández et al. [11] categorised all possible retrieval needs for versioned RDF archives.
They identify six different types of retrieval needs, regarding the query type (materiali-
sation or structured queries) and the target (version/delta) of the query. These types are
listed below, including example queries based on our CR7 example (Figure 1).

1. Single-version structured queries are performed only on one specific version.
Q1-a: In ‘KG-2013’ what team did CR7 play for?
Q1-b: What “occupations” did CR7 have in ‘KG-2013’?

2. Cross-version structured queries must be satisfied across different versions.
Q2-a: In which KG version did CR7 play for ex:Juve ?
Q2-b: In which KG versions did CR7 have the “occupation” of ‘Entrepreneur’?
Q2-c: Which predicates connect CR7 to ex:Madeira and in which versions?

135

3. Single-delta structured queries are the counterparts of the above version-focused
queries, but must be satisfied on change instances instead.
Q3-a: What triple with subject ‘CR7’ and predicate ‘ex:speaks’ was added be-
tween the two consecutive versions ‘KG-2002’ and ‘KG-2008’?

4. Cross-delta structured queries are the counterparts of the above version-focused
queries, but must be satisfied on change instances instead.
Q4-a: What has changed between the non-consecutive versions ‘KG-2002’ and ‘2020’?

5. Delta materialisation queries retrieve the delta between two or more versions.
Q5-a: What has changed between the consecutive versions ‘KG-2013’ and ‘2020’?

6. Version materialisation queries correspond to the retrieval of a full version.
Q6-a: What are all the statements about CR7 valid in version ‘KG-2008’?

Naively, these retrieval needs can be satisfied unzipping the KG to re-obtain the different
versions. Nevertheless, one advantage of our approach lies in the expressive power of
the de facto RDF query language: SPARQL2. Indeed, practitioners can express each of
the aforementioned queries using one single SPARQL query involving filters based on
regular expressions to grasp the relevant predicates. This therefore allows any
standard-compliant triplestore to load and query the compressed KG. For instance, the
aforementioned Q6-a could correspond to the following SPARQL query:3

SELECT DISTINCT ?s ?p ?o
WHERE{
{

?s ?p ?o .
FILTER regex(str(?p), "[?&]v=([^&]*)08.*$").

}UNION{
?s ?p ?o .
BIND (REPLACE(str(?p), "(..)*-.*", "$1") AS ?strFrom).
BIND (REPLACE(str(?p), ".*-(..).*", "$1") AS ?strTo).
FILTER (xsd:int(?strFrom) < 8).
FILTER (xsd:int(?strTo) > 8).

}
}

Different string functions, from the SPARQL 1.1 standard, are operated in order to
check if the predicate ?p was present in ‘KG-2008’. Technically, this is done using
regular expressions, for instance above, regex are used to extract the starting and end-
ing versions in case the sought version is “hidden” within an interval using a hyphen.
As a consequence, the compressed KG can be used to deal with version-related needs
together with conventional querying while being kept “light” in terms of triples.

6 Related Work

We now provide an overview of the most pertinent related efforts in the areas of FCA
for KGs, compression approaches for KGs, and KG versioning.

FCA on KGs: We see FCA supporting different tasks, including: Data Integration
using ontologies [13], Entity Matching [20], Entity Temporal Evolution [19] and Mod-
elling Dynamics [14], or Knowledge Exploration where FCA helps assess the com-
pleteness of Linked Datasets by mining definitions from RDF annotations [1]. FCA

2 https://www.w3.org/TR/sparql11-overview/
3 The presented query is simplified for space reasons; it might not generalize to all possible

cases, but it could be adapted using additional FILTERs like the ones shown. See https:
//github.com/badmotor/FCACompressRDF for test data and all query examples.

136

is also used in specific cases such as in [4] to propose an alternative semantics for
owl:sameAs, or to verbalize KG evolution [3]. Similarly, Aquin & Motta describe
how to extract relevant questions to an RDF dataset [7]. Furthermore, Formica [12] and
Rouane-Hacene et al. [17] extend FCA to respectively support formal ontology con-
structions in presence of uncertain data and to process multi-relational datasets.

KG Compression Techniques: In terms of knowledge graph compression techniques,
several paradigms have been explored. In [9], the authors list the basic and naive tech-
niques to compress an RDF graph. Later, solutions involving pre-processing and re-
writing of the graph were proposed: for instance, the HDT representation of RDF triples
was suggested [10]. Others describe methods to search the KGs for frequent patterns to
factorise them [15]. Additionally, some solutions4 summarise the KG hence compress-
ing it, e.g. [23] compresses parts of a KG considering a set of user-selected queries.

KG Versioning: The literature has been focused on designing systems able to deal
with many knowledge graph versions by computing deltas of triples e.g. OSTRICH [18].
Closer to our strategy, Cuevas & Hogan explored solutions for representing archives of
versioned RDF data using the SPARQL standard [6].

7 Conclusion and Future Work

In this article, we described an architecture to enable the compression of a set of knowl-
edge graph versions into a compressed one, while guaranteeing no loss of information.
Furthermore, we presented how such a compressed knowledge graph can be queried
directly without decompression, using any existing SPARQL-compliant endpoint.

To strengthen our solution, we will identify and evaluate more robust characters as
delimiters for the version parameters and the concatenated object IRIs. This is because
the “#” character could be present also in the original (non-concatenated) IRIs, and the
“,” and “−” characters could break our parser when parsing the version numbers em-
bedded in the predicates. Potentially, the proposed approach generates a high number
of unique predicates and unique objects. This could create some performance issues at
query time if the data is loaded into a triplestore, as these engines are not usually op-
timised for such conditions (the RDF Singleton Property model also suffers from the
same issue). In the near future, we could allow the configuration of the threshold for the
similarity metric and thereby open the discussion towards uncertain data as the zipped
KG could be carrying triples whose subjects were considered equal. Finally, an evalua-
tion on real and large datasets will be conducted.

Acknowledgements: We acknowledge the support of the EU H2020 Projects Opertus
Mundi (GA 870228), LAMBDA (GA 809965), the EDGE Marie Skłodowska-Curie
grant (No. 713567) at the ADAPT SFI Research Centre at Trinity College Dublin (co-
funded under the ERDF Grant #13/RC/2106_P2), and the Federal Ministry for Eco-
nomic Affairs and Energy (BMWi) project SPEAKER (FKZ 01MK20011A).

4 See [5] for a survey on summarizing semantic graphs.

137

References

1. Alam, M., Buzmakov, A., Codocedo, V., Napoli, A.: Mining definitions from RDF annota-
tions using formal concept analysis. In: IJCAI, AAAI Press (2015) 823–829

2. Álvarez-García, S., Brisaboa, N.R., Fernández, J.D., Martínez-Prieto, M.A.: Compressed
k2-triples for full-in-memory RDF engines. In: AMCIS. (2011)

3. Arispe, M., Tasnim, M., Graux, D., Orlandi, F., Collarana, D.: Verbalizing the evolution of
knowledge graphs with formal concept analysis. In: NLIWOD colocated with ISWC. (2020)

4. Beek, W., Schlobach, S., van Harmelen, F.: A contextualised semantics for owl:sameAs.
In: ESWC. Volume 9678 of Lecture Notes in Computer Science., Springer (2016) 405–419

5. Čebirić, Š., Goasdoué, F., Kondylakis, H., Kotzinos, D., Manolescu, I., Troullinou, G.,
Zneika, M.: Summarizing semantic graphs: a survey. VLDB journal 28(3) (2019) 295–327

6. Cuevas, I., Hogan, A.: Versioned queries over RDF archives: All you need is SPARQL? In:
MEPDaW @ ISWC. (2020) 43–52

7. d’Aquin, M., Motta, E.: Extracting relevant questions to an RDF dataset using formal concept
analysis. In: K-CAP, ACM (2011) 121–128

8. Denniston, J.T., Melton, A., Rodabaugh, S.E.: Formal Contexts, Formal Concept Analy-
sis, and Galois Connections. Electronic Proceedings in Theoretical Computer Science 129
(2013) 105–120

9. Fernández, J.D., Gutierrez, C., Martínez-Prieto, M.A.: RDF compression: basic approaches.
In: WWW. (2010) 1091–1092

10. Fernández, J.D., Martínez-Prieto, M.A., Gutierrez, C.: Compact representation of large RDF
data sets for publishing and exchange. In: ISWC, Springer (2010) 193–208

11. Fernández, J.D., Umbrich, J., Polleres, A., Knuth, M.: Evaluating query and storage strate-
gies for RDF archives. Semantic Web 10(2) (2019) 247–291

12. Formica, A.: Semantic web search based on rough sets and fuzzy formal concept analysis.
Knowl. Based Syst. 26 (2012) 40–47

13. Fu, G.: FCA based ontology development for data integration. Inf. Process. Manag. 52(5)
(2016) 765–782

14. González, L., Hogan, A.: Modelling dynamics in semantic web knowledge graphs with
formal concept analysis. In: WWW, ACM (2018) 1175–1184

15. Karim, F., Vidal, M.E., Auer, S.: Compacting frequent star patterns in RDF graphs. Journal
of Intelligent Information Systems 55(3) (2020) 561–585

16. Lehmann, J., Isele, R., Jakob, M., Jentzsch, A., Kontokostas, D., Mendes, P.N., Hellmann,
S., Morsey, M., van Kleef, P., Auer, S., Bizer, C.: DBpedia - A large-scale, multilingual
knowledge base extracted from wikipedia. Semantic Web 6(2) (2015) 167–195

17. Rouane-Hacene, M., Huchard, M., Napoli, A., Valtchev, P.: Relational concept analysis:
mining concept lattices from multi-relational data. Ann. Math. Artif. Intell. 67(1) (2013)

18. Taelman, R., Vander Sande, M., Verborgh, R.: OSTRICH: versioned random-access triple
store. In: Companion of WWW. (2018) 127–130

19. Tasnim, M., Collarana, D., Graux, D., Orlandi, F., Vidal, M.: Summarizing entity temporal
evolution in knowledge graphs. In: Companion volume of WWW, ACM (2019) 961–965

20. Tasnim, M., Collarana, D., Graux, D., Vidal, M.: Context-based entity matching for big data.
In: Knowledge Graphs and Big Data Processing. Springer (2020)

21. Vrandecic, D., Krötzsch, M.: Wikidata: a free collaborative knowledgebase. Commun. ACM
57(10) (2014) 78–85

22. Wille, R.: Restructuring lattice theory: an approach based on hierarchies of concepts. In:
International conference on formal concept analysis, Springer (2009) 314–339

23. Zhang, H., Duan, Y., Yuan, X., Zhang, Y.: ASSG: Adaptive structural summary for RDF
graph data. In: ISWC (Posters & Demos). (2014) 233–236

138

139

