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Preface

The ten preceding editions of the FCA4AI Workshop (see http://www.fca4ai.hse.ru/)
showed that many researchers working in Arti�cial Intelligence are deeply interested by a
well-founded method for classi�cation and data mining such as Formal Concept Analysis
(see https://upriss.github.io/fca/fca.html).

The FCA4AI Workshop Series started with ECAI 2012 (Montpellier) and the last edition
was co-located with IJCAI-ECAI 2022 (Vienna, Austria). The FCA4AI workshop has now a
long history and all proceedings are available as CEUR proceedings (see http://ceur-ws.

org/, volumes 939, 1058, 1257, 1430, 1703, 2149, 2529, 2729, 2972, and 3233). This year,
the workshop has again attracted researchers from di�erent countries working on actual and
important topics related to FCA, showing the diversity and the richness of the relations
between FCA and AI.

Formal Concept Analysis (FCA) is a mathematically well-founded theory aimed at data
analysis and classi�cation. FCA allows one to build a concept lattice and a system of de-
pendencies, i.e., implications and association rules, which can be used for many AI needs,
e.g. knowledge discovery, machine learning, knowledge representation and reasoning, natural
language and text processing. Recent years have been witnessing increased scienti�c activity
around FCA. In particular an important line of work is aimed at extending the possibilities
of FCA w.r.t. data and knowledge processing, and dealing with complex data. These ex-
tensions open new directions for AI practitioners. Accordingly, the workshop will investigate
the following issues:

� How can FCA support AI activities such as knowledge discovery, knowledge repre-
sentation and reasoning, machine learning, natural language processing, information
retrieval. . .

� How can FCA be extended for helping AI researchers to solve new and complex prob-
lems, in particular how to combine FCA and neural classi�ers for allowing interpretabil-
ity and producing valuable explanations. . .

First of all we would like to thank all the authors for their contributions and all the PC
members for their reviews and their precious collaboration. The papers submitted to the
workshop were carefully peer-reviewed by three members of the program committee. The
order of the papers in the proceedings (see table of contents in page 5) follows the program
of the workshop (see http://fca4ai.hse.ru/2023/).

The Workshop Chairs

Sergei O. Kuznetsov
National Research University Higher School of Economics, Moscow, Russia

Amedeo Napoli
Université de Lorraine, CNRS, Inria, LORIA, 54000 Nancy, France

Sebastian Rudolph
Technische Universität Dresden, Germany

Copyright ©2023 for this paper by its authors. Use permitted under Creative Commons License Attri-
bution 4.0 International (CC BY 4.0).
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Knowledge Base pattern structures-based
Classification of underground forums: A case study
Abdulrahim Ghazal1

1National Research University Higher School of Economics, Pokrovsky boulevard, 11, 109028, Moscow, Russian Federation

Abstract
Underground forums messages are online platforms where hackers share information and tools for
cyber-attacks. This paper discusses using a knowledge base in the context of lazy classification of
underground forums messages using pattern structures to assess the risk of these messages. Comparing
the performance of pattern structures and the knowledge base approach shows a significant improvement
in time needed for classification without loss in accuracy.

Keywords
Formal concept analysis (FCA), Threat intelligence, Underground forums, Pattern structures, Knowledge
Bases

1. Introduction

Corporations and organizations have been under increasing level of cyber attacks happening in
variety of intensity, frequency and impact [1]. This increase has made collecting information
and analyzing findings about these attacks more vital. Threat Intelligence is the practice that
focuses on that, and provides insights to victims on the history, current state of the attacks and
what to do to mitigate them [2]. The field of Threat Intelligence has been growing a lot in the
past years due to the business and regulations needs for more aware cybersecurity practices.

The adequate implementation of such service includes monitoring, detecting, analyzing and
reporting cyber threats in a timely manner. Sources of information include public and private
underground communities (forums) where the attackers share information about their tools,
findings and results.

Underground hackers forums are social platforms that host a group of topics with comments
from members of the forum. They consist of sub-forums each focusing on a specific sub-field
related to cyber crime. While some of these forums include sections for sales of illegal physical
goods, threat intelligence focuses on cyber threats only.

Some underground forums are public (like the forum in Figure 1), but many require registra-
tion and in some cases references or payment that ranges from 50$-1000$. These payments are
used sometimes to upgrade a user’s status in the forum (VIP, Golden, etc.), and the user would
be able to access all sections of the forum. These payments are usually done via cryptocurrency.
These forums support "escrow" services with guarantees for deals that are done on the forum.

$ agazal@hse.ru (A. Ghazal)
© 2023 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
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Collecting the relevant information is the first step to perform impactful threat intelligence,
which is followed by detecting threats inside the collected information, while the threat is fresh,
or even better, before it occurs. Such process is usually preformed by human analysts who have
to go through a large amount of posted messages daily. This effort grows every day with more
forums and more messages.

This work aims to assist the analysts in their task and automate the process of detecting
information about threats, giving them more time to move on to the next phases of analysis
and reporting threats to the relevant authorities or victims.

This will be done by using natural language analysis of the messages with formal concept
analysis and its extension pattern structures to classify messages into risky or none risky. The
method used should be fast enough to catch up with the incoming stream of messages, and
carry some ability to provide a simple explanation of the result of classification.

In this paper, we focus on using knowledge bases built from previous training iterations of
lazy classification using pattern structures, and comparing the knowledge base with the raw
application of pattern structures lazy classification.

The rest of the paper is organized as follows: In Section 2 we recall basic definitions in formal
concept analysis, pattern structures and lazy classification method using pattern structures. In
Section 3 we describe the experimental setting and knowledge base building. In Section 4, we
discuss the preliminary results of applying the knowledge base approach in the context of lazy
classification to underground forum messages. We conclude the work in section 5.

2. Formal Concept Analysis

2.1. Main Definitions

Formal Concept Analysis (FCA) is a mathematical theory that is based on concepts and con-
ceptual hierarchy [3, 4]. Its structuring of knowledge representation was used for knowledge
discovery, data analysis [5, 6], mining association rules [5, 7] ontology design [8, 9], and recom-
mendation systems [10].

2.2. Pattern Structures

This extension of Formal Concept Analysis was developed as an effort to enable applying the
mathematical tools offered by Formal Concept Analysis with a more complex data structures
like graphs, non-binary or vector data [11].

Let 𝐺 be a set of objects and (𝐷, ⊓) be a meet-semi-lattice of possible object descriptions
or patterns (for standard FCA, it would be the powerset of attribute set) with the similarity
operator ⊓. Elements of 𝐷 are ordered by a subsumption relation ⊑ such that 𝑎,𝑏 ∈ 𝐷, then
one has 𝑎 ⊑ 𝑏⇔ 𝑎 ⊓ 𝑏 = 𝑎. We also define 𝛿 : 𝐺 → 𝐷 as a mapping between objects and their
attributes. We call (𝐺, 𝐷, 𝛿) where 𝐷 = (𝐷, ⊓) a pattern structure. We can define the operators
(·)◇ on 𝐴 ⊆ 𝐺 and 𝑑 ∈ (𝐷,⊓) making Galois connection between the powerset of objects and
ordered set of descriptions:

𝐴◇ = ⊓𝑔∈𝐴𝛿(𝑔) (1)
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Algorithm 1: Lazy Classification with Pattern Structures
Requires: pattern structure (𝐺, 𝐷, 𝛿), test example 𝑔𝑡 ∈ 𝐺𝜏 with description 𝛿(𝑔𝑡),
parameter 0 ≤ 𝛼 ≤ 1.
1: for 𝑔 ∈ 𝐺+ ∪𝐺− :
2: compute sim = 𝛿(𝑔) ⊓ 𝛿(𝑔𝑡)
3: extsim = (sim)◇

4: if 𝛼% of objects in extsim have target attribute, classify 𝑔 positive
5: if 𝛼% of objects in extsim do not have target attribute, classify 𝑔 negative
6: classify undetermined (the algorithm terminates without classification).

𝑑◇ = {𝑔 ∈ 𝐺 | 𝑑 ⊑ 𝛿(𝑔)} (2)

These operators will give us back the maximal set of patterns shared by the objects in 𝐴 and
the maximal set of objects that share the description 𝑑, respectively.

A pair (𝐴, 𝑑), 𝐴 ∈ 𝐺 and 𝑑 ∈ (𝐷,⊓) that satisfies 𝐴◇ = 𝑑 and 𝑑◇ = 𝐴 is called a pattern
concept, where 𝐴 is called the extent and 𝑑 is called the pattern intent of (𝐴, 𝑑).

A partial order ≤ is defined on the set of concepts: (𝐴, 𝑑1) ≤ (𝐵, 𝑑2) iff 𝐴 ⊆ 𝐵 (or,
equivalently, 𝑑2 ⊑ 𝑑1). This partial order forms a complete lattice on the set of all pattern
concepts. We call this the pattern concept lattice of the pattern structure (𝐺, 𝐷, 𝛿).

For classification tasks we do not need to extract the full hidden knowledge from a dataset in
terms of implications, hypotheses or association rules, but a so-called lazy classification can be
applied [12, 13].

2.3. Lazy Classification with Pattern Structures

In classification problems we have a target attribute, which, in the simplest case of two classes,
has two values, denoted by + and −. By 𝐺+ we denote the set of objects that have the target
attribute (positive examples) and by 𝐺− we denote the set of objects that do not have the target
attribute (negative examples), so that 𝐺+ ∩𝐺− = ∅. Elements of 𝐺 that do not belong to any
of these subsets are called unclassified examples 𝐺𝜏 .

A version of the lazy classification method [12, 13] is described in Algorithm 1.
This algorithm takes𝑂(|G| (𝑝(⊓)+|G| 𝑝(⊑))) time, where 𝑝(⊓), 𝑝(⊑) are times for computing

⊓, ⊑, respectively.

2.4. Knowledge Bases

With the increase of data sizes used to perform some information retrieval or computation on
the stored data, it becomes challenging to generate results in a timely manner, which led to the
creation of knowledge bases that store some previously proven information that can help in
these tasks for fast access [14].

In the context of FCA and pattern structures, concept lattices can offer a new method of
knowledge representation [15] and in this work, it will be applied to save time by testing new
objects versus well-performing classifiers that are saved from past testing iterations first.
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3. Experiments

The goal of experiments is to test how using a knowledge base will change the results of the raw
application of the pattern structures lazy classification scheme (both in time and performance).
To do that, we will need to test several settings of the pattern structures lazy classification
scheme with different parameters, then repeat the best performing experiments, but with using
the knowledge base instead.

We will perform several experiments starting with lazy classification using the traditional
FCA approach, then use the interval, min and max pattern structures. We will repeat the same
experiments, but with probabilistic relaxation. In the end, we will repeat the experiments
with best performing parameters, but with the use of the knowledge base, to measure the
improvement in time needed for classification.

3.1. Dataset

The used dataset is composed of text messages posted by hackers on several underground forums
starting from 2021 Provided by the cybersecurity firm F.A.A.C.T. The positive examples of the
dataset are real threats detected by human analysts and reported upon. The dataset is balanced
in terms of classes and has 4945 messages. These messages come from a core of real threat
messages that were selected by the Threat Intelligence analysts team in the aforementioned
company. The negative sample was obtained from the same set of underground forums which
contained the positive samples, and posted in the same time frame.

The dataset is then processed into a numerical dataset for the later stages, with the use of
tf-idf. We should note that the number of keywords that will be included in the results of tf-idf is
a parameter that will be controlled during the experiments and is called “min_df”. It represents
the threshold of percentage of documents at which a keyword is included in the vocabulary. We
will also control the tolerance factor 𝛼 which represents the probabilistic relaxation allowed for
counter examples (See Algorithm 1).

3.2. Assessment

we should note that the used version of the lazy classification algorithm allows for unclassified
cases, and in this spirit, we define “Saved Effort” measure, which is computed as 1− |𝐺𝑢𝑛𝑐𝑙|

|𝐺𝜏 | ,
where 𝐺𝑢𝑛𝑐𝑙 is the set of unclassified examples 𝐺𝑢𝑛𝑐𝑙 ⊆ 𝐺𝜏 .

3.3. Experiments

In all the following experiments, 5-cross validation was used. The code used to perform these
experiments is written in python 3.6 and no Off-The-Shelf tools were used to write the FCA or
Pattern Structures code, but sk-learn package was used to build the Machine Learning models in
the later sections. Due to space limitations, we present the numerical results (publicly accessible)
at: https://github.com/abdulrahimGhazal/FCA-LC-KB.
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3.3.1. Binary Attributes

The attribute values here are the tf-idf values for the keywords contained in the text that were
included in the vectorizer’s vocabulary resulting from tf-idf. It would be represented as:

𝑎𝑡𝑡_𝑣𝑎𝑙𝑢𝑒(𝑘𝑒𝑦𝑤𝑜𝑟𝑑) =
{︂
1 𝑘𝑒𝑦𝑤𝑜𝑟𝑑 ∈ 𝑣𝑒𝑐𝑡𝑜𝑟𝑖𝑧𝑒𝑟 𝑣𝑜𝑐𝑎𝑏 (3)

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 (4)

We tested 5 values of min_df and the highest F1 value was 0.98 and saved effort at 0.88
with min_df at 0.01. We repeat the same experiment, but with introducing the tolerance factor,
allowing for a small amount of counter examples. We get the highest F1 value 0.98 and saved
effort 0.92 with min_df at 0.01, and 𝛼 at 75%.

3.3.2. Interval Pattern Structure

We represent the values of tf-idf as intervals of the floating point value, such that if the tf-idf
value for a keyword is 𝑥, then the attribute value would be an interval [𝑥,𝑥]. the intersection
operator for this pattern structure is defined as:

[𝑎1, 𝑏1] ⊓ [𝑎2, 𝑏2] = [𝑚𝑖𝑛(𝑎1, 𝑎2),𝑚𝑎𝑥[𝑏1, 𝑏2)] (5)

We tested 5 values of min_df and the highest F1 value was 0.88 and saved effort at 0.88 with
min_df at 0.01. We repeat the same experiment, but with introducing the tolerance factor,
allowing for a small amount of counter examples. We get the highest F1 value 0.94 and saved
effort 0.94 with min_df at 0.01, and 𝛼 at 75%.

3.3.3. Min Pattern Structure

We represent the values of tf-idf as intervals of the floating point value, such that if the tf-idf
value for a keyword is 𝑥, then the attribute value would be an interval [𝑥,∞[. the intersection
operator for this pattern structure is defined as:

[𝑎1,∞] ⊓ [𝑎2,∞] = [𝑚𝑖𝑛(𝑎1, 𝑎2),∞] (6)

We tested 5 values of min_df and the highest F1 value was 0.90 and saved effort at 0.87 with
min_df at 0.01. We repeat the same experiment, but with introducing the tolerance factor,
allowing for a small amount of counter examples. We get the highest F1 value 0.94 and saved
effort 0.94 with min_df at 0.01, and 𝛼 at 75%.

3.3.4. Max Pattern Structure

We represent the values of tf-idf as intervals of the floating point value, such that if the tf-idf
value for a keyword is 𝑥, then the attribute value would be an interval ]−∞, 𝑥[. the intersection
operator for this pattern structure is defined as:

]−∞, 𝑎1]⊓]−∞, 𝑎2] =]−∞,𝑚𝑎𝑥(𝑎1, 𝑎2)] (7)
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Figure 1: Knowledge Base building and updating.

We tested 5 values of min_df and the highest F1 value was 0.88 and saved effort at 0.88
with min_df at 0.01. We repeat the same experiment, but with introducing the tolerance factor,
allowing for a small amount of counter examples. We get the highest F1 value 0.94 and saved
effort 0.94 with min_df at 0.01, and 𝛼 at 75% and 80%.

3.3.5. knowledge base experiments

After noticing that a lot of examples are classified using a limited set of attribute sets (from
the intersection of new example and randomly selected examples from the objects set), so a
knowledge base from all “classifiers” which are basically sets of attributes, that performed well
was created. A diagram of the process of building and maintaining the knowledge base can be
seen in Figure 1.

This knowledge base was then checked manually by human analysts (experts) to review
whether the attributes really carried some truth in the classification. We set the threshold for
adding the classifier to the knowledge base as that it must classify correctly 90% of the test
examples assigned to it, and it must classify at least 2% of the test examples.

The building of the knowledge base is done via using a validation dataset that is part of
the data, with a 5 cross validation process. the classification results then are given to the
"classification checker" module, which checks if a classifier was able to classify correctly. If
that was the case, the classifier would be added to the interim knowledge base which would
be checked in the end of the validation process to trim the classifiers that do not match our
predefined conditions.

In case we do not want to update the knowledge base, The resulting classifiers (ready
knowledge base) will be passed on to the test dataset, which the classifiers never saw before to
avoid over-fitting. If the results are satisfactory, we stop the process and save the knowledge
base to use in real-world cases.

If an update is needed, we also created a monitoring module to update the knowledge base,
after each iteration of testing, so that these conditions are not broken by old classifiers, and in
the same time, we should maintain the time advantage that the knowledge base with a specific
set of classifiers have. The process of updates pass the ready knowledge base to the "knowledge
base checker" module which checks if there are any changes in the rules from the old version
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of the knowledge base, and keeps lists of the removed rules and the added rules.
These rules are then passed to the "knowledge base quality module" which works by making

several intermediate steps towards minimizing the changes while keeping the thresholds of
quality. These intermediate steps would mean breaking some of the quality thresholds, but only
for the removed rules, and only in case the threshold of the number of classified examples (2%)
is not achieved. This is due to the new test dataset. The resulting rules then make the final
updated knowledge base.

Binary Rules In the following experiments, we only depend on the existence of the set of
attributes as a classifier, so when using the knowledge base, we only check if the message
contains the set of attributes in its text.

Looking at the results, while the best time was observed in traditional FCA before using
the knowledge base and after using it at 0.03 milliseconds on average, we notice that the time
needed for the rest of tested pattern structures has decreased significantly from more than one
second to 0.04 milliseconds, with a slight loss in performance.

Conditioned Rules Unlike the previous experiment, we save the values of the attributes
in the set of the attributes of the to-be-added classifiers, then we apply the intersection of the
corresponding pattern structure on the whole test cases.

Since the binary attributes already mean that the keyword exists or not, the results will not
change for the binary attributes experiments. For the pattern structure experiments, we notice
that the loss of accuracy has decreased, but the time needed has increased slightly, since we have
to check more rules before reaching a classification, but still much better than going through
the usual lazy classification scheme.

While there is not a large difference between the knowledge base approaches, there is a
large time improvement in comparison to the traditional pattern structures or binary FCA
approaches.

3.3.6. Other ML models experiments

We trained several machine learning models with the dataset we have to observe how our work
measures to common classification models. The experiments were run two times, one with
binarized attributes and another with floating-point values of the tf-idf model. The models used
include:

• Decision Trees
• Gaussian Naive Bayes
• Support Vector Machines
• Logistic Regression
• Random Forests

The results show a close performance in relation to the pattern structures, which was the
SVM model in the case of binary attributes with an F1 value of 0.96 but less time needed to
reach a classification, with the best average time in the case of Decision Trees model with
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floating-point values with 0.008 seconds. The times needed in most of the models used were
better than the experiments with the knowledge base.

Some of these models are rules-based, and others are model-based, but in all of these models,
there is not a possibility for explaining the results simply. This can be simply done by returning
the attribute intersection that led to the classification if the lazy classification algorithm was
run, or the classifier in case of the knowledge base experiments.

4. Discussion

The results of the experiments show that the best performance in terms of F1 score was given
by the binarized attributes. The problem with such methods is their flexibility to perform well
when new data is presented.

When pattern structures are used, the less restrictive the values representation and inter-
section operator, the better it performs. Thus, the best pattern structure was the Min pattern
structure, followed by the Max and finally the Interval pattern structure.

The introduction of knowledge bases will save a lot of time searching for the best fit of inter-
sected attributes that could produce a classification, but other questions need to be addressed,
like how often the knowledge base must be updated, and how to ensure that there is no bias
due to the old data. It is worth noting that building the knowledge base while keeping the
floating-point values of the attributes and applying the intersection operator to include (or
exclude) ranges of values that might give incorrect results in general, but be locally successful
gives better accuracy but needs more time, so a trade-off is established.

While the time needed for common machine learning models is less in most cases, this
presents an opportunity for improving the implementation of the knowledge base classification,
since the implementation of the used machine learning models (sk-learn) applies multi-threading
when possible, which speeds up the classification.

The metrics used to assess such kind of experiments also come to discussion, as the nature of
the data and the methods give rise to issues when using F1 for example instead of recall, as in
such cases, where the cost of getting Type I errors is high.

5. Conclusion

We presented a knowledge base approach for lazy classification using pattern structures of
underground forums messages, and the results of the use of the knowledge base are promising
in terms of saved time needed to reach a classification.
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Abstract
This paper proposes IPS-KNN, an interpretable variant of the distance-weighted K-nearest neighbors
(KNN) algorithm based on interval pattern structures, to address the limitation of KNN’s lack of inter-
pretability. The proposed algorithm provides a reason for the classification in the form of a pattern of the
interval pattern structure describing the dataset. The intervals in the reason for classification provide
insights into which features are important for the classification task and what values these features
should have to produce a specific classification result. The IPS-KNN algorithm was evaluated on the red
wine quality dataset, where it performed similarly to the distance-weighted KNN algorithm in terms of
classification performance. The proposed algorithm can be used in applications where interpretability is
important, such as in medical diagnosis or credit risk assessment.

Keywords
lazy classification, pattern structures, interval pattern structures, interpretable K-nearest neighbors

1. Introduction

Lazy learning, also known as instance-based learning, is a type of machine learning algorithm
that does not explicitly train the model. Instead, it saves all the training data and uses a
similarity measure between the training data and the new data to make predictions [1]. The
term "Lazy learning" was first introduced in 1991 in [2]. It was defined as a type of machine
learning algorithms that postpones the training process to the testing phase. That is until a
new instance is provided for classification. The majority of lazy classification algorithms are
K-Nearest Neighbors (KNN) algorithms [3]. The results of KNN algorithms are not inherently
interpretable. When both K and the number of features in the dataset are small, visualizing the
K-nearest neighbors can provide some sense of interpretability, but not a formal one.

The interpretability of machine learning models lacks a precise mathematical definition.
However, there are several non-mathematical definitions that have been proposed. One such
definition, stated by Miller in [4], is that interpretability refers to "the degree to which a human
can understand the cause of a decision". The researchers in [5] defined interpretable models as
those for which humans can understand the causes of the model’s predictions.
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While interpretability may not be crucial in low-risk applications such as recommendation
systems, it is of utmost importance in high-risk applications such as credit risk assessment and
medical diagnosis. In such cases, it is essential to pair each prediction with the reason that led
the model to make that prediction in order to avoid any possible errors. Despite the absence of
a standardized metric for evaluating interpretability, models can be compared based on how
easily humans can comprehend the reasons behind their decisions [6].

Pattern structures, an extension of Formal Concept Analysis (FCA) introduced by Kuznetsov
and Ganter [7], expands on FCA by enabling the analysis of complex descriptors. Pattern
structures, among other generalizations of FCA, have been widely adopted in diverse applications
such as information retrieval, web and ontology engineering, biclustering and recommendation,
databases and functional dependencies, and software engineering [8].

Interval pattern structures, proposed in [9], are a special case of pattern structures in which
the descriptors are numeric intervals. They enable the use of FCA-based knowledge discovery
tools on numeric datasets [10]. To classify new instances, pattern structures can be used to
extract hypotheses from a set of training instances [11]. The original hypotheses-based lazy
classification algorithm on pattern structures was proposed in [12]. This algorithm finds the
similarity between a query instance and each instance in the training set, and considers a
similarity to be a hypothesis only if it describes instances from a single class. The extracted
hypotheses describe the characteristics that the new instance shares with a subset of instances
from the training set, providing interpretability into the model’s predictions.

Although the original algorithm was proven effective on pattern structures with graph de-
scriptors [11], it suffered from too specific hypotheses in the case of numeric features, especially
when the number of features increased [13]. Too specific hypotheses describe only few instances
and do not convey much useful information for the classification process. To address this issue,
[13] proposed randomly sampling batches of instances from each class in the training set and
finding the similarity between the query instance and the entire batch.

Instead of attempting to solve the issues with the original hypotheses-based algorithm, this
paper argues that augmenting the distance-weighted KNN with interval pattern structures can
provide interpretability. As the nearest instances to the query instance carry the most useful
information for classification, this approach focuses on leveraging this information, rather than
relying on random batches from the train set.

2. Formal Definitions of Pattern Structures and Interval Pattern
Structures

2.1. Pattern Structures

Pattern structures are a generalization of Formal Concept Analysis (FCA). In FCA, a context
is defined as a set of instances with binary features, where a binary relation specifies which
features are possessed by each instance [14]. Pattern structures remove the binary features
condition and allow the use of any type of features as long as they form a lower semi-lattice. We
follow [7] to provide a formal definition: Let 𝐺 be a set of instances, (𝐷,⊓) a lower semi-lattice
of all possible instance descriptors, and 𝛿 : 𝐺 → 𝐷 a mapping that corresponds each instance
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𝑔 ∈ 𝐺 with its descriptor 𝑑 ∈ 𝐷.
Then (𝐺,𝐷, 𝛿) is called a pattern structure, where 𝐷 = (𝐷,⊓), with the condition that the

set 𝛿(𝐺) := {𝛿(𝑔)|𝑔 ∈ 𝐺} generates a complete sub-semi-lattice (𝐷𝛿,⊓) from (𝐷,⊓), i.e. each
subset 𝐸 of 𝛿(𝐺) has a meet ⊓𝐸 in (𝐷,⊓).

The elements of 𝐷 are called patterns and are naturally ordered by the absorption relation ⊑:
for 𝑐, 𝑑 ∈ 𝐷, 𝑐 ⊑ 𝑑 ⇐⇒ 𝑐 ⊓ 𝑑 = 𝑐. The operation ⊓ is also called the similarity operation.

The pattern structure (𝐺,𝐷, 𝛿) follows FCA and defines two derivative operators (.)◇ given
in equations 1 and 2. The first of which is applied to a set of instances and returns the largest
common pattern describing these instances, while the second is applied to a pattern and returns
a set of instances that possess this pattern.

𝐴◇ = ⊓𝑔∈𝐴𝛿(𝑔) for 𝐴 ⊆ 𝐺 (1)

𝑑◇ = {𝑔 ∈ 𝐺|𝑑 ⊑ 𝛿(𝑔)} for 𝑑 ∈ (𝐷,⊓) (2)

2.2. Interval Pattern Structures

Interval pattern structures [9, 10] are a type of pattern structures in which the descriptors of the
set 𝐷 are represented as 𝑝-dimensional vectors of intervals, with each interval corresponding
to the value of one feature. Here, 𝑝 is the number of features being analyzed. Interval pattern
structures can be used to represent numeric features, by considering each numeric value 𝑥 as a
zero-length interval [𝑥, 𝑥].

Thus, the patterns of the set 𝐷 are 𝑝−dimensional vectors of intervals, where 𝑝 is the number
of features. For the patterns 𝑒 = ⟨[𝑎𝑖, 𝑏𝑖]⟩𝑖=1,2,..,𝑝 and 𝑓 = ⟨[𝑐𝑖, 𝑑𝑖]⟩𝑖=1,2,..,𝑝 in 𝐷, the similarity
of 𝑒 and 𝑓 is given by:

𝑒 ⊓ 𝑓 = ⟨[𝑎𝑖, 𝑏𝑖]⟩𝑖=1,2,..,𝑝 ⊓ ⟨[𝑐𝑖, 𝑑𝑖]⟩𝑖=1,2,..,𝑝 = ⟨[𝑚𝑖𝑛(𝑎𝑖, 𝑐𝑖),𝑚𝑎𝑥(𝑏𝑖, 𝑑𝑖)]⟩𝑖=1,2,..,𝑝 (3)

The absorption relation ⊑ is given by:

𝑒 ⊑ 𝑓 ⇐⇒ ⟨[𝑎𝑖, 𝑏𝑖]⟩𝑖=1,2,..,𝑝 ⊑ ⟨[𝑐𝑖, 𝑑𝑖]⟩𝑖=1,2,..,𝑝

⇐⇒ [𝑎𝑖, 𝑏𝑖] ⊓ [𝑐𝑖, 𝑑𝑖] = [𝑎𝑖, 𝑏𝑖] ∀𝑖 ∈ {1, 2, .., 𝑝} (4)

Consequently, larger intervals are absorbed by the smaller intervals they contain. At first
glance, this may seem counter-intuitive, but by definition, the similarity of a set of instances
should be absorbed by the pattern of each instance in this set.

3. KNN-based Interval Pattern Structure Lazy Classifier

The original distance-weighted K-nearest neighbors (KNN) algorithm [1] classifies a query
instance by finding its K-nearest neighbors and then computing a score for each class based on
the inverse of the distance between the query instance and the instances from the K-nearest
neighbors that belong to that class. However, the results of KNN algorithms are not inherently
interpretable. To address this limitation, we propose IPS-KNN (Interval Pattern Structure K-
Nearest Neighbor): an interpretable variant of the distance-weighted KNN algorithm that is
based on interval pattern structures.
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3.1. IPS-KNN Lazy Classifier

To classify a new instance 𝑔𝜏 , the set 𝐺𝑘𝑛𝑛 ⊆ 𝐺 consisting of the 𝑘-nearest neighbors of 𝑔𝜏
in the training set 𝐺 is identified. The similarity of all instances in 𝐺𝑘𝑛𝑛 is then calculated by
applying the similarity operator ⊓. All instances in the training set that are described by this
similarity are included in a voting process. The class of 𝑔𝜏 is then determined by the function:

𝑦(𝑔𝜏 ) = sgn(𝑠+ − 𝑠−) (5)

where the positive and negative scores, 𝑠+ and 𝑠− respectively, are calculated as:

𝑠+ =
∑︁

𝑔+∈𝐺◇◇
𝑘𝑛𝑛∩𝐺+

1

𝑑(𝑔+, 𝑔𝜏 )
(6)

𝑠− =
∑︁

𝑔−∈𝐺◇◇
𝑘𝑛𝑛∩𝐺−

1

𝑑(𝑔−, 𝑔𝜏 )
(7)

Here, 𝑑(𝑎, 𝑏) is the Euclidean distance between instances 𝑎 and 𝑏 in the feature space. The
set 𝐺◇◇

𝑘𝑛𝑛 is the subset of 𝐺 that contains all instances described by the similarity 𝐺◇
𝑘𝑛𝑛.

The proposed IPS-KNN algorithm differs from the original distance-weighted 𝑘-Nearest
Neighbors in that, in IPS-KNN, the similarity of the 𝑘-Nearest Neighbors defines which instances
will vote, while in KNN, only the 𝑘-nearest neighbors vote. The set of voters in IPS-KNN contains
all the 𝑘-nearest neighbors because they are all described by their similarity, but it may include
additional instances as well.

The difference in the set of voters between IPS-KNN and KNN is due to the geometric shape
that encloses the neighbors in the feature space. In KNN, the distance between the query
instance and the farthest instance of the 𝑘-Nearest Neighbors defines a hyper-sphere in the
feature space, and all the instances located on its surface or inside it vote. On the other hand,
the similarity of the 𝑘-Nearest Neighbors of the query instance defines a hyper-rectangle in the
feature space in IPS-KNN. This hyper-rectangle is larger than the hyper-sphere of KNN and
contains it entirely within its boundaries. Therefore, the set of voters in IPS-KNN may include
more instances than just the 𝑘-Nearest Neighbors.

3.2. IPS-KNN Interpretability

The similarity operation ⊓ can reveal why a query instance was classified in a certain class, as
it captures the similarity of descriptions. Suppose that a query instance 𝑔𝜏 was classified as
positive by IPS-KNN. In this case, 𝐺𝑘𝑛𝑛(𝑔𝜏 ) is the set of k-nearest instances to 𝑔𝜏 in the training
set, and their common similarity determines the set of voters 𝑉 (𝑔𝜏 ) = 𝐺◇◇

𝑘𝑛𝑛(𝑔𝜏 ), which can
be split into positive voters 𝑉+ and negative voters 𝑉−. The negative score is then given by
𝑠− =

∑︀
𝑔−∈𝑉−

1
𝑑(𝑔−,𝑔𝜏 )

. Since 𝑔𝜏 was classified as positive, the positive score 𝑠+ is greater
than 𝑠−. It is possible that only a subset of 𝑉+ needs to vote to classify 𝑔𝜏 as positive; any
subset of 𝑉+ that produces a positive score greater than the negative score will lead to the same
classification result.

Formally, let 𝐹 = {𝐸 | 𝐸 ⊆ 𝑉+,
∑︀

𝑔+∈𝑉+

1
𝑑(𝑔+,𝑔𝜏 )

> 𝑠−} be the set of all subsets of
𝑉+(𝑔𝜏 ) that give a positive score greater than 𝑠−. The subset with the minimum number of
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instances includes the instances of 𝑉+ closest to the query instance 𝑔𝜏 . However, this subset is
not necessarily unique, since multiple instances might have the same distance from the query
instance. Let 𝐸 be the subset that correspond to the hyper-rectangle with minimum volume.
The similarity of the elements of 𝐸 together with the description of the query instance is the
reason for classifying 𝑔𝜏 as positive. This is given by 𝑅 = 𝐸◇ ⊓ 𝛿(𝑔𝜏 ) : 𝐸 ∈ 𝐹 and |𝐸| =
min |𝐵| : 𝐵 ∈ 𝐹 and Π𝑝

𝑖=1|𝑏𝑖 − 𝑎𝑖|𝑖 is minimum, where 𝑎𝑖 and 𝑏𝑖 are the limits of the 𝑖𝑡ℎ
interval of 𝐸◇ ⊓ 𝛿(𝑔𝜏 ) and 𝑝 is the number of features. The reason for classification 𝑅 is itself a
pattern in the interval pattern structure (𝐺,𝐷, 𝛿), consisting of a vector of intervals with one
interval for each feature. The values of these intervals, relative to the original range of values of
the features, provide interpretability. 𝑅 can also be considered a classifier that correctly classifies
all instances of 𝐸 and the new instance 𝑔𝜏 . It should be noted that substituting the subset 𝐸
with any other element in 𝐹 would provide another correct interpretable classifier. However,
using 𝐸 corresponds to enclosing the classified instances in the most specific hyper-rectangle.
On the other hand, using 𝑉+ instead of 𝐸 will result in the most general hyper-rectangle.

The interpretability provided by IPS-KNN is somewhat analogous to that provided by decision
trees for continuous features. In IPS-KNN, the reason for classification is represented by a
hyper-rectangle in the feature space, with one interval for each feature. Similarly, in decision
trees, decisions are based on comparisons of feature values using greater than and less than
conditions [15], which can also be represented as hyper-rectangles, with two exceptions. Firstly,
decision trees may not use all features in the classification process, resulting in intervals of
the form (−∞,+∞). Secondly, decision trees may bound the values of some features from
one side only, leading to intervals of the form (−∞, 𝑥) and (𝑥,+∞), where 𝑥 is a real value.
Section 4 further explains how these intervals are used for interpretability.

4. Experiments

The proposed algorithm IPS-KNN was evaluated against the baseline classification algorithms
on the red wine quality dataset 1, which contains 11 numeric features and its output feature
was binarized for this purpose. In its original form, the quality of each wine is assessed by a
score between 1 and 10, where a higher score indicates better quality. To binarize the output
feature, wines with a quality score in the range [1, 5] were considered ’bad’, while those in
the range [6, 10] were considered ’good’. To assess the performance of the models, 20% of the
instances in the dataset were randomly selected as a holdout test set, and the remaining 80%
were used as the training set. In addition, 5-fold stratified cross-validation was used to evaluate
the models and to tune their hyperparameters using a grid search approach. F1 score was used
as the evaluation metric to take class imbalance into account. The accuracy and F1 scores on
the held-out test set for the proposed algorithm, distance-weighted KNN, and other baseline
classification algorithms are presented in Table 1. The evaluation results indicate that the
IPS-KNN algorithm and the distance-weighted KNN algorithm had similar performance. This
suggests that our proposed modification to the KNN algorithm, which allows more instances
to vote, did not significantly degrade performance. This is because the K nearest neighbors,
which have the largest voting weight, are still included in the set of voters. Table 1 also shows

1https://archive.ics.uci.edu/ml/datasets/wine+quality
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Table 1
Accuracy and F1 for IPS-KNN and the baseline classification algorithms on the binarized red wine
quality dataset.

Classifier Accuracy F1

KNN 82.81% 83.97%
IPS-KNN 81.56% 82.8%

Naive Bayes (GaussianNB) 75% 76.05%
Logistic Regression 77.5% 78.44%
SVM 78.75% 80.68%
Decision Tree 77.5% 78.95%
Random Forest 84.06% 84.59%
XGBoost 84.69% 86.04%

that Random Forest and XGBoost outperformed IPS-KNN, with XGBoost achieving the highest
F1 score with a 3.26% increase over that of IPS-KNN. Both XGBoost and Random Forest use
decision trees, which means that their results can be interpreted using the tests performed at the
nodes along the paths through the structure used to classify a query instance. However, after
grid search, the number of decision trees used by Random Forest and XGBoost was 100 and
1000, respectively. This large number of decision trees makes direct interpretability a difficult
task.

The following is an example of how IPS-KNN classifies a new instance and provides inter-
pretability on the binary red wine quality dataset. Table 2 shows the features of the red wine
quality dataset, the values of these features for the query instance 𝑔𝜏 , the ranges of the features,
and the intervals of the reason of classification R. We obtained the value of the hyperparameter
K of 25 through grid search. The similarity of 25-nearest instances to 𝑔𝜏 chose 44 instances
to vote, 38 of which are positive and the remaining 6 are negative. The resulting positive and
negative scores were 𝑠+ = 19.3 and 𝑠− = 2.6; therefore, 𝑔𝜏 was classified as positive.

Out of the 38 positive instances, the nearest 4 were enough to give a positive score larger
than the negative one. The similarity of these 4 objects together with 𝑔𝜏 produced the reason of
classification denoted by R in Table 2. The intervals of 𝑅 provide the interpretability of why 𝑔𝜏
was classified as positive and what values should the features of instances similar to 𝑔𝜏 also
have in order to be classified as positive.

For example, the interval [6.3, 6.8] of 𝑅 corresponding to the feature (fixed acidity) shows
that this feature’s value should be low relative to the original range of values in order to the
classification result to be positive. The interval corresponding to the feature (alcohol) shows
that the value of this feature should be in in the middle of the range of possible values. The
intervals corresponding to the features (fixed acidity, residual sugar, sulphates) are short relative
to the ranges of their values, which mean that they are important to the classification process.
In contrast, intervals covering a large part of the entire range of values are less useful since
they describe almost all objects in the dataset.
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Table 2
Ranges of data set feature values (red wine quality) and interval classifier intervals.

Feature Feature values of 𝑔𝜏 Range of values Reason of classification R

Fixed acidity 6.3 [4.6, 15.9] [6.3, 6.8]
Volatile acidity 0.55 [0.1, 1.6] [0.49, 0.67]
Citric acid 0.15 [0, 1] [0.02, 0.22]

Residual sugar 1.8 [0.9, 15.5] [1.8, 2.3]
Chlorides 0.077 [0.01, 0.61] [0.061, 0.077]

Free sulfur dioxide 26 [1, 72] [13.0, 37.0]
Total sulfur dioxide 35 [6, 289] [24.0, 53.0]

Density 0.99314 [0.99, 1.004] [0.99314, 0.99489]
pH 3.32 [2.7, 4] [3.32, 3.41]

Sulfates 0.82 [0.3, 2] [0.76, 0.83]
Alcohol 11.63 [8.4, 14.9] [10.3, 11.6]

5. Conclusion

Based on the results of the experiments, we can conclude that the IPS-KNN algorithm performs
similarly to the distance-weighted KNN algorithm in terms of classification performance. How-
ever, the IPS-KNN algorithm provides additional interpretability through the reason for the
classification in the form of a pattern of an interval pattern structure. The intervals in the reason
for classification provide insights into which features are important for the classification task
and what values these features should have in order to produce a specific classification result.

The proposed algorithm can be used in applications where interpretability is important, such
as in medical diagnosis or credit risk assessment. The interpretability provided by IPS-KNN can
help experts understand why a certain decision was made, which can lead to better decision
making and increased trust in the system.

6. Future Work

One limitation of the IPS-KNN algorithm is that the hyper-rectangle surrounding the query
instance and its neighbors is currently aligned with the coordinate axes in the feature space. To
address this limitation, we plan to investigate the introduction of a tilted hyper-rectangle in
future work. By tilting the hyper-rectangle at an angle, we aim to provide better separation of
the voters and potentially improve classification accuracy.

Introducing a tilted hyper-rectangle is a promising avenue for future research that could
enhance the performance of the IPS-KNN algorithm. However, it is important to conduct
more detailed investigation to explore the feasibility and potential benefits of this approach.
Specifically, we need to determine the optimal angle of tilt and evaluate the impact of this
approach on classification accuracy compared to the current IPS-KNN algorithm.
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Abstract  
The most of the tasks of event extraction from textual data are solved using neural networks. 
One of the ways to train neural networks on texts is the use of n-grams. In this paper, we 
consider n-grams in the form of subgraphs of conceptual graphs that have a certain semantics. 
Each such n-gram can be treated as an event. However, when using conceptual n-grams in 
neural network, their semantics are either lost or additional cumbersome structural solutions 
are required to preserve it. The paper proposes to use an additional information resource in the 
form of a hierarchy of multimodal clusters based on a multidimensional formal context, the 
n+1 dimensional tensor elements of which consist of n-grams and elements selected as objects. 
The task of event extraction is solved by the joint use of a neural network and a hierarchy of 
multimodal clusters. The neural network solves the classification problem and returns the class 
objects corresponding to the query text upon request. Then these objects are searched in 
multimodal clusters. These clusters contain combinations of events related to the classes of 
objects found by the network. This method has been studied on two data sets and demonstrates 
a number of advantages over known approaches to extracting events from texts using neural 
networks and n-grams. 
 
Keywords  1 
Event extraction, conceptual n-grams, Formal Concept Analysis, multimodal clustering  

1. Introduction 

This paper represents the ongoing research on applying Formal Concept Analysis (FCA) [1] to 
neural-based solutions to certain text mining tasks. Among these tasks, there is Event extraction [2].  

Event extraction constitutes an area of methods for acquiring additional information in unstructured 
text so that it represents an answers on so-called "5W1H" questions “Who did What to Whom, Where, 
When and How” [2]. The answers do not necessarily have to contain all the elements of the "5W1H" 
question, which creates a variety of event representations.  

Event extraction plays an important role in many applications in various fields. Among these 
applications, there are event extraction in real-time news, extract information about traffic jams from 
social media, extract medications in biomedical field, to name a few [2]. The event extraction task can 
be interpreted as a generalization of two text mining tasks: named entity recognition and relationship 
extraction. Accordingly, the arsenal of tools for solving these tasks is used in event extraction. Among 
these tools, neural networks currently play a key role.  

In this paper, we investigate the use of n-grams extracted from text to train a neural network instead 
of training it on full texts. This method of learning is known and is used in a number of tasks. But we 
use "meaningful" conceptual n-grams, which contain answers to the "5W1H" questions in whole or in 
part. Each such n-gram also can be treated as an event.  

However, when training a neural network on conceptual n-grams by standard way, the semantics of 
"meaningful" n-grams is not represented in the network. The paper proposes to use an additional 
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information resource in the form of a hierarchy of multimodal clusters based on a multidimensional 
formal context, the n+ 1-tensor elements of which are n-grams and the elements selected as objects. 
The task of event extraction is solved by the joint use of a neural network and a hierarchy of multimodal 
clusters. The neural network solves the classification problem and returns the class objects 
corresponding to the query text upon request. Then these objects are searched in multimodal clusters. 
These clusters contain combinations of events related to the classes of objects found by the network.  

Using conceptual n-grams for learning allows one to apply neural network with a simple 
architecture. The use of an additional resource in the form of a hierarchy of clusters built on n-grams 
presents additional information to obtain a solution of event extraction task. 

The paper is organized as follows. In the Section 2, there are brief descriptions of event extraction 
task and multimodal clustering problem in FCA with mentioning the main related works in these areas. 
In the Section 3, the proposed approach is outlined together with its functionality. The Section 4 
contains conclusion. The paper ends with acknowledgements and references sections.   

2. Preliminaries and Related Work  

This work is related to two principles. The first principle of query refining has long been known in 
FCA community [3]. If a query is identified with some node of conceptual model (in FCA it is 
conceptual lattice), then its refinements or possible answers to it are located in neighboring nodes. In 
our method, class objects found by the neural network act as queries. Clusters as formal concepts 
corresponding to queries, form a lattice in which query refining principle operates. Having fixed the 
cluster that best matches the query, we find the clusters adjacent to it and use this principle to extract 
events.    

The second principle of concept-based explanations [4] is applied in neural networks and aims to 
implement the notion of a concept in the layers of deep neural networks. In the work of [5] this principle  
is used to build an intrinsically interpretable document classifier using a combination of FCA and 
approaches from applied graph theory. At the current stage of research, we do not use the semantics of 
conceptual n-grams directly in the neural network, limiting ourselves to the use of standard 
configuration networks. However, the principle of concept-based explanations is applied when working 
with multimodal clusters. 

2.1. Neural-based event extraction from texts 

The main definitions in the event extraction are the following [2].  An event mention usually is a 
phrase or sentence that describes an event in which a trigger and corresponding arguments are included. 
Not every sentence contains event mention, so that sentences without events must be recognized and 
omitted. Event trigger is usually a verb or a noun that most clearly expresses the core meaning of an 
event. We use verb-oriented algorithm for acquiring conceptual graphs from text and construct n-grams. 
Event type refers to the category to which the event corresponds. In most cases, event types are 
predefined manually, categorized by event triggers. For instance, we may be interested on existing some 
verbs in the text, i.e. attack, shoot, etc. Event arguments are the main attributes of events. They are 
usually entity mentions describing the event state change, involving who, what, when, where, and how. 
An argument role is a function or position that an event argument performs in the relationship between 
the event argument and the trigger.  

There are two directions in event extraction. They are Closed-domain event extraction and Open-
domain event extraction. Closed-domain event extraction uses predefined event schema to discover and 
extract desired events of particular type from text. An event schema contains several event types and 
their corresponding event structures. Open-domain event extraction aims at detecting events from texts 
and in most cases, also clustering similar events via extracted event keywords. Event keywords refer to 
those words/phrases mostly describing an event, and sometimes keywords are further divided into 
triggers and arguments. 

There are a large number of works devoted to event extraction from the text. The review [2] contains 
245 references. Among the works closest to our topic and using neural networks, we highlight the 
following two papers. 
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In the work of [6] the Abstract Meaning Representation (AMR) graphs acquired from text are used. 
AMR graph is a rooted directed acyclic graph where the nodes represent concepts and the edges 
represent relations between these concepts. Events are considered as subgraphs of AMR graph. Neural 
network is used to identify an event subgraphs. The neural network is trained on a tagged textual corpus. 
Tagging includes the definition of events and their arguments. Methodology of event extraction 
presented in the work of [6] needs external information resources.  Since this work is about biomedical 
event extraction, these resources are knowledge base containing relations between proteins and large 
corpus of unannotated text that contain protein mentions.  

The work of [7] represents recent results of nested event extraction from biomedical domain data. 
In this work, event extraction model named as DeepEventMine is proposed.  It extracts multiple 
overlapping directed acyclic graph structures from a sentence. An event is called nested event when it 
has other events in its arguments, while an event is called flat event when there are only entities in its 
arguments. According to DeepEventMine model, an event consists of a trigger and zero or more 
arguments. A trigger is a textual mention that denotes the presence of an event in text. Triggers, events, 
arguments and roles are all united in graph structures. The model is strongly tied to pre-trained 
networks, primarily to the BERT network. The implementation of the model requires large computing 
resources. 

Based on the mentioned works and other works in this research area, the following conclusions can 
be drawn. 

1. Graph models of event representation are used in the works. 
2. Neural networks used in event extraction have a complex architecture. 
3. To extract events, external resources are needed in the form of text corpora, thesauri, and 

databases. 

2.2. Multimodal clustering in FCA 

In FCA, multimodal clustering is formulated as follows. 
If  is a relation on data domains  then formal context is an n +1 set: 

                                                         1 2= < , , ..., ,nK K K R>                                                       (1)  
where              . Multimodal clusters on the context (1) are n – sets  

 
                                         1 2, , ..., nX X X       (2) 

which have the closure property [8]: 
 
                       1 2 1 2( , ,..., ) , ..., ,n nu x x x X X X u R                                                              (3) 
 

       and    11,2,..., , \ ,..., { }, ...,j j j j j nj n x D X X X x X        does not satisfy (3). 

A multimodal cluster is a subset in the form of combinations of elements from different sets Ki. It is 
also defined as a closed n-set [9] since the closure property (3) provides its “self-sufficiency”: it cannot 
be enlarged without violating (2). 

Formal concepts on multimodal formal context are those multimodal clusters where 
1 2 1 2( , ,..., ) , , ..., ,k kfor all u x x x X X X u R    and k is maximally possible. In other words, they are 

the largest possible k-dimensional hypercubes completely filled with units. The concept of the density 
of a multimodal cluster is introduced in FCA and formal concepts are interpreted as absolutely dense 
clusters [9]. 

3. Methodology 

The considered approach is implemented by performing the following steps. 

1 2 ... nR D D D    1 2, , ..., nD D D

i iK D⊆
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1. Conceptual n-grams are built on the text under processing. We consider every such n-gram as a 
graph in the form of a tree. For a given sentence, it may be dependency parse tree, AMR-graph, 
conceptual graph or any other n-gram model. Depending on the type of n-grams, their construction can 
be performed by an appropriate software tool. All the currently most well known variants of n-grams 
are supported by parser programs. It is necessary to ensure the storage of n-grams, for example, in a 
database. Some text corpora store n-grams as tagging. 

2. A multidimensional formal context is formed as an n+1-dimensional tensor. Every point of this 
tensor contains an object and a n-gram it corresponding. Objects can be documents containing texts, 
terms, entity names, text topics, etc. Multimodal clusters are built on this formal context.  

3. The task of event extraction is solved by the joint use of a neural network and a hierarchy of 
multimodal clusters. The neural network solves the classification problem and, upon request, returns 
objects-classes corresponding to the query text. Then the clusters corresponding to these objects are 
determined. They contain combinations of events related to the query text. 

3.1. Experiments and Early Results 

Consider implementation of the outlined methodology and its experimental study. 
Data sets. We explored our methodology on two datasets. The first dataset is The Stanford Question 

Answering Dataset (SQuAD) [10] . In this dataset there are topics, corresponding texts, questions and 
answers. This dataset is often used to train neural networks applied in question-answering systems. 
Extracting events in SQuAD corresponding to the semantic template “who, what, with whom and where 
and when” will allow one to form answers to questions related to the template elements.  

The second dataset (KaggleTDC) is a collection of approximately 1000 newsgroup documents from 
10 different newsgroups [11]. This dataset differs from SQuAD in that its newsgroups more overlap by 
words. Therefore, we expected greater uncertainty in determining the newsgroup from the text by the 
neural network. 

Conceptual n-grams. The sequence of n tokens in the text is called an n-gram. The token can be a 
phoneme, a syllable, a letter, a word or base pairs according to the application. We construct n-grams 
by acquiring conceptual graphs [12] from text and selecting their subgraphs having three, four or five 
concepts connected by agent, patient or attribute relations.  Accordingly, we have trigrams, 4-grams 
and 5-grams.   

Figure 1 shows an example of conceptual graphs corresponding to the sentence "Dioxins are highly 
toxic, and health effects on humans include reproductive, developmental, immune and hormonal 
problems" related to the topic of the Immune system. 

 

 
 

Figure 1: An example of conceptual graphs corresponding to the sentence "Dioxins are highly toxic, 
and health effects on humans include reproductive, developmental, immune and hormonal problems" 

 
In Figure 1, two disconnected conceptual graphs correspond to the sentence above. By selecting the 

agent and patient relationships in graphs, we have the trigrams “effect – include - problem” and “dioxin 
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– be - toxic". When adding attribute relations, we get five 5-grams based on the first trigram with the 
concepts of health, hormonal, immune, developmental, reproductive. For example, it will be a 5-gram 
“health – effect - include – problem – hormonal”, which corresponds to the event template given above. 
All these conceptual n-grams may be considered as events. 

Conceptual graphs used in our work constitute a special case of AMR graphs. Conceptual graphs 
represent the semantics of individual sentences by acquiring from text known semantic roles as agent, 
patient, attribute, etc. We do not use external information resources and train neural network on n-
grams extracted from conceptual graphs. 

Neural Network. We use a compact chain recurrent neural network of standard architecture. An 
example of a structure of such network for 5 classes is shown in Figure 2.   

 

 
Figure 2:  An example of a structure of neural network for 5 classes. 

  
The network is trained on n-grams generated from the texts of the dataset. When training the 

network, several optimization methods were used: ADAM, RMSProp, SGD, Signed.   
The input data in the network are phrases in natural language, usually in the form of a question. 

Conceptual n-grams are constructed corresponding to input phrases. If no n-grams correspond to a 
phrase, the first n words of the phrase come to the input layer. If several n-grams correspond to a phrase, 
then they consistently arrive at the input layer. The output of the network is the object-class 
corresponding to the text query. Training and network operation using conceptual n-grams were 
compared with the training method in which n-grams formed by using a sliding context window (SCW). 
The results are presented in the tables 1, 2 and on Figure 3.  

The tables 1 and 2 contain some results of training and network operations for conceptual n-grams 
and for SCW n-grams constructed on the SQuAD dataset and on the KaggleTDC dataset. 

 
Table 1 
Results of training and network operations for SQuAD dataset 

Parameter Conceptual n-grams SCW n-grams 
Number of objects 636 30166 
Time training (sec.) 0.2854565 5.2802665 

Accuracy 0.796875 0.728207 
 

Table 2 
Results of training and network operations for KaggleTDC dataset 

Parameter Conceptual n-grams SCW n-grams 
Number of objects 1339 67076 
Time training (sec.) 2.97245 163.408 

Accuracy 0.802 0.811 
 
 
The table 3 contains information about the five most voluminous topics-classes from the SQuAD 

data set. 
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Table 3 
F1-Score for five most voluminous topics-classes from the SQuAD data set 

Class Conceptual n-grams SCW n-grams 
European_Union_law 0.85714 0.78671 
University_of_Chicago 0.81967 0.69532 

Immune_system 0.92307 0.80824 
Warsaw 0.65 0.63042 

Huguenot 0.65 0.64822 
 
Figure 3 shows confusion matrices for neural network learned by conceptual n-grams and by SCW 

n-grams. 

 
   (a)      (b) 

Figure 3: Confusion matrices for neural network learned by conceptual n-grams (a) and by SCW n-
grams 

 
In general, from the most general positions, it can be argued that the more words are used when 

training a neural network, the better it works. The latter means, among other things, that the network 
responds to requests more meaningfully. Here we do not take into account the effect of overfitting.  

Among others, there are two ways to train neural networks on textual data. The first one uses a bag 
of words – all the words of the text without stop words. The second uses n-grams obtained by applying 
a sliding context window. Both methods use a lot of words, but they clearly do not reflect the semantics 
of the text, since they are simple sequences of words. Figure 4 shows how the volumes of n-grams and 
sentences of the text are correlated. 

 

 
 
Figure 4: N-gram volumes for different classes of the SQuAD dataset. 
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Conceptual n-grams that we form consist of a small number of words and their number is more than 
10 times less than the number of n-grams formed by using SCW as can be seen in Figure 4. Based on 
this, it can be assumed that the use of conceptual n-grams will reduce the performance of the neural 
network. In reality, this does not happen, as can be seen from Table 2, Table 3 and Figure 3. In our 
opinion, this is due precisely to the presence of semantics in conceptual n-grams. 

As the value of n in conceptual n-grams increases, the quality of the network increases too, as can 
be seen from Table 4. 
 
Table 4 
Variants of n-grams and results of their application  

Type of n-gram F1-score 
3-gram 0,704036 

4-gram with agent role 0,67713 
4-gram with patient role 0,737643 

5-gram 0,817518 
Complex 3-5-gram 0,8998 

 
Joint use of neural net and multimodal clusters. The neural network is trained on n-grams, which 

are interpreted as events. The texts at the network input are also converted into n-grams. As a result, 
the network works only with n-grams. When solving a classification task, in response to an input query, 
the network returns a set of class names for the SQuAD dataset and a set of newsgroup names for the 
KaggleTDC dataset. It was found in experiments that in these sets there are often objects-classes with 
similar probabilities, which makes it difficult to choose between them. For these purposes, multimodal 
clusters are used. There are such clusters-formal concepts, where subsets of objects include objects-
classes with similar probabilities. In such clusters, all n-grams are combined with all objects. As a result, 
we get a set of events corresponding to the request to the neural network. 

Multimodal clustering is performed using an evolutionary algorithm that allows obtaining Pareto-
optimal solutions for several criteria of cluster optimality. The framework [13] is used for multimodal 
clustering. The problem of multimodal clustering is formulated as a problem of multiobjective 
optimization. In the experiments, two clustering optimality criteria were used, the cluster volume and 
its density. These criteria contradict each other, so compromise Pareto-optimal solutions are needed. 
First of all, we were interested in absolutely dense clusters being formal concepts. In them, all objects 
are combined with all elements of n-grams. Large and dense clusters are interesting because 
combinations of elements of its subsets set a property that manifests itself on a large number of elements 
and, possibly, means a regularity. However, often the clustered data is sparse and the existence of large 
and dense clusters on them is unlikely. Therefore, when selecting clusters, a trade-off between density 
and volume is provided by the algorithm. 

The quality characteristics that are usually used in the classification problem (accuracy and F1-
score) are integral and do not reflect the quality of individual solutions, their semantics. In the task of 
event extraction, it is important to detect events as facts and present the composition of events. In our 
experiments, we still detect events as facts. In multimodal clusters, we count the number of n-grams 
and fix their composition. Table 5 shows the content of several multimodal clusters containing pairs of 
class objects. For every pair there are corresponding number of n-grams shown in the table. 

 
Table 5 
Contents of some multimodal clusters 

Class objects The number of n-grams 
University of Chicago 8 

Warsaw  
Immune_system 

European_Union_law 
2 

European_Union_law  
Scottish Parliament 

28 
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In the Table 5, University of Chicago and Warsaw classes are linked by eight n-grams having mutual 
words in corresponding texts. Immune_system and European_Union_law classes are practically 
unlinked since their mutual words in two n-grams are commonly used. It is evident that 
European_Union_law and Scottish Parliament classes are closely linked by 28 n-grams. 

As a result, in clusters we find events that have common class objects and class objects that have 
common events.  

Obviously, in the task of event extraction, only n-grams are not enough for the end user and 
additional information is needed. The n-grams found in multimodal clusters correspond to text 
fragments that can be presented to the user in response to a request. In this case, events take the form 
of descriptions understandable to the user. Such a solution may be designed in the form of a user 
interface focused on a specific subject area. 

4. Conclusion  

In this paper, an approach to training neural networks on n-grams in the form of conceptual graphs 
is proposed, which allows using a recurrent network with a simple architecture. Another contribution 
is the use of multimodal clusters as an additional information resource in the task of event extraction. 
The results of the application of these solutions are the following. 

1. The neural network learns on n-grams no worse than in words, but it works faster. 
2. The use of an additional resource in the form of a multidimensional formal context and multimodal 

clusters makes it possible to improve the interpretability of the results of the neural network. 
In the future, an analytical explanation of the experimental results obtained in this work is necessary. 
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extraction
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Abstract
The article demonstrates computational efficiency of the probabilistic approach to knowledge extraction
using the FCA. In addition to the result previously proved by the author on sufficiency of a polynomial
number of hypotheses (concepts) about the causes of the target property under study, this paper will
give a polynomial upper bound on the average running time of the algorithm for generating one concept.
The proven result concerns a family of algorithms based on coupling Markov chains for arbitrary formal
contexts formed from the positive part of training sets. To get a good estimate for the length of trajectory
(before entering to some ergodic state) of such a chain, we had to enrich the representation of the training
sample by adding negation for every original binary attribute.

Keywords
formal concept, coupling Markov chain, mean length of trajectory, computational complexity

1. Introduction

The extraction of knowledge using a binary similarity operation began in the early 1980s in the
works of Prof. V.K. Finn, who proposed the JSM-method of automatic generation of hypotheses
[1, 2].

This approach was named after the English philosopher, economist and logician John Stuart
Mill, whose ideas on Inductive Logic [3] served as the starting point of the JSM-method. The key
component of this approach is a binary similarity operation. In the beginning, this operation
was considered in isolation: most often as the intersection of sets of binary attributes describing
training examples. In this case, it was a way of finding a set of common attributes. Initially,
domains of objects (training and test examples) were Boolean algebras.

Then S.O. Kuznetsov proposed [4] to apply Formal Concept Analysis [5] to JSM-paradigm.
This discovery led to extension of domains of application by those, that can be described by
general lattices, and to invention of more efficient algorithms [6].

However, the JSM-method has a number of significant limitations that do not allow it to
cope with training samples of moderate size. One of them is exponential explosion, when a
small training context generates exponentially large number of concepts [7]. Another one is the
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appearance of so-called ’phantom’ concepts as accidental similarities between small number of
training objects each of which belongs to a different concept with larger extent [8]. It can be
argued that the appearance of such hypotheses corresponds to the over-fitting phenomenon.
This statement was experimentally confirmed in the master thesis of L.A. Yakimova [9].

To overcome these limitations, the author [10] proposed to use a probabilistic approach.
The idea is to generate a random sample of concepts by trajectories of Markov chain making
random walks through the concept lattice. We named our approach the VKF method in honor
of V.K. Finn and because of the abbreviation of the Russian term "Probabilistic Combinatorial
Formal method" to indicate effective processing using probabilistic algorithms and FCA of
various combinations of training objects for generating concepts.

Such algorithms are based on the "Close-by-One" operations 𝐶𝑏𝑂, for which the part with
respect to objects was proposed earlier by S.O. Kuznetsov [11] in the eponymous 𝐶𝑏𝑂 algorithm
for exhaustive generation of all candidates for hypotheses, the number of which in some
cases may be exponentially large. Using these operations, the author proposed to generate a
polynomial-size random subset of concepts, each element of which corresponds to one trajectory
of random walk across the corresponding lattice.

The author [12] has proved that it is sufficient to generate 𝑛·ln 2−ln 𝛿
𝜀 random concepts in

order to correctly predict all the 𝜀-important test objects with the reliability of 1− 𝛿.
Therefore, the single obstacle for polynomial complexity of full scheme of the VKF-method

is the absence of polynomial upper bound on the length of trajectories of Markov chain. The
main result of this paper is polynomial upper bound on the average length of trajectories of the
coupling Markov chain when the training context is dichotomized, i.e., expanded by additional
binary attributes that correspond to negations of all original attributes. Such expansion is useful
if the absence of an original attribute is allowed to be a part of cause for the target attribute.
Previously, only special cases of formal contexts (for instance, Boolean algebra and linear order)
were investigated. The new result concerns the general case of arbitrary lattice.

2. Background

2.1. Basic definitions and facts of FCA

Here we recall some basic definitions and facts from Formal Concept Analysis (FCA) [5].
A (formal) context is a triple (𝐺,𝑀, 𝐼) where 𝐺 and 𝑀 are finite sets and 𝐼 ⊆ 𝐺 ×𝑀 .

The elements of 𝐺 and 𝑀 are called objects and attributes, respectively. As usual, we write
𝑔𝐼𝑚 instead of ⟨𝑔,𝑚⟩ ∈ 𝐼 to denote that object 𝑔 has attribute 𝑚.

For 𝐴 ⊆ 𝐺 and 𝐵 ⊆ 𝑀 , define

𝐴′ = {𝑚 ∈ 𝑀 : ∀𝑔 ∈ 𝐴(𝑔𝐼𝑚)}, (1)

𝐵′ = {𝑔 ∈ 𝐺 : ∀𝑚 ∈ 𝐵(𝑔𝐼𝑚)}; (2)

so 𝐴′ is the set of attributes common to all the objects in 𝐴 and 𝐵′ is the set of objects possessing
all the attributes in 𝐵. The maps (·)′ : 𝐴 ↦→ 𝐴′ and (·)′ : 𝐵 ↦→ 𝐵′ are called derivation
operators (also polars) of the context (𝐺,𝑀, 𝐼).

A concept of the context (𝐺,𝑀, 𝐼) is defined to be a pair (𝐴,𝐵), where 𝐴 ⊆ 𝐺, 𝐵 ⊆ 𝑀 ,
𝐴′ = 𝐵, and 𝐵′ = 𝐴. The first component 𝐴 of the concept (𝐴,𝐵) is called the extent of the
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concept, and the second component 𝐵 is called its intent. The set of all concepts of the context
(𝐺,𝑀, 𝐼) is denoted by B(𝐺,𝑀, 𝐼).

Let (𝐺,𝑀, 𝐼) be a context. For concepts (𝐴,𝐵) and (𝐶,𝐷) in B(𝐺,𝑀, 𝐼) we write (𝐴,𝐵) ≤
(𝐶,𝐷), if 𝐴 ⊆ 𝐶 . The relation ≤ is a partial order on B(𝐺,𝑀, 𝐼).

A subset 𝐴 ⊆ 𝐺 is the extent of some concept if and only if 𝐴′′ = 𝐴 in which case the unique
concept of which 𝐴 is the extent is (𝐴,𝐴′). Similarly, a subset 𝐵 of 𝑀 is the intent of some
concept if and only if 𝐵′′ = 𝐵 and then the unique concept with intent 𝐵 is (𝐵′, 𝐵).

Proposition 1. Let (𝐺,𝑀, 𝐼) be a context. Then (B(𝐺,𝑀, 𝐼),≤) is a lattice with join and meet
given by

⋁︁

𝑗∈𝐽
(𝐴𝑗 , 𝐵𝑗) = ((

⋃︁

𝑗∈𝐽
𝐴𝑗)

′′,
⋂︁

𝑗∈𝐽
𝐵𝑗), (3)

⋀︁

𝑗∈𝐽
(𝐴𝑗 , 𝐵𝑗) = (

⋂︁

𝑗∈𝐽
𝐴𝑗 , (

⋃︁

𝑗∈𝐽
𝐵𝑗)

′′); (4)

Corollary 1. For context (𝐺,𝑀, 𝐼) the lattice (B(𝐺,𝑀, 𝐼),≤) has (𝑀 ′,𝑀) as the bottom
element and (𝐺,𝐺′) as the top element. In other words, for all (𝐴,𝐵) ∈ B(𝐺,𝑀, 𝐼) the following
inequalities hold:

(𝑀 ′,𝑀) ≤ (𝐴,𝐵) ≤ (𝐺,𝐺′). (5)

For (𝐴,𝐵) ∈ B(𝐺,𝑀, 𝐼), 𝑔 ∈ 𝐺, and 𝑚 ∈ 𝑀 define

𝐶𝑏𝑂((𝐴,𝐵), 𝑔) = (𝐴,𝐵) ∨ ({𝑔}′′, {𝑔}′), (6)

𝐶𝑏𝑂((𝐴,𝐵),𝑚) = (𝐴,𝐵) ∧ ({𝑚}′, {𝑚}′′), (7)

so according to (4) 𝐶𝑏𝑂((𝐴,𝐵), 𝑔) is equal to ((𝐴 ∪ {𝑔})′′, 𝐵 ∩ {𝑔}′) and according to (3)
𝐶𝑏𝑂((𝐴,𝐵),𝑚) is equal to (𝐴 ∩ {𝑚}′, (𝐵 ∪ {𝑚})′′).

The useful properties of introduced operations are summarized in the following Lemmas.

Lemma 1. Let (𝐺,𝑀, 𝐼) be a context, (𝐴,𝐵) ∈ B(𝐺,𝑀, 𝐼), 𝑔 ∈ 𝐺, and 𝑚 ∈ 𝑀 . Then

𝑔 ∈ 𝐴 ⇒ 𝐶𝑏𝑂((𝐴,𝐵), 𝑔) = (𝐴,𝐵), (8)

𝑚 ∈ 𝐵 ⇒ 𝐶𝑏𝑂((𝐴,𝐵),𝑚) = (𝐴,𝐵), (9)

𝑔 /∈ 𝐴 ⇒ (𝐴,𝐵) < 𝐶𝑏𝑂((𝐴,𝐵), 𝑔), (10)

𝑚 /∈ 𝐵 ⇒ 𝐶𝑏𝑂((𝐴,𝐵),𝑚) < (𝐴,𝐵). (11)

Lemma 2. Let (𝐺,𝑀, 𝐼) be a context, (𝐴,𝐵), (𝐶,𝐷) ∈ B(𝐺,𝑀, 𝐼), 𝑔 ∈ 𝐺, and 𝑚 ∈ 𝑀 . Then

(𝐴,𝐵) ≤ (𝐶,𝐷) ⇒ 𝐶𝑏𝑂((𝐴,𝐵), 𝑔) ≤ 𝐶𝑏𝑂((𝐶,𝐷), 𝑔), (12)

(𝐴,𝐵) ≤ (𝐶,𝐷) ⇒ 𝐶𝑏𝑂((𝐴,𝐵),𝑚) ≤ 𝐶𝑏𝑂((𝐶,𝐷),𝑚). (13)
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2.2. Random walks by coupled Markov chain

To avoid the open problem of calculation of mixing time of general Markov chain we proposed
[10] to use the coupled Markov chain for random walks across the concept lattice. The states of
this chain are ordered pairs of concepts. The stopping time of the random walk algorithm is the
first moment of entering to some ergodic (recurrent) state of the coupled Markov chain. Every
ergodic state of the coupled Markov chain is a pair of equal concepts. Denote the set of such
states by 𝐸.

Data: context (𝐺,𝑀, 𝐼), external function 𝐶𝑏𝑂( , )
Result: random concept (𝐴,𝐵) ∈ B(𝐺,𝑀, 𝐼)
𝑋 := 𝐺 ⊔𝑀 ; (𝐴,𝐵) := (𝑀 ′,𝑀); (𝐶,𝐷) = (𝐺,𝐺′);
while ((𝐴 ̸= 𝐶) ∨ (𝐵 ̸= 𝐷)) do

select random element 𝑥 ∈ 𝑋 ;
(𝐴,𝐵) := 𝐶𝑏𝑂((𝐴,𝐵), 𝑥);
(𝐶,𝐷) := 𝐶𝑏𝑂((𝐶,𝐷), 𝑥);

end
Algorithm 1: Coupling Markov chain

The algorithm terminates when the upper and lower concepts coincide. The condition on
remaining of ordering between two concepts (𝐴,𝐵) ≤ (𝐶,𝐷) at any intermediate step of the
while loop of Algorithm 1 follows from Lemma 2.

The classical theorem of Markov chain Theory about transient (non-ergodic) states [13]
implies almost surely termination of algorithms 1, i.e. finiteness of a trajectory until it enters to
some ergodic state with probability 1.

Consider the moment 𝑇𝑖(𝐸) = min{𝑡 : 𝑋𝑡 ∈ 𝐸,𝑋0 = 𝑠𝑖} of the first entering to 𝐸, starting
with an arbitrary transient state 𝑠𝑖 = (⟨𝐴,𝐵⟩ < ⟨𝐶,𝐷⟩) /∈ 𝐸.

Theorem 1. The moment 𝑇𝑖(𝐸) is Markov one for every transient state 𝑠𝑖.

Proof. We need to prove P [𝑇𝑖(𝐸) < ∞ | 𝑋0 = 𝑠𝑖] = 1.
Use decomposition {𝑋𝑡 ∈ 𝐸,𝑋0 = 𝑠𝑖} =

⋃︀
𝑛≤𝑡 𝑈𝑛(𝑠𝑖), where

𝑈𝑛(𝑠𝑖) = {𝑋𝑛 ∈ 𝐸,𝑋𝑛−1 /∈ 𝐸, . . . ,𝑋1 /∈ 𝐸,𝑋0 = 𝑠𝑖}.

Transient States Theorem asserts

lim
𝑡→∞

P [𝑋𝑡 /∈ 𝐸 | 𝑋0 = 𝑠𝑖] → 0. (14)

Disjointedness of different 𝑈𝑛(𝑠𝑖) and formula (14) imply

P{𝑋𝑡 ∈ 𝐸 | 𝑋0 = 𝑠𝑖} =
∑︁

𝑛≤𝑡

P [𝑈𝑛(𝑠𝑖) | 𝑋0 = 𝑠𝑖] → 1,

if 𝑡 → ∞.
Since 𝑈𝑛(𝑠𝑖) = {𝑇𝑖(𝐸) = 𝑛} the 𝜎-additivity leads to needed conclusion.
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As direct corollary of the theorem 1 we conclude that the termination of algorithm 1 takes
place almost surely (i.e. with probability 1).

The goal of current research is to obtain a polynomial upper bound on the average length of
trajectories of the coupling Markov chain. In general, it is an open problem. In sequel, we’ll
provide such bound, when the training context is expanded by additional binary attributes that
correspond to negations of all existing attributes (dichotomic expansion).

Example 1. Dichotomic expansion of the left context is the right one.

𝐺×𝑀 𝑚1 𝑚2 𝐺×𝑀+ 𝑚1 ¬𝑚1 𝑚2 ¬𝑚2

𝑔1 1 1 𝑔1 1 0 1 0
𝑔2 1 0 𝑔2 1 0 0 1
𝑔3 0 1 𝑔3 0 1 1 0
𝑔4 0 0 𝑔4 0 1 0 1

The expanded context corresponds to the lattice

⊤
𝑔3 𝑔4𝑔2𝑔1

𝑚1 𝑚2 ¬𝑚2 ¬𝑚1

⊥

where ⊤ = ⟨∅, {𝑚1,¬𝑚1,𝑚2,¬𝑚2, }⟩, 𝑔𝑗 = ⟨{𝑔𝑗}, {𝑔𝑗}′⟩, 𝑚𝑗 = ⟨{𝑚𝑗}′, {𝑚𝑗}⟩, ¬𝑚𝑗 =
⟨{¬𝑚𝑗}′, {¬𝑚𝑗}⟩, and ⊥ = ⟨{𝑔1, 𝑔2, 𝑔3, 𝑔4}, ∅⟩.

The coupled Markov chain starts with state (⊥ ≤ ⊤). A trajectory of the random walk depends
on random choices from 𝐺 ⊔𝑀+.

Consider an example of such trajectory. Assume that 𝑔1 is selected at the 1st step, then the chain
goes to state (⊥ ≤ 𝑔1). The choice of 𝑔2 at the 2nd step leads to (⊥ ≤ 𝑚1). If the chain selects
¬𝑚1 at the 3rd step, then the state becomes (¬𝑚1 ≤ ⊤). The choice of 𝑔4 at the 4th step leads to
(¬𝑚1 ≤ 𝑔4). After selection of 𝑔3 at the 5th step the trajectory goes to ergodic state (¬𝑚1 ≤ ¬𝑚1),
and algorithm 1 stops.

3. Technical Tools

In [14] the author developed a useful tool to estimate the average length of trajectories of
coupling Markov chain through recurrence relations.

Lemma 3.
E [𝑇𝑖(𝐸)] = 1 +

∑︁

𝑠𝑗 /∈𝐸
E [𝑇𝑗(𝐸)] · P [𝑋1 = 𝑠𝑗 |𝑋0 = 𝑠𝑖]

for every 𝑠𝑖 /∈ 𝐸.
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Proof. Additivity of the average gives

E [𝑇𝑖(𝐸)] =
∞∑︁

𝑛=1

𝑛 · P [𝑈𝑛(𝑠𝑖)|𝑋0 = 𝑠𝑖] , (15)

where 𝑈𝑛(𝑠𝑖) = {𝑋𝑛 ∈ 𝐸,𝑋𝑛−1 /∈ 𝐸, . . . ,𝑋1 /∈ 𝐸,𝑋0 = 𝑠𝑖}.
Then

E [𝑇𝑖(𝐸)] =

∞∑︁

𝑛=1

𝑛 · P [𝑈𝑛(𝑠𝑖)|𝑋0 = 𝑠𝑖] =

=
∞∑︁

𝑛=1

P [𝑈𝑛(𝑠𝑖)|𝑋0 = 𝑠𝑖] +
∞∑︁

𝑛=2

(𝑛− 1) · P [𝑈𝑛(𝑠𝑖)|𝑋0 = 𝑠𝑖] =

= 1 +
∞∑︁

𝑘=1

𝑘 · P [𝑋𝑘+1 ∈ 𝐸,𝑋𝑘 /∈ 𝐸, . . . ,𝑋1 /∈ 𝐸|𝑋0 = 𝑠𝑖] = 1+

+
∑︁

𝑠𝑗 /∈𝐸

∞∑︁

𝑘=1

𝑘 · P [𝑋𝑘+1 ∈ 𝐸,𝑋𝑘 /∈ 𝐸, . . . ,𝑋2 /∈ 𝐸|𝑋1 = 𝑠𝑗 ] · P [𝑋1 = 𝑠𝑗 |𝑋0 = 𝑠𝑖] =

= 1 +
∑︁

𝑠𝑗 /∈𝐸
E [𝑇𝑗(𝐸)] · P [𝑋1 = 𝑠𝑗 |𝑋0 = 𝑠𝑖] .

Here we sequentially use identity (15), the Markov property for moment 𝑇𝑖(𝐸) (theorem 1)
and the Law of Total Probability.

This easily results in an upper bound of the order 𝑂(𝑛 · ln𝑛) on the average length of
trajectories of algorithm 1 for 𝑛-dimensional Boolean algebra case.

A more striking result from [14] concerns the average trajectory length of the algorithm 1 for
linear orders. Here the upper bound of 4 on the average length does not depend on the number
of elements of the linear order.

Example 2. Apply lemma 3 to the lattice from example 1.
This lattice allows us to define a distance between ordered candidates (i.e. components of a state).

State 𝑠0 = (⊥ ≤ ⊤) has distance 3. States 𝑠1 = (⊥ ≤ 𝑔1), . . . , 𝑠4 = (⊥ ≤ 𝑔4), 𝑠5 = (𝑚1 ≤ ⊤),
𝑠6 = (𝑚2 ≤ ⊤), 𝑠7 = (¬𝑚2 ≤ ⊤), 𝑠8 = (¬𝑚1 ≤ ⊤) have distance 2. States with distance 1
are divided into 2 groups (external and internal ones). External states are 𝑠9 = (⊥ ≤ 𝑚1), 𝑠10 =
(⊥ ≤ 𝑚2), 𝑠11 = (⊥ ≤ ¬𝑚2), 𝑠12 = (⊥ ≤ ¬𝑚1), and 𝑠13 = (𝑔1 ≤ ⊤), . . . , 𝑠16 = (𝑔4 ≤ ⊤).
Internal states correspond to edges 𝑠17 = (𝑚1 ≤ 𝑔1), . . . , 𝑠24 = (¬𝑚1 ≤ 𝑔4). The rest states are
ergodic ones (with distance 0).

Denote the length of trajectory starting from state 𝑠0 by 𝑇3. The states with distance 2 determine
a random walk of length 𝑇2. External states initiate trajectories of length 𝑇𝐸

1 , and internal ones
start trajectories of length 𝑇𝑀

1 .
Lemma 3 leads to E𝑇3 = 1 + E𝑇2 and system of equations

⎧
⎪⎨
⎪⎩

E𝑇2 = 1 + 3
8E𝑇2 +

2
8E𝑇

𝐸
1 + 2

8E𝑇
𝑀
1

E𝑇𝐸
1 = 1 + 1

8E𝑇2 +
2
8E𝑇

𝐸
1 + 2

8E𝑇
𝑀
1

E𝑇𝑀
1 = 1 + 2

8E𝑇
𝐸
1 + 2

8E𝑇
𝑀
1

(16)
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The solution E𝑇2 = 288
72 = 4 of the system (16) leads to the value E𝑇3 = 1 + 4 = 5 of the

average length of trajectory of algorithm 1 for the context considered in example 1.

Now we extend component-wise the 𝐶𝑏𝑂 operations to states of coupling Markov chain

𝐶𝑏𝑂((⟨𝐴,𝐵⟩ ≤ ⟨𝐶,𝐷⟩) , 𝑔) = (𝐶𝑏𝑂(⟨𝐴,𝐵⟩, 𝑔) ≤ 𝐶𝑏𝑂(⟨𝐶,𝐷⟩, 𝑔))

and
𝐶𝑏𝑂((⟨𝐴,𝐵⟩ ≤ ⟨𝐶,𝐷⟩) ,𝑚) = (𝐶𝑏𝑂(⟨𝐴,𝐵⟩,𝑚) ≤ 𝐶𝑏𝑂(⟨𝐶,𝐷⟩,𝑚)) .

Then we define a (partial) order between states 𝑠𝑖 = (⟨𝐴𝑖, 𝐵𝑖⟩ ≤ ⟨𝐶𝑖, 𝐷𝑖⟩) and 𝑠𝑗 =
(⟨𝐴𝑗 , 𝐵𝑗⟩ ≤ ⟨𝐶𝑗 , 𝐷𝑗⟩) of coupling Markov chain as following

𝑠𝑗 ⩽ 𝑠𝑖 ⇔ ⟨𝐴𝑖, 𝐵𝑖⟩ ≤ ⟨𝐴𝑗 , 𝐵𝑗⟩ ≤ ⟨𝐶𝑗 , 𝐷𝑗⟩ ≤ ⟨𝐶𝑖, 𝐷𝑖⟩. (17)

Lemma 2 easily implies

Lemma 4. For any ordered pair of states 𝑠𝑗 ⩽ 𝑠𝑖, any 𝑔 ∈ 𝐺, and any 𝑚 ∈ 𝑀
𝐶𝑏𝑂(𝑠𝑗 , 𝑔) ⩽ 𝐶𝑏𝑂(𝑠𝑖, 𝑔) and 𝐶𝑏𝑂(𝑠𝑗 ,𝑚) ⩽ 𝐶𝑏𝑂(𝑠𝑖,𝑚) hold.

We denote the number of training objects by 𝑘 = |𝐺| and the number of attributes by
𝑛 = |𝑀 |.

Lemma 5. E𝑇𝑗(𝐸) ≤ E𝑇𝑖(𝐸) for any ordered pair of transient states 𝑠𝑗 ⩽ 𝑠𝑖 of coupling Markov
chain.

Proof. Define coupled random walk of ordered pair of states 𝑋𝑡 ⩽ 𝑌𝑡 as following:

P
[︀
𝑋1 = 𝑠′𝑗 , 𝑌1 = 𝑠′𝑖 | 𝑋0 = 𝑠𝑗 , 𝑌0 = 𝑠𝑖

]︀
=

=

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

𝑙
𝑛+𝑘 , 𝑙 = |{𝑔 ∈ 𝐺 : 𝑠′𝑗 = 𝐶𝑏𝑂(𝑠𝑗 , 𝑔), 𝑠

′
𝑖 = 𝐶𝑏𝑂(𝑠𝑖, 𝑔)}|+

+|{𝑚 ∈ 𝑀 : 𝑠′𝑗 = 𝐶𝑏𝑂(𝑠𝑗 ,𝑚), 𝑠′𝑖 = 𝐶𝑏𝑂(𝑠𝑖,𝑚)}|
0, ¬∃𝑔 ∈ 𝐺

[︁
𝑠′𝑗 = 𝐶𝑏𝑂(𝑠𝑗 , 𝑔), 𝑠

′
𝑖 = 𝐶𝑏𝑂(𝑠𝑖, 𝑔)

]︁
&

&¬∃𝑚 ∈ 𝑀
[︁
𝑠′𝑗 = 𝐶𝑏𝑂(𝑠𝑗 ,𝑚), 𝑠′𝑖 = 𝐶𝑏𝑂(𝑠𝑖,𝑚)

]︁
.

Lemma 4 implies P [𝑋1 ⩽ 𝑌1 | 𝑋0 ⩽ 𝑌0] = 1.
Since ⟨𝐴𝑖, 𝐵𝑖⟩ = ⟨𝐶𝑖, 𝐷𝑖⟩ for ⟨𝐴𝑖, 𝐵𝑖⟩ ≤ ⟨𝐴𝑗 , 𝐵𝑗⟩ ≤ ⟨𝐶𝑗 , 𝐷𝑗⟩ ≤ ⟨𝐶𝑖, 𝐷𝑖⟩ implies

⟨𝐴𝑖, 𝐵𝑖⟩ = ⟨𝐴𝑗 , 𝐵𝑗⟩ = ⟨𝐶𝑗 , 𝐷𝑗⟩ = ⟨𝐶𝑖, 𝐷𝑖⟩, then by definitions it follows that

P [𝑋𝑡 = 𝑌𝑡 ∈ 𝐸 | 𝑋0 = 𝑠𝑗 ⩽ 𝑌0 = 𝑠𝑖] ≥ P [𝑌𝑡 ∈ 𝐸 | 𝑋0 = 𝑠𝑗 ⩽ 𝑌0 = 𝑠𝑖] . (18)

Recall that for an integer-valued random variable 𝑍 , the equality E𝑍 =
∑︀∞

𝑡=0 P [𝑍 > 𝑡] is
fulfilled. Now 𝑋𝑡 /∈ 𝐸 ⇔ 𝑇𝑖(𝐸) > 𝑡 and 𝑌𝑡 /∈ 𝐸 ⇔ 𝑇𝑗(𝐸) > 𝑡.

Therefore, equation (18) implies

P [𝑇𝑗(𝐸) > 𝑡 | 𝑋0 = 𝑠𝑗 , 𝑌0 = 𝑠𝑖] ≤ P [𝑇𝑖(𝐸) > 𝑡 | 𝑋0 = 𝑠𝑗 , 𝑌0 = 𝑠𝑖] ,

and the summation over 𝑡 leads to the required result.
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4. Main result

In the following we’ll assume 𝐺′ = ∅. This is easily achieved by eliminating all the attributes
common to all training objects.

Let’s dichotomize the context, i.e., enrich the set of attributes by introducing an attribute
for the negation ¬𝑚𝑗 of every binary attributes 𝑚𝑗 ∈ 𝑀 . This construction often has a useful
meaning: we want the absence of a attribute to be a new attribute, i.e., we propose dichotomic
scaling of the context (according to [5]).

The enriched set of attributes will be denoted by 𝑀+, and we denote its power by 2𝑛 = |𝑀+|.
Usually 2𝑛 ≪ 𝑘 = |𝐺|, which we will assume in the future. Enrich the training context to
𝐼 ⊆ 𝐺×𝑀+ by the rule:

𝑔𝐼¬𝑚𝑗 ⇔ ¬(𝑔𝐼𝑚𝑗).

Divide all transient states into 2 groups:

𝑉 = {𝑠 = (⟨𝐴,𝐵⟩ < ⟨𝐶,𝐷⟩) : ∃𝑚 ∈ 𝑀+ [𝑚 ∈ 𝐵]} (19)

and
𝑊 = {𝑠 = (⟨𝐴,𝐵⟩ < ⟨𝐶,𝐷⟩) : ∀𝑚 ∈ 𝑀+ [𝑚 /∈ 𝐵]}. (20)

It is clear that the state 𝑠0 = (⊥ < ⊤) ∈ 𝑊 . By lemma 5 for any 𝑠𝑗 ∈ 𝑊 , E𝑇𝑗(𝐸) ≤ E𝑇0(𝐸).
By the definition of the set 𝑉 and the lemma 5 for any 𝑠𝑗 ∈ 𝑉 we have E𝑇𝑗(𝐸) ≤ E𝑇𝑖(𝐸),

where 𝑠𝑖 = (⟨{𝑚}′, {𝑚}′′⟩ < ⊤) ∈ 𝑉 for any 𝑚 ∈ 𝐵 with 𝑠𝑗 = ⟨𝐴,𝐵⟩.
Let’s introduce an integer-valued random variable 𝑍 taking the value 𝑞 on the event

{𝑋𝑞 = (⊥ = ⊥), 𝑋𝑞−1 /∈ 𝑉, . . . ,𝑋1 /∈ 𝑉,𝑋0 = 𝑠0}, which determines the minimum number
of steps of the algorithm 1 by states from 𝑋𝑡 ∈ 𝑊 until we get 𝑋𝑞 = (⊥ = ⊥).

Lemma 6.

E𝑍 =

∞∑︁

𝑙=1

P [𝑍 ≥ 𝑙] ≤ (𝑘 + 2𝑛) ·
(︂
ln(2𝑛) +

1

1− 𝑒−1

)︂

for context 𝐼 ⊆ 𝐺×𝑀+ with 2𝑛 = |𝑀+| ≤ 𝑘 = |𝐺|.

Proof. We divide the summands into disjoint subsets of 𝐼0 ⊔ ⨆︀∞
𝑟=1 𝐼𝑟, where 𝐼0 =

{1 ≤ 𝑙 < (𝑘 + 2𝑛) · ln(2𝑛)} and

𝐼𝑟 = {(𝑘 + 2𝑛) · (ln(2𝑛) + 𝑟 − 1) ≤ 𝑙 < (𝑘 + 2𝑛) · (ln(2𝑛) + 𝑟)}.

It is clear that
∑︀(𝑘+2𝑛)·ln(2𝑛)−1

𝑙=1 P [𝑍 ≥ 𝑙] ≤ (𝑘 + 2𝑛) · ln(2𝑛).
In order for the event 𝑍 ≥ 𝑙 to occur, it is necessary that at least one attribute (out of 2𝑛) is

selected, so that no example in the series of length 𝑙 is selected in which this attribute is not
present. Therefore, by Boole’s inequality

P [𝑍 > 𝑙] ≤ 2𝑛 ·
(︂
1− 1

𝑘 + 2𝑛

)︂𝑙

.

For 𝐼𝑟
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(𝑘+2𝑛)·(ln(2𝑛)+𝑟)−1∑︁

𝑙=(𝑘+2𝑛)·(ln(𝑛)+𝑟−1)

P [𝑍 > 𝑙] ≤
(𝑘+2𝑛)·(ln(2𝑛)+𝑟)−1∑︁

𝑙=(𝑘+2𝑛)·(ln(2𝑛)+𝑟−1)

𝑘 ·
(︂
1− 1

𝑘 + 2𝑛

)︂𝑙

≤

≤ (𝑘 + 2𝑛) · 2𝑛 ·
(︂
1− 1

𝑘 + 2𝑛

)︂(𝑘+2𝑛)·(ln(2𝑛)+𝑟−1)

≤

≤ (𝑘 + 2𝑛) · 𝑒ln 2𝑛 · 𝑒−(ln(2𝑛)+𝑟−1) = (𝑘 + 2𝑛) · 𝑒−𝑟+1.

The summation over 𝑟 gives

∞∑︁

𝑙=(𝑘+2𝑛)·ln(2𝑛)
P [𝑍 ≥ 𝑙] ≤ (𝑘 + 2𝑛) ·

∞∑︁

𝑟=1

𝑒−𝑟+1 =
𝑘 + 2𝑛

1− 𝑒−1
.

Let’s denote the upper bound from lemma 6 by 𝑡𝑎𝑖𝑙.
We consider disjoint events

𝐻𝑙(𝑠𝑗) = {𝑋𝑙 = 𝑠𝑗 ∈ 𝑉,𝑋𝑙−1 /∈ 𝑉, . . . ,𝑋1 /∈ 𝑉,𝑋0 = 𝑠0}. (21)

We denote event {𝑋𝑡+𝑙 ∈ 𝐸,𝑋𝑡+𝑙−1 /∈ 𝐸, . . . ,𝑋𝑙+1 /∈ 𝐸} ∩ 𝐻𝑙(𝑠𝑗) by 𝐺𝑡,𝑙(𝑠𝑗), and the
union

⨆︀
𝑠𝑗∈𝑉 𝐺𝑡,𝑙(𝑠𝑗) by 𝑈𝑡,𝑙.

It is clear that we have a decomposition of the event into disjoint parts

{𝑋𝑡+𝑙 ∈ 𝐸,𝑋𝑡+𝑙−1 /∈ 𝐸, . . . ,𝑋0 = 𝑠0} =

=
⨆︁

𝑠𝑗∈𝑉
({𝑋𝑡+𝑙 ∈ 𝐸,𝑋𝑡+𝑙−1 /∈ 𝐸, . . . ,𝑋𝑙+1 /∈ 𝐸} ∩𝐻𝑙(𝑠𝑗))⊔

⊔ {𝑋𝑡+𝑙 = (⊥ = ⊥), 𝑋𝑡+𝑙−1 /∈ 𝑉, . . . ,𝑋1 /∈ 𝑉,𝑋0 = 𝑠0}.

We need

E𝑇0(𝐸) =
∞∑︁

𝑚=1

𝑚 · P [𝑋𝑚 ∈ 𝐸,𝑋𝑚−1 /∈ 𝐸, . . . ,𝑋1 /∈ 𝐸 | 𝑋0 = 𝑠0] . (22)

It is clear that E𝑇0(𝐸) = E𝑇 ′
0(𝐸) + E𝑍 , where 𝑇 ′

0(𝐸) is restriction of 𝑇0(𝐸) on⨆︀∞
𝑡=1

⨆︀∞
𝑙=1𝐺𝑡,𝑙.

Theorem 2. For the dichotomized (enriched) training context 𝐼 ⊆ 𝐺×𝑀+ with 2𝑛 = |𝑀+| ≤
𝑘 = |𝐺| the upper bound on the average length of trajectories of algorithm 1 is

E𝑇0 ≤
(𝑘 + 2𝑛)(𝑘2 + 𝑘(2𝑛+ 1) + 4𝑛2 + 2𝑛)

2𝑛(𝑘2 + 𝑘 + 2𝑛)
+

(𝑘 + 1)(𝑘 + 2𝑛)

𝑘2 + 𝑘 + 2𝑛
𝑡𝑎𝑖𝑙.

Proof. Let’s denote 𝑅 =
∑︀𝑛

𝑙=1
1

𝑘+2𝑛 (𝑇𝑓𝑙 + 𝑇¬𝑓𝑙), where 𝑇𝑓𝑙 = 𝑇𝑖(𝐸) for 𝑠𝑗 =
(⟨{𝑓𝑙}′, {𝑓𝑙}′′⟩ < ⊤), and similarly for 𝑇¬𝑓𝑙 .

Then Markov property implies
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E𝑇 ′
0(𝐸) =

∞∑︁

𝑡=1

∞∑︁

𝑙=1

(𝑡+ 𝑙) · P𝑈𝑡,𝑙 =

=
∞∑︁

𝑡=1

𝑡 ·
∑︁

𝑠𝑗∈𝑉
P [𝑋𝑡 ∈ 𝐸,𝑋𝑡−1 /∈ 𝐸, . . . ,𝑋1 /∈ 𝐸 | 𝑋0 = 𝑠𝑗 ] ·

∞∑︁

𝑙=1

P [𝐻𝑙(𝑠𝑗)] +

+

∞∑︁

𝑙=1

𝑙 ·
∑︁

𝑠𝑗∈𝑉
P [𝐻𝑙(𝑠𝑗)] ·

∞∑︁

𝑡=1

P [𝑋𝑡 ∈ 𝐸,𝑋𝑡−1 /∈ 𝐸, . . . ,𝑋1 /∈ 𝐸 | 𝑋0 = 𝑠𝑗 ] ≤

≤
∑︁

𝑠𝑗∈𝑉
E𝑇𝑗(𝐸) · P [𝑋1 = 𝑠𝑗 | 𝑋0 = 𝑠0] +

∑︁

𝑠𝑗∈𝑉

∞∑︁

𝑙=1

𝑙 · P [𝐻𝑙(𝑠𝑗)] ≤

≤ E𝑅+
𝑘 + 2𝑛

2𝑛
,

where the last term is the average of geometrically distributed random variable of the time
before first selection of some attribute.

The Law of Total Probability and lemma 5 imply

E𝑇𝑓𝑙 ≤ 1 +

𝑛∑︁

𝑖=1

1

𝑘 + 2𝑛

(︀
E𝑇𝑓𝑖 + E𝑇𝑓�̄�

)︀
− 1

𝑘 + 2𝑛
· E𝑇𝑓�̄�

+
𝑘

𝑘 + 2𝑛
E𝑇0(𝐸).

Therefore,

E𝑅 ≤ 2𝑛

𝑘 + 2𝑛

[︂
1 + E𝑅+

𝑘

𝑘 + 2𝑛
E𝑇0(𝐸)

]︂
− 1

𝑘 + 2𝑛
E𝑅.

Hence,
𝑘 + 1

𝑘 + 2𝑛
E𝑅 ≤ 2𝑛

𝑘 + 2𝑛
+

2𝑛𝑘

(𝑘 + 2𝑛)2
E𝑇0(𝐸).

Substitute E𝑅 ≤ 2𝑛
𝑘+1 + 2𝑛𝑘

(𝑘+1)(𝑘+2𝑛)E𝑇0(𝐸) into

E𝑇0(𝐸) ≤ E𝑅+
𝑘 + 2𝑛

2𝑛
+ 𝑡𝑎𝑖𝑙,

and obtain
𝑘2 + 𝑘 + 2𝑛

(𝑘 + 1)(𝑘 + 2𝑛)
E𝑇0(𝐸) ≤ 2𝑛

𝑘 + 1
+

𝑘 + 2𝑛

2𝑛
+ 𝑡𝑎𝑖𝑙,

which leads to the required result.

5. Conclusion

In this article we have presented a significant advancement in solving the open problem of the
VKF method about finding a polynomial upper bound on the average length of trajectories of
a coupling Markov chain - the average time of computation by the probabilistic algorithm 1,
which generates concepts of the training context for knowledge extraction. Only special cases,

44



such as Boolean algebra and linear order, were investigated earlier. The important step is based
on the dichotomic scaling of a training context.

Combining the new result with the previously obtained polynomial lower bound on the
sufficient number of concepts, we obtain a fully polynomial scheme for extracting knowledge
using a binary similarity operation implemented in the VKF-method.

Experimental studies of author’s PhD student L.A. Yakimova demonstrate that probabilistic
approach to FCA-based knowledge extraction (in combination with "Counterexample Forbidding
Condition") is practically not subject to the phenomenon of over-fitting (through generation of
’phantom’ candidates), unlike the classical JSM-method.

Acknowledgments

The author thanks his colleagues from Dorodnicyn Computing Center of Federal Research
Center "Computer Science and Control" of Russian Academy of Sciences for support and useful
discussions. The author is grateful to his PhD student Lyudmila A. Yakimova for long-term
cooperation that stimulated the described research.

References

[1] V. K. Finn, J.S.Mill’s inductive methods in artificial intelligence systems I, Scientific and
Technical Information Processing 38 (2011) 385–402. doi:10.3103/S0147688211060037.

[2] V. K. Finn, J.S.Mill’s inductive methods in artificial intelligence systems II, Scientific and
Technical Information Processing 39 (2012) 241–260. doi:10.3103/S0147688212050036.

[3] J. S. Mill, A System of Logic: Ratiocinative and Inductive, John W. Parker, London, 1843.
[4] S. O. Kuznetsov, Machine learning on the basis of formal concept analysis, Automation

and Remote Control 62 (2001) 1543–1564. doi:10.1023/A:1012435612567.
[5] B. Ganter, R. Wille, Formal Concept Analysis: Mathematical Foundations, Springer, Berlin,

Heidelberg, 1999. doi:10.1007/978-3-642-59830-2.
[6] S. O. Kuznetsov, S. A. Obiedkov, Algorithms for the construction of concept lattices and

their diagram graphs, in: L. D. Raedt, A. Siebes (Eds.), Proceedings of the 5th Conference
on Principles of Data Mining and Knowledge Discovery, volume 2168 of Lecture Notes
in Artificial Intelligence, Springer, Berlin, Heidelberg, 2001, pp. 289–300. doi:10.1007/
3-540-44794-6.

[7] D. V. Vinogradov, Existence of large sublattices isomorphic to boolean algebra in
a candidate lattice, Autom. Doc. Math. Linguist. 57 (2023) 101–103. doi:10.3103/
S0005105523020097.

[8] D. V. Vinogradov, Accidental formal concepts in the presence of counterexamples, in:
S. O. Kuznetsov, B. W. Watson (Eds.), Proceedings of International Workshop on Formal
Concept Analysis for Knowledge Discovery, volume 1921 of CEUR Workshop Proceedings,
HSE, Moscow, Russia, 2017, pp. 104–112.

[9] L. A. Yakimova, Experimental investigation of behaviour of solvers based on binary simi-
larity operation, Master’s thesis, Russian State University for Humanities, Moscow, Russia,
2020. In Russian.

45



[10] D. V. Vinogradov, VKF-method of hypotheses generation, in: Proceedings of the 3rd
International Conference on Analysis of Images, Social Networks and Texts (AIST’2014),
volume 436 of Communications in Computer and Information Science, 2014, pp. 237–248.
doi:10.1007/978-3-319-12580-0_25.

[11] S. O. Kuznetsov, A fast algorithm for computing all intersections of objects from an
arbitrary semilattice, Nauch.-Tekh. Inf. Ser.2 27 (1993) 17–20.

[12] D. V. Vinogradov, Algebraic machine learning: Emphasis on efficiency, Automation and
Remote Control 83 (2022) 831–846. doi:10.1134/S0005117922060029.

[13] J. G. Kemeny, J. L. Snell, Finite Markov Chains, Undergraduate Texts in Mathematics, 1
ed., Springer, New York, 1976. Originally published by Van Nostrand Publishing Company,
1960.

[14] D. V. Vinogradov, Markov chains, law of total probability, and recurrence relations, Autom.
Doc. Math. Linguist. 57 (2023) 68–72. doi:10.3103/S0005105523010090.

46



A Note on Counting Basic Choice Functions with
Formal Concept Analysis
Dmitry I. Ignatov

HSE University, Moscow, Russia

Abstract
The paper aims at not only counting how many basic choice functions exist on a finite set of alternatives
(all, non-empty, single-element valued) but shows how to do this with the help of Formal Concept
Analysis. Moreover, we introduce the contextual representation of a choice function by considering
the formal context of its map from 2𝐴 to 2𝐴. We also characterise these contexts as nominal scales of a
certain size and build a lattice of all choice functions with their help. Last but not least, we study the
asymptotic behaviour of those obtained and new counting formulas that do not have a closed form.

Keywords
Choice function, Concept Lattice, Combinatorics, Asymptotic analysis

1. Introduction

Choice Theory is formalised with the help of Order Theory [1, 2] and has applications not
only in Social Sciences but also in Artificial Intelligence, e.g. to model and learn preferences of
agents [3, 4]. In particular, it deals with set-valued functions defined on a set of alternatives, i.e.
variants that an individual or (rational) agent can choose based on her preferences or utility
function [5, 6, 1].

In this paper, inspired by earlier works on choice functions and Lattice Theory [5, 6, 2]
(including Formal Concept Analysis (FCA) as its applied branch [7, 8]), we characterise concept
lattices induced by point-wise representations of choice functions considered as formal contexts
and count basic choice functions (all, non-empty, single-element valued) for a fixed number of
alternatives.

The previous work of Monjardet and Raderanirina [2] studies the space of all choice functions
fulfilling certain axioms (called heredity, concordance, and outcast), which forms lattices if one
of the axioms is fulfilled. The works of Revenko and Kuznetsov [9, 8] consider various axioms on
set functions as (formal) attributes and perform attribute exploration [10] (an interactive semi-
automatic procedure of hypotheses generation in terms of attribute implications and checking
them by an expert) with functions on sets up to four elements. Not only choice functions were
considered in [9, 8] since the choice functions are intensive, but extensity property was also
included.
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Other related works on FCA and Choice Theory include learning individual and collective
preferences [11], enchaining consensus voting procedures [12], for example, in consensus
clustering [13], studying games on concept lattices [14, 15], and attribute ranking in formal
concepts with Shapley values [16].

The paper is organised as follows. In Section 2 we give basic definitions from FCA and
for considered families of choice functions. Section 3 contains our main results split in three
subsections on the proposed conceptual representation of choice functions, three counting
formulas, and their asymptotic behaviour, respectively. The last section concludes the paper.

2. Basic Notions

2.1. Formal Concept Analysis

We recall several definitions from Formal Concept Analysis [7], an applied branch of modern
Lattice Theory. We reproduce basic definitions from our tutorial [17], for more details see also
textbook [18].

A formal context 𝕂 = (𝐺,𝑀, 𝐼 ) consists of two sets 𝐺 and 𝑀 and a relation 𝐼 between 𝐺 and
𝑀. The elements of 𝐺 are called the objects and the elements of 𝑀 are called the attributes of the
context. The notation 𝑔𝐼𝑚 or (𝑔, 𝑚) ∈ 𝐼 means that the object 𝑔 has attribute 𝑚.

A special type of context defined on any set 𝑆 is used in the next section: the nominal scale
ℕ𝑆 ∶= (𝑆, 𝑆, =).

For 𝐴 ⊆ 𝐺 and 𝐵 ⊆ 𝑀, let

𝐴′ ∶= {𝑚 ∈ 𝑀 ∣ (𝑔, 𝑚) ∈ 𝐼 for all 𝑔 ∈ 𝐴}

𝐵′ ∶= {𝑔 ∈ 𝐺 ∣ (𝑔, 𝑚) ∈ 𝐼 for all 𝑚 ∈ 𝐵}.

These operators are called derivation operators or concept-forming operators for 𝕂 = (𝐺,𝑀, 𝐼 ).

Proposition 1. Let (𝐺,𝑀, 𝐼 ) be a formal context, for subsets 𝐴,𝐴1, 𝐴2 ⊆ 𝐺 and 𝐵 ⊆ 𝑀 we have

1. 𝐴1 ⊆ 𝐴2 ⇒ 𝐴′
2 ⊆ 𝐴′

1 (antimonotony of ′),
2. 𝐴1 ⊆ 𝐴2 ⇒ 𝐴′′

1 ⊆ 𝐴′′
2 (monotony of ′′),

3. 𝐴 ⊆ 𝐴′′ (extensity of ′′),
4. 𝐴′ = 𝐴′′′ (hence, 𝐴⁗ = 𝐴″, i.e. idempotency of ′′),
5. (𝐴1 ∪ 𝐴2)′ = 𝐴′

1 ∩ 𝐴′
2,

Similar properties hold for subsets of attributes.

Note that traditionally {𝑔}′ and {𝑚}′ are written as 𝑔′ and 𝑚′ for brevity.
For 𝕂 = (𝐺,𝑀, 𝐼 ) , the operators (⋅)″∶ 2𝐺 → 2𝐺, (⋅)″∶ 2𝑀 → 2𝑀 are closure operators, i.e.

idempotent, extensive, and monotone.
A formal concept of a formal context 𝕂 = (𝐺,𝑀, 𝐼 ) is a pair (𝐴, 𝐵) with 𝐴 ⊆ 𝐺, 𝐵 ⊆ 𝑀, 𝐴′ = 𝐵

and 𝐵′ = 𝐴. The sets 𝐴 and 𝐵 are called the extent and the intent of the formal concept (𝐴, 𝐵),
respectively. The subconcept-superconcept relation is given by (𝐴1, 𝐵1) ≤ (𝐴2, 𝐵2) iff 𝐴1 ⊆ 𝐴2
(𝐵2 ⊆ 𝐵1).

The set of all formal concepts of a context 𝕂 together with the order relation ≤ forms a
complete lattice called the concept lattice of 𝕂 and denoted by 𝔅(𝕂).
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2.2. Choice Functions

A choice function on a set 𝐴 is defined as map 𝐶 ∶ 2𝐴 → 2𝐴 such that 𝐶(𝐴) ⊆ 𝐴 (intensity
property).

In what follows, we adopt terminology from [1]. Let 𝒜 be the set of all non-empty subsets of
𝐴, while 𝒞 be the set of all choice functions on 𝐴. The subset 𝒞+ of 𝒞 contains only non-empty
choice functions, i.e. 𝐶(𝑋) ≠ ∅ for all 𝑋 ∈ 𝒜.

The set of all single-valued functions 𝒞 contains �̂� such that |�̂�(𝑋)| = 1 for all 𝑋 ∈ 𝒜.

3. Main Results

3.1. Conceptual Representation

Let us form the context representing a choice function as follows 𝕂𝐶 ∶= (𝐺,𝑀, 𝐼 ) with 𝐺 ∶= 2𝐴,
𝑀 ∶= 2𝐴, 𝐼 ∶=⊆, where for 𝑔 ∈ 𝐺, 𝑚 ∈ 𝑀, 𝑔𝐼𝑚 iff 𝐶(𝑔) = 𝑚. It is clear that the domain of 𝐶
𝑑𝑜𝑚(𝐶) = 𝐺, while 𝑟𝑎𝑛𝑔𝑒(𝐶) ⊆ 𝑀.

Contexts representing non-empty and single-valued functions are denoted 𝕂𝐶+ ∶= (𝒜,𝒜 , ⊆)
and 𝕂�̂� ∶= (𝒜,𝒜 , ⊆), respectively, where for the last context 𝑔𝐼𝑚 ⟺ �̂�(𝑔) = 𝑚 and |𝑚| = 1.

Proposition 2. Let 𝐶 ∈ 𝒞, 𝐶+ ∈ 𝒞+, �̂� ∈ 𝒞 and |𝐴| = 𝑛, then the concept lattices of 𝕂𝐶 =
(2𝐴, 2𝐴, ⊆), 𝕂𝐶+ = (𝒜,𝒜 , ⊆) and 𝕂�̂� = (𝒜,𝒜 , ⊆) are isomorphic to the lattices of nominal scales
𝑁𝑛 = ([𝑘], [𝑘], =)1 where 𝑘 = |𝑟𝑎𝑛𝑔𝑒(𝐹)| for 𝐹 ∈ {𝐶, 𝐶+, �̂�} and 1) 1 ≤ 𝑘 ≤ 2𝑛, 2) 𝑛 ≤ 𝑘 ≤ 2𝑛 − 1,
and 3) 𝑘 = 𝑛, respectively.

Proof. 1) 𝑟𝑎𝑛𝑔𝑒(𝐶) may vary from {∅} set to 2𝐴, which means that the number of 𝑚 ∈ 2𝐴 such
that 𝑚′ ≠ ∅ varies from 1 to 2𝑛. Equality 2) follows from the condition ∀𝑔 ∈ 𝒜 ∶ |𝑔| = 1 ⇒
𝑔′ = {𝑔} (by intensity of 𝐶(𝑔)). Equality 3) follows from the previous condition and condition
∀𝑔 ∈ 𝒜 ∃𝑎 ∈ 𝐴 ∶ 𝑔′ = {𝑎} ∧ 𝑎 ∈ 𝑔.

The interpretation of concepts in such lattices is straightforward. Let 𝑚 ∈ 𝐺 = 2𝐴, then
(𝑚′, 𝑚) contains the image 𝑚 as the intent and its preimage 𝑚′ (or the fibre 𝐶−1({𝑚}), the set all
of sets that mapped to {𝑚}) as the extent. Note that {𝑚}″ = {𝑚} and there are no other concepts
than (𝑚′, 𝑚), (𝐺, 𝐺′) and (𝑀′, 𝑀).

The following example is inspired by our previous work on how university entrants are
choosing their departments [19].

Example 1. Let us consider a set 𝐴 with three alternatives 𝑎1 (Computer Science faculty), 𝑎2
(Mathematical faculty), and 𝑎3 (Faculty of Economics). It is known that if an individual 𝑆 has
preferences represented by a binary relation 𝑃, then they can be rationalised by a choice function
under certain conditions [1]. Since the choice is not necessarily effective (a single-alternative
outcome), our individual may choose two alternatives 𝐶(𝐴) = {𝑎1, 𝑎2} out of three.
Definitely, she loves Mathematics and Computer Science so the choice between those two is not

final, 𝐶({𝑎1, 𝑎2}) = {𝑎1, 𝑎2}. When only a single faculty out of the last two is available, she chooses

1We use [𝑛] for {1, 2, … , 𝑛}
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𝕂𝐶
∅ 𝑎1 𝑎2 𝑎3 𝑎 1

,𝑎
2

𝑎 1
,𝑎

3

𝑎 2
,𝑎

3

𝑎 1
,𝑎

2,
𝑎 3

∅ ×
𝑎1 ×
𝑎2 ×
𝑎3 ×
𝑎1, 𝑎2 ×
𝑎1, 𝑎3 ×
𝑎2, 𝑎3 ×
𝑎1, 𝑎2, 𝑎3 ×

Figure 1: An example context for 𝕂𝐶 and its concept lattice diagram.

it. However, when only the faculty of Economics is offered, she refuses and probably takes a year
gap (it might be a very pity that there is no choice among the favourite faculties). However, when
educational tracks for mathematics and economics are compared, she might decide to apply both.
So, the choices might seem to be not fully rational (in terms of common sense), but they are in line
with the definition of 𝐶(⋅).

The line diagram of the corresponding concept lattice 𝔅(𝕂𝐶) on the left in Fig. 1 is drawn in
Concept Explorer. We use the so-called reduced labelling when nodes (representing concepts) are
labelled with object names when objects are first time added to the extent of a concept (when we go
from the bottom concept to the topmost one) and attribute names when attributes are first time
added to the intent of a concept (when we go in top-to-bottom direction). Note that we use shorthand
𝐶𝑆, 𝑀, and 𝐸 in the attribute labels (the latter denote choices on all alternative subsets), and 𝑎1, 𝑎2,
and 𝑎3 in the object labels (the latter denote the subsets of all the alternatives).

Note that our attributes are sets of alternatives and {𝑎3}, {𝑎1, 𝑎3}, and {𝑎1, 𝑎2, 𝑎3} can be eliminated
from the 𝕂𝐶 without affecting the lattice structure. The obtained concept lattice is isomorphic to
the so-called diamond lattice 𝑀5.

The lattice of a choice function can be defined via point-wise intersection and union. Let
us order objects of 𝐺 = 2𝐴 first by their cardinality and lexicographically for sets of equal
cardinality such that 𝑔0 = ∅,… , 𝑔2𝑛−1 = 𝐴. Now, every choice function 𝐶 is represented by its
point-wise vector of images 𝑖𝑚(𝐶) = (⋃𝑔′0, ⋃ 𝑔′1, … ,⋃ 𝑔′2𝑛−1)

2. Note that 𝑔′0 = {∅}.
For the example in Fig. 1, we have 𝑖𝑚(𝐶) = (∅, {𝑎1}, {𝑎2}, ∅, {𝑎1, 𝑎2}, {𝑎1}, {𝑎2, 𝑎3}, {𝑎1, 𝑎2}).
For two functions 𝐶1 and 𝐶2, the supremum and infimum of their point-wise vectors of images

𝑖𝑚(𝐶1) = (⋃𝑔𝐼10 ,⋃𝑔𝐼11 , … ,⋃𝑔𝐼12𝑛−1) and 𝑖𝑚(𝐶2) = (⋃𝑔𝐼20 ,⋃𝑔𝐼21 , … ,⋃𝑔𝐼22𝑛−1)

(primes are taken in the respective contexts) are defined as follows:

𝑖𝑚(𝐶1)⋁ 𝑖𝑚(𝐶2) = (⋃𝑔𝐼1𝑖 ∪⋃𝑔𝐼2𝑖 )2
𝑛−1
𝑖=0 ,

𝑖𝑚(𝐶1)⋀ 𝑖𝑚(𝐶2) = (⋃𝑔𝐼1𝑖 ∩⋃𝑔𝐼2𝑖 )2
𝑛−1
𝑖=0 .

2we use ⋃ as a set unfolding operation since 𝑔′
𝑖 = {𝑚𝑗} and 𝐶(𝑔𝑖) ≡ ⋃𝑔′

𝑖
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Their existence is guaranteed by set intersection and union on images of choice functions.
Let 𝐴 = [𝑛], then triple 𝔏(𝐶) = (𝐼𝑚(𝒞 ),⋁,⋀)3 forms a lattice with 0 = (∅)2

𝑛−1
𝑖=0 and 1 =

(∅, {1}, … , [𝑛]), while 𝔖 = (𝐼𝑚(𝒞+),⋀) is an upper-semilattice and 𝔄 = (𝐼𝑚(𝒞 ), ≤) forms an
antichain with respect to the point-wise set inclusion of components ≤ (∀𝐶1, 𝐶2 ∈ 𝒞 ∶ 𝑖𝑚(𝐶1) ≤
𝑖𝑚(𝐶2) ⟺ ⋃𝑔𝐼1𝑖 ⊆ ⋃𝑔𝐼2𝑖 for 𝑖 ∈ [2𝑛 − 1]).

3.2. Counting Cardinalities

Let us prove the following proposition on the cardinality of 𝒞𝑛, 𝒞+
𝑛 , 𝒞𝑛 where |𝐴| = 𝑛.

Proposition 3.

|𝒞𝑛| = 2𝑛2
𝑛−1

(1)

|𝒞+
𝑛 | =

𝑛
∏
𝑘=1

(2𝑘 − 1)(
𝑛
𝑘) (2)

|𝒞𝑛| =
𝑛

∏
𝑘=1

𝑘(
𝑛
𝑘) (3)

Note that (1) and (2) have been proven in [20] according to [1] (where they are given without
proof). We give our proof of (1) and (2) with the help of FCA.

Proof. 1) Let us consider 1 = (∅, {1}, … , [𝑛]) it corresponds to𝕂𝐶𝑖𝑑 = (2𝐴, 2𝐴, 𝐼𝑖𝑑), where 𝐶𝑖𝑑(𝑋) =
𝑋 for 𝑋 ⊆ 𝐴 and 𝐼𝑖𝑑 ∶==. For each other choice function, 𝑖𝑚(𝐶) is below 1 in the lattice 𝔏(𝒞 ),
which means that ⋃𝑔𝑖′ ⊆ ⋃𝑔𝐼𝑖𝑑𝑖 , where ′ is taken in the 𝕂𝐶. Thus each row of 𝕂𝐶 has |2⋃𝑔𝐼𝑖𝑑𝑖 |
variants and the choice of each row is independent (we are ready for the product rule).

2𝑛−1
∏
𝑘=0

2| ⋃ 𝑔𝐼𝑖𝑑𝑖 | = ∏
𝑋⊆𝐴

2|𝑋 | =
𝑛

∏
𝑘=0

2𝑘(
𝑛
𝑘)

The last step is due to the presence of each set of size 𝑘 (𝑛𝑘) times. The sum
𝑛
∑
𝑘=0

𝑘(𝑛𝑘) equals

𝑛2𝑛−1.
2) Now, we are not allowed to consider ⋃𝑔𝐼𝑖𝑑𝑖 = ∅, which implies subtraction of 1 (i.e. 2𝑘 − 1)

when counting variants for the choice of a row in the context𝕂𝐶+ = (𝒜,𝒜 , ⊆). Here 𝐼𝑖𝑑 ⊆ 𝒜 ×𝒜
so 𝑔0 (also 𝑚0) is excluded and the product starts with 𝑘 = 1.

3) Here, compared to the previous case, since we can choose only single-element sets among
all 𝑚 ∈ 𝐴, 2𝑘 − 1 is simply replaced by 𝑘.

Note that Monjardet and Raderanirina [2] claim that the lattice of all choice functions on a
set of alternatives 𝐴 is Boolean (i.e. atomistic and distributive) with 𝑛2𝑛−1 atoms, which directly
implies the proof of (1).

3𝐼𝑚(𝒞 ) = {𝑖𝑚(𝐶) ∣ 𝐶 ∈ 𝒞 }
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3.3. Asymptotic Analysis

The values represented by equations 1 and 2 have no closed-form formulas but are smaller than
the size of the whole space of choice functions. Our goal here is to figure out their asymptotic
behaviour to better understand how the sizes of the posets, |𝒞+

𝑛 |, |𝒞𝑛|, and |𝒞𝑛|, interrelated.

Proposition 4.
log2 |𝒞

+
𝑛 | = 𝑛2𝑛−1 + 𝑂(2𝑛𝑛−1/2)

Proof. Let us apply log2 to the product (2).

log2 |𝒞
+
𝑛 | =

𝑛
∑
𝑘=1

(
𝑛
𝑘
) log2 2

𝑘 +
𝑛
∑
𝑘=1

(
𝑛
𝑘
) log2(1 − 1/2𝑘)

The first sum equals (1), while the second is more laborious since it has no closed form. Since
log2 𝑥 ≤ 𝑥 − 1 for all 𝑥 > 0, we obtain

𝑛
∑
𝑘=1

(
𝑛
𝑘
) log2(1 − 1/2𝑘) ≤

𝑛
∑
𝑘=1

(
𝑛
𝑘
)(−1/2𝑘) = − (3

2
)
𝑛
+ 1

Since 1/2 ≤ (1 − 1/2𝑘) < 1 for 𝑘 ≥ 1, we have −2𝑛 ≤
𝑛
∑
𝑘=1

(𝑛𝑘) log2(1 − 1/2𝑘). However, we can

do better with the lower bound if pull out the maximal binomial coefficient, i.e. the middle (or
central) binomial coefficient.

𝑛
∑
𝑘=1

(
𝑛
𝑘
) log2(1 − 1/2𝑘) ≥ (

𝑛
⌊𝑛/2⌋

)
𝑛
∑
𝑘=1

log2(1 − 1/2𝑘) ≥ (
𝑛

⌊𝑛/2⌋
)

∞
∑
𝑘=1

log2(1 − 1/2𝑘)

∞
∑
𝑘=1

log2(1 − 1/2𝑘) = log2

∞
∏
𝑘=1

(1 − 1/2𝑘) = log2 𝜙(1/2) ≈ −1.79192, where

𝜙(𝑞) ≡ (𝑞)∞ ≡ (𝑞; 𝑞)∞ =
∞
∏
𝑘=1

(1 − 𝑞𝑘) is the Euler function [21], and (𝑞)∞ and (𝑞; 𝑞)∞ are

𝑞-Pochhammer symbols [22].

The variable term ( 𝑛
⌊𝑛/2⌋) is 𝑂(2𝑛𝑛−1/2) since for even 𝑛, we have ( 𝑛

𝑛/2) = √
2
𝜋𝑛2

𝑛(1 +

𝑂(1/𝑛)) [23] and the following inequalities are known 2𝑛
𝑛 ≤ ( 𝑛

⌊𝑛/2⌋) < √2/𝜋 ⋅ 2𝑛𝑛−1/2 [24]
for integer 𝑘 ≥ 0.

Proposition 5.

lim
𝑛→∞

|𝒞+
𝑛 |

|𝒞𝑛|
=

∞
∏
𝑘=1

(1 − 1
2𝑘
)(

𝑛
𝑘) diverges to zero.

Proof. From the proof of the previous proposition it follows that

𝜙(1/2)√2/𝜋⋅2
𝑛𝑛−1/2 ≤

𝑛
∏
𝑘=1

(1 − 1
2𝑘
)(

𝑛
𝑘) ≤ 2−(

3
2 )

𝑛
+1 where 𝜙(1/2) ≈ 0.2888.
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When 𝑛 tends to ∞, both sides tend to 0, and since no terms of the partial product are zeros,
the whole product is said to diverge to zero [25, 26].

Proposition 6.
log2 |𝒞𝑛| = Θ(2𝑛 log2 𝑛) .

Proof. To prove the statement we need to show that there are constants 𝑐1, 𝑐2 > 0, such that
𝑐12𝑛 log2 𝑛 ≤ log2 |𝒞𝑛| ≤ 𝑐22𝑛 log2 𝑛 for all 𝑛 > 𝑛0.

We can pull out the largest value that log2 𝑛 takes

log2 |𝒞𝑛| =
𝑛
∑
𝑘=1

(
𝑛
𝑘
) log2 𝑘 ≤ log2 𝑛

𝑛
∑
𝑘=1

(
𝑛
𝑘
) = (2𝑛 − 1) log2 𝑛.

For the lower bound we can split the sum into two parts as follows:

𝑛
∑
𝑘=1

(
𝑛
𝑘
) log2 𝑘 ≥

⌊𝑛/2⌋−1
∑
𝑘=1

(
𝑛
𝑘
) log2 𝑘 +

𝑛
∑

𝑘=⌊𝑛/2⌋
(
𝑛
𝑘
) log2

𝑛
2
≥

𝑛
∑

𝑘=⌊𝑛/2⌋
(
𝑛
𝑘
) log2

𝑛
2
≥

≥ log2
𝑛
2

𝑛
∑
𝑘=1

(
𝑛
𝑘
)/2 = 1

2
(log2 𝑛 − 1)(2𝑛 − 1) .

The last result can be sharpened to log2 |𝒞𝑛| = 2𝑛 log2 𝑛(1 + 𝑂(1/𝑙𝑜𝑔2𝑛)). By changing 𝑘 to

𝑛 − 𝑘 we get
𝑛
∑
𝑘=1

(𝑛𝑘) log2 𝑘 =
𝑛−1
∑
𝑘=0

(𝑛𝑘) log2(𝑛 − 𝑘) and pull out log2 𝑛, which gives us the term

(2𝑛 − 1) log2 𝑛 and the remaining term is

𝑛−1
∑
𝑘=0

(
𝑛
𝑘
) log2(1 − 𝑘/𝑛) ≤ −1

𝑛

𝑛−1
∑
𝑘=0

(
𝑛
𝑘
)𝑘 = −

𝑛−1
∑
𝑘=0

(
𝑛 − 1
𝑘 − 1

) = 1 − 2𝑛−1 .

4. Conclusion

Monjardet and Raderanirina [2] inform that not all spaces of choice functions with given
properties have been explored in the sense that concrete counting formulae exist while a few
beginning values are known.

For example, the lattice of choice functions satisfying hereditary axiom has size |𝔏(𝒞𝐻
𝑛 )| =

(𝐷𝑛−1)𝑛, where 𝐷𝑛 is the 𝑛-th Dedekind number [2].
We get the new value |𝔏(𝒞𝐻

10)| with recently obtained 𝐷9 [27]4 (with FCA):

28638657766829841112846915166759849881236610.

We hope to continue this work on combinatorial properties of choice functions with FCA
tools for their representation and counting and perform asymptotic analysis (if necessary).

4https://oeis.org/A000372
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Abstract
Implications in Formal Concept Analysis (FCA), Horn clauses in Logic, and Functional Dependencies
(FDs) in the Relational Database Model, are very important dependency types in their respective fields.
Moreover, they have been proved to be equivalent from a syntactical point of view. Then notions and
algorithms related to one dependency type in a field can be reused and applied to another dependency
type in the other field. One of these notions is that of cover, also known as a base or basis, i.e., a compact
representation of a complete set of implications, FDs, or Horn clauses. Although the notion of cover
exists in the three fields, the characterization and the related uses of a cover are different. In this paper,
we study and compare, from an FCA perspective, the principles on which rely the most important covers
in each field. Finally, we discuss some open questions that are of interest in the three fields, and especially
to the FCA community.

Keywords
Functional dependencies, Implications, Horn Clauses, Dependency Covers, Closure

1. Introduction and Motivation

A dependency is a relation between sets of attributes in a dataset. In this paper, they are
represented as 𝑋 → 𝑌 , where the type of the subsets of attributes 𝑋 and 𝑌 , and the semantics
of → may vary w.r.t. the context. There are many different kinds of dependencies: complete
and comprehensive surveys, from a Relational Database Theory perspective, can be found in [1]
and in [2]. Here, we focus on those dependencies that follow the so called Armstrong axioms,
this is, reflexivity, augmentation and transitivity, which appear in different fields of computer
science: functional dependencies (FDs) in the Relational Database Model, Horn clauses in logic
and logic programming, and implications in Formal Concept Analysis.

Functional dependencies [3] are of paramount importance in the Relational Database
Model (RDBM), where they are used to express constraints or rules that need to hold in a
database, to help the design of a database or to check for errors and inconsistencies. A set of
Horn clauses [4] is a special case of Boolean functions that are crucial in logic programming
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[5, 6] and artificial intelligence (see [7] for a detailed explanation). Implications are at the
core of Formal Concept Analysis (FCA) where they are used to model and deduce relevant
information that is contained in a formal context [8, 9].

Although they appear in different fields, these three constructions have been applied on
different kinds of data and have been used for different purposes. They also all share the same
axioms, which means that, from a syntactical point of view, they are all equivalent. More
specifically, the equivalence between functional dependencies and Horn clauses is presented
in [10, 11] (see also [7] for a more detailed explanation). The equivalence between functional
dependencies and implications is explained in [8] and the equivalence between implications
and Horn clauses is explained in Section 5.1 in [9] as well as in [12]. These equivalences allow
us to talk in a generic way of Armstrong dependencies or, simply, dependencies.

One of the consequences of this equivalence is the transversality of concepts, problems and
algorithms between these three fields. One of the most typical examples is the decision problem
of the logical implication which consists in, given a set of dependencies Σ and a single
dependency 𝜎, to determine whether 𝜎 is logically entailed by Σ, that is, Σ |= 𝜎. Entailment
means that 𝜎 can be derived from Σ by the iterative application of the Armstrong axioms. This
problem is named implication problem in the RDBM [13, 14] and FCA fields, and deduction
in logic [7]. It is of capital interest in all three fields. In the RDBM it allows to test whether
two different sets of functional dependencies are equivalent [2], and it also allows to compute a
more succinct set of functional dependencies, which is relevant to assist the design process of
databases [15, 16]. In logic the deduction problem is used to check whether a logical expression
is consistent w.r.t. a knowledge base and to compute the prime implicants of a Horn function [7].
In Formal Concept Analysis this problem is used, for instance, in attribute exploration [9],
which consists in creating a data table (context) in agreement w.r.t. a set of attributes and a set
of objects, and also for computing the Duquenne-Guigues basis [17].

Roughly speaking, the computation of the logical implication problem Σ |= 𝑋 → 𝑌 is
performed by iterating over Σ and applying the Armstrong axioms to infer new dependencies
until a positive or negative answer is found. However, this problem can be reduced to the
computation of the closure of 𝑋 with respect to Σ (closureΣ(𝑋)). This closure returns the
largest set such that Σ |= 𝑋 → closureΣ(𝑋) holds. Therefore, the implication problem
Σ |= 𝑋 → 𝑌 boils down to testing whether 𝑌 ⊆ closureΣ(𝑋).

As an example of transversality, the algorithm that computes closureΣ(𝑋) appears in most
of the main database textbooks, where it is called closure [14, 13, 3], and also in logic, where it
is called forward chaining [7], while in FCA the same algorithm that first appeared in the
RDBM is discussed and reused in [9].

Another “transversal notion” which is present in all three fields is the notion of cover. In
general terms, it is not suitable to handle the set Σ of all dependencies that hold, because of
its potential large size, but rather a subset of Σ that contains the same information and that
is significantly smaller in size. By “containing the same information” we mean that this subset
may generate, thanks to the application of the Armstrong axioms, the complete set Σ. This
compact and representative subset is called “cover” in the RDBM, “basis” in FCA and “set of
prime implicants” in logic. Moreover, each field has defined and used a different kind of cover.
While in the RDBM this base is the Canonical-Direct Basis or the Minimal Cover, the cover of
choice in FCA is the so-called Duquenne-Guigues basis.
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Both the implication problem and the problem of computing a cover are related: the impli-
cation problem is used in the algorithm Canonical Basis (Algorithm 16, page 103 in [9]) to
compute the Duquenne-Guigues basis, and it is also used in the algorithm Direct (Section 5.4,
Chapter 5 in [13]) which is used to compute the Minimal Cover. Again, the transversality of
the Armstrong dependencies appears in a general concept (computing a cover) but in different
forms (Duquenne-Guigues basis and Minimal Cover).

This paper is a short version of the paper Three Views on Dependency Covers from an FCA
Perspective that was accepted at the ICFCA 2023 (International Conference on Formal Concept
Analysis). The purpose of this study is to present a discussion of the main different covers
used in the RDBM, in Logic, and in FCA from the perspective of the formal concept analysis
community. To do so, we review three different main covers that appeared in the literature.

The paper is organized as follows. Section 2 provides the necessary definitions needed in the
paper. Section 3 includes a detailed comparison of the main covers. Finally, Section 4 concludes
the paper and proposes an extensive discussion about these different and important covers.

2. Definitions

In this section we introduce the definitions used in this paper. We do not provide the references
for all of them because they can be found in all the textbooks and papers related to the RDBM,
Logic and FCA.

As explained in the introduction, implications[8], functional dependencies [13] and Horn
clauses [4] are dependencies between sets of attributes, which are equivalent from a syntactical
point of view, since they are in agreement with the Armstrong axioms.

Definition 2.1. Given set of attributes 𝒰 , for any 𝑋,𝑌, 𝑍 ⊆ 𝒰 , the Armstrong axioms are:

1. Reflexivity: If 𝑌 ⊆ 𝑋 , then 𝑋 → 𝑌 holds.
2. Augmentation. If 𝑋 → 𝑌 holds, then 𝑋𝑍 → 𝑌 𝑍 holds.
3. Transitivity. If 𝑋 → 𝑌 and 𝑌 → 𝑍 hold, then 𝑋 → 𝑍 holds.

When we write that a dependency 𝑋 → 𝑌 holds, we mean all the instances in which this
dependency is valid or true. Therefore, the sentence “If 𝑋 → 𝑌 holds, then 𝑋𝑍 → 𝑌 𝑍 holds”
can be rephrased as “In any instance in which 𝑋 → 𝑌 is valid, the dependency 𝑋𝑍 → 𝑌 𝑍 is
valid as well”.

The Armstrong axioms allow us to define the closure of a set of dependencies as the iterative
application of these axioms over a set of dependencies.

Definition 2.2. Σ+ denotes the closure of a set of dependencies Σ, and can be constructed thanks
to the iterative application of the Armstrong axioms over Σ. This iterative application terminates
when no new dependency can be added, and it is finite. Therefore, Σ+ contains the largest set of
dependencies that hold in all instances in which all the dependencies in Σ hold.

The closure of a set of dependencies induces the definition of the cover of such a set of
dependencies.

Definition 2.3. The cover or basis of a set of dependencies Σ is any set Σ′ such that Σ′+ = Σ+.
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3. Covers of Dependencies

We now present the different types of covers that are present and adopted in the three fields,
namely RDBM, FCA, and Logic. Since the definition of a cover (Definition 2.3) is very generic,
the covers reviewed here have been defined with respect to specific characteristics and for
different purposes.

3.1. Four Main Characteristics of Covers

In general terms, a cover is simply a set of dependencies Σ. The definition of a cover is very
generic and below we introduce some relevant properties which are useful for characterizing
the different covers. In particular, Σ is equivalent to another set of dependencies Σ′ modulo the
Armstrong axioms when the closures Σ+ and Σ′+ are the same.

There are three sources of redundancy in a set of dependencies: reflexivity, augmentation
and transitivity (with respect to the Armstrong axioms 2.1), but here dependencies that can
be derived by reflexivity 2.1 are trivial and not considered in the following discussion. This
assumption does not invalidate any of the arguments that are to be presented, but simplifies the
discussion. We will present three bases that try to reduce the number of dependencies that are
needed in order to compute the closure closureΣ for any set of attributes. But first, we need to
characterize the said bases according to the different ways to remove redundancy that are used.

Definition 3.1. A set of dependencies Σ is left-reduced if and only if for all 𝑋 → 𝑌 ∈ Σ there
is no 𝑋 ′ → 𝑌 , where 𝑋 ′ ⊂ 𝑋 , such that changing 𝑋 → 𝑌 by 𝑋 ′ → 𝑌 in Σ gives an equivalent
base.

The process of left-reducing a set of dependencies is also mentioned as the removal of
extraneous attributes in the left-hand sides of all dependencies. As it can be expected, an
attribute 𝑥 is extraneous in the left-hand side of a dependency 𝜎 ∈ Σ if removing 𝑥 from the
left-hand side in 𝜎 does not change Σ+.

Example 3.1. Let us take the set of dependencies Σ = { 𝑎 → 𝑏, 𝑏 → 𝑎𝑐, 𝑎 → 𝑐, 𝑏𝑐 → 𝑎 }. In
this set, the dependency 𝑏𝑐 → 𝑎 contains the extraneous attribute 𝑐 in the left-hand side, because
changing 𝑏𝑐 → 𝑎 by 𝑏 → 𝑎, we have that Σ+ is the same.

The equivalent case, in the right-hand side, is right-reduction. An attribute 𝑦 is extraneous in
the right-hand side of a dependency 𝜎 ∈ Σ if removing 𝑦 from the right-hand side in 𝜎 does
not change Σ+.

Definition 3.2. A set of dependencies Σ is non redundant if and only if (Σ ∖ 𝜎)+ ̸= Σ+ for all
𝜎 ∈ Σ.

If a set of dependencies Σ is non redundant and all the right-hand sides are singletons then
Σ is right-reduced (Definition 5.6 in [13]).

Since {𝑋 → 𝑦𝑧 } ≡ {𝑋 → 𝑦,𝑋 → 𝑧 }, there is no difference between considering a
cover such that all the right-hand sides are singletons, or just joining in one single dependency
all those dependencies with the same left-hand side. Actually, when the right-hand sides are
singletons, the number of dependencies is “artificially” increased.
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Definition 3.3. A set of dependencies Σ is direct if and only if closureΣ(𝑋) can be computed
with a single pass of Σ, for all 𝑋 ⊆ 𝒰 .

As we stated in Section 1, we assume that the computation of closureΣ is performed by the
algorithm Closure or LinClosure. The Definition 3.3 means that computing the closure of
any set of attributes 𝑋 ⊆ 𝒰 implies only one complete exploration of Σ. Actually, this unique
exploration represents a very important property, especially when Σ is large or very large.
Moreover, it should also be noticed that (i) a cover Σ is direct regardless of how it is represented
or sorted, and also (ii) Σ is direct for all possible sets of attributes 𝑋 ⊆ 𝒰 .

Definition 3.4. A set of dependencies Σ is minimal if and only if |Σ| ≤ |Σ′| for all Σ′ such that
Σ+ = Σ′+.

It is important to notice that when a cover is minimal, it is also non redundant, but the
opposite does not necessarily hold. Moreover, let us recall also the importance of computing a
non redundant cover given a set of dependencies Σ, and that computing a non redundant cover
is equivalent to the logical implication problem.

In the next sections we review three different and major types of covers that are of interest
in the RDBM, in Logic, and in FCA.

3.2. The Canonical-Direct Basis

The Canonical-Direct Basis is defined with different characterizations in [12] and aims to remove
the redundancy caused by augmentation. The computation of this cover is performed in three
steps:

1. All the dependencies in Σ must have one single attribute in the right-hand side, as it was
already the case above for the computation of the minimal cover. Again this is performed
by simply replacing a dependency 𝑋 → 𝑌 by the dependencies 𝑋 → 𝑦𝑖 for all 𝑦𝑖 ∈ 𝑌 .

2. Σ is closed by “pseudo-transitivity”, that is, Augmentation plus transitivity. Then depen-
dencies 𝑋 → 𝑦 such that 𝑦 ∈ 𝑋 are removed.

3. Σ is left-reduced (see Definition 3.1 and step 2 in the construction of the minimal cover).

It can be noticed that there is no removal of redundant dependencies. The only source of
redundancy that is taken into account and removed is the one generated by the application of
augmentation, but not of transitivity. The Canonical-Direct Basis is not necessarily minimal,
nor it is non-redundant, but it is direct.

Example 3.2. We continue with this example: Σ = { 𝑎 → 𝑏, 𝑏 → 𝑎𝑐, 𝑎 → 𝑐, 𝑏𝑐 → 𝑎 }. Applying
step 1 produces Σ = { 𝑎 → 𝑏, 𝑏 → 𝑎, 𝑏 → 𝑐, 𝑎 → 𝑐, 𝑏𝑐 → 𝑎 }. Here, step 2 consists in closing
Σ by pseudo-transitivity, which outputs: Σ′ = { 𝑎 → 𝑏, 𝑏 → 𝑎, 𝑏 → 𝑐, 𝑎 → 𝑐, 𝑏𝑐 → 𝑎, 𝑎𝑐 →
𝑎, 𝑎𝑏 → 𝑎, 𝑎𝑏 → 𝑏, 𝑎𝑐 → 𝑐 }. When applying step 2 to left-reduce Σ, and since 𝑏𝑐 → 𝑎 can be
left-reduced to 𝑏 → 𝑎, the following equivalent set is obtained and constitutes the final result:
Σ′′′ = { 𝑎 → 𝑏, 𝑏 → 𝑎, 𝑏 → 𝑐, 𝑎 → 𝑐 }, Since there is no removal of redundant dependencies, then
dependency 𝑎 → 𝑐 appears in this canonical-direct base.
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We need to notice that this base is also characterized in Formal Concept Analysis by the
so called minimal generators (or minimal generating set). A minimal generator is defined
in [9] (Section 2.3.3) as follows: A generating set of a closed set 𝐴 is a subset 𝑆 ⊆ 𝐴 such that
𝐴 = 𝑆′′ , and, obviously, a minimal generating set of 𝐴 is a subset of 𝐴 minimal with respect to
this property. A similar definition exists in [18]: A minimal generator B of a closed set 𝐹 is also
called a base for 𝐹 , i.e. 𝜑(𝐵) = 𝐹 and 𝜑(𝐴) ⊂ 𝜑(𝐵) for every 𝐴 ⊂ 𝐵, or a free subset, i.e. for
every 𝑥 ∈ 𝐵, 𝑥 ∈ 𝜑(𝐵 ∖ 𝑥) (where 𝜑 is a closure operator). What is also relevant is that, in
this same paper, the characterization of the canonical direct base Σ𝑐𝑑𝑏 is defined as follows:
Σ𝑐𝑑𝑏 = {𝐵 → closureΣ(𝐵) ∖ 𝐵 : 𝐵 ⊆ 𝒰 is a minimal generator of closureΣ(𝐵) }. That is,
the left-hand sides of a Canonical-Direct Basis are the set of minimal generators of the implicit
closure operator.

3.3. The Minimal Cover in the RDBM and its variations

Below we introduce the Minimal Cover, which is very popular among the RDBM community
and can be found in most of the database textbooks under different names (see Table 1). This
cover aims to remove the redundancy caused by both augmentation and transitivity.

Name Ref Where
Canonical Cover Maier [13] p. 79, Section 5.6
Minimal Cover Ullman [3] p. 390
Minimal Cover Abiteboul [14] p. 286, Exercice 11.16
Irreducible Set of Dependencies Date [19] p. 341, Section 11.6
Minimal Cover Elmasri [20] p. 549, Section 16.1.3
Canonical Cover Silberschatz [21] p. 324, Section 7.4.3

Table 1
References to the Minimal Cover in RDBM textbooks.

The computation of the Minimal Cover is performed in three steps:

1. All the dependencies in Σ must have only one single attribute in the right-hand side. This
is performed by simply replacing a dependency 𝑋 → 𝑌 by the dependencies 𝑋 → 𝑦𝑖 for
all 𝑦𝑖 ∈ 𝑌 .

2. Σ is left-reduced. This is performed by changing a dependency 𝑋 → 𝑦 by a dependency
𝑋 ′ → 𝑦, where 𝑋 ′ ⊂ 𝑋 , whenever (Σ∖{𝑋 → 𝑌 }∪{𝑋 ′ → 𝑌 })+ ≡ Σ+ (see Definition
3.1).

3. Redundant dependencies are removed from Σ (see Definition 3.2).

It is important to notice that the order of steps 2 and 3 is relevant and mandatory. Section 5.3
in [13] includes a discussion explaining why left-reduction needs to be performed before the
removal of redundant dependencies. The output of computing the Minimal Cover depends also
on the order in which dependencies are processed. As a consequence it comes that there may be
different minimal covers for the same Σ. Finally, the Minimal Cover does not ensure directness.
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Example 3.3 (Adapted from Section 5.2 in [13]). Let us suppose that we have the following
set of dependencies: Σ = { 𝑎 → 𝑏, 𝑏 → 𝑎𝑐, 𝑎 → 𝑐, 𝑏𝑐 → 𝑎 }. Applying step 1 outputs Σ = { 𝑎 →
𝑏, 𝑏 → 𝑎, 𝑏 → 𝑐, 𝑎 → 𝑐, 𝑏𝑐 → 𝑎 }. Then step 2 is applied to left-reduce Σ. Since 𝑏𝑐 → 𝑎 can be
left-reduced to 𝑏 → 𝑎 (thanks to Augmentation), then the following equivalent set is produced:
Σ′ = { 𝑎 → 𝑏, 𝑏 → 𝑎, 𝑏 → 𝑐, 𝑎 → 𝑐 }. Finally, applying step 3 outputs: Σ′′ = { 𝑎 → 𝑏𝑐, 𝑏 → 𝑎 }.
By contrast, let us assume that the order of Σ is changed as follows: Σ = { 𝑎 → 𝑏, 𝑎 → 𝑐, 𝑏 →
𝑎𝑐, 𝑏𝑐 → 𝑎 }. Applying step 1 yields the same set as above: Σ = { 𝑎 → 𝑏, 𝑎 → 𝑐, 𝑏 → 𝑎, 𝑏 →
𝑐, 𝑏𝑐 → 𝑎 }. When applying step 2, it comes: Σ′ = { 𝑎 → 𝑏, 𝑎 → 𝑐, 𝑏 → 𝑎, 𝑏 → 𝑐 }. And finally
applying step 3 outputs the base Σ′ = { 𝑎 → 𝑏, 𝑏 → 𝑎𝑐 }.

3.4. The Duquenne-Guigues basis

The Duquenne-Guigues basis [17, 8], also called the Canonical Basis in the FCA community,
is the cover based on pseudo-closed sets [8]. More precisely, it is defined as follows:

Definition 3.5. The Duquenne-Guigues basis of a set of dependencies Σ is defined as

{𝑋 → closureΣ(𝑋) | 𝑋 ⊆ 𝒰 and 𝑋 pseudoclosed }

where the definition of a pseudo-closed set of attributes w.r.t. a set of dependencies Σ is:

Definition 3.6. Let Σ be a set of dependencies, and 𝒰 the related set of attributes. 𝑋 ⊆ 𝒰 is
pseudoclosed if:

1. 𝑋 ̸= closureΣ(𝑋), that is, 𝑋 is not closed.
2. If 𝑌 ⊂ 𝑋 is a proper subset of 𝑋 and pseudo-closed, then closureΣ(𝑌 ) ⊆ 𝑋 .

This base is not direct, but it is minimal and non-redundant. According to [12], this base is
also presented by Maier in [13], where it is called the Minimum Cover: “It has been obtained
independently (and with different formulations) by Maier (Minimum Cover), and Guigues and
Duquenne (Duquenne-Guigues basis)”. We interpret the expression with different formulations
as the fact that the left and right-hand sides of the Duquenne-Guigues basis can be further
left/right-reduced. This is: modulo left/right-reduction, the Minimum Cover and the Duquenne-
Guigues basis are essentially the same. We note that [13] (Section 5.6.2) presents a way to
compute a Minimum Cover out of a non redundant set of dependencies. However, at present,
the use and popularity of the Duquenne-Guigues basis seems to be rather restricted within the
FCA community [9, 8].

Example 3.4. Let us consider Example 3.1: Σ = { 𝑎 → 𝑏, 𝑏 → 𝑎𝑐, 𝑎 → 𝑐, 𝑏𝑐 → 𝑎 }.
As in Σ the pseudo-closed sets are simply { 𝑎 } and { 𝑏 }, the following Duquenne-Guigues basis

is obtained: Σ′ = { 𝑎 → 𝑏𝑐, 𝑏 → 𝑎𝑐 }.
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3.5. Some Notes on Complexity

Concerning the complexity of the computation of the different bases, in all cases the worst-case
scenario is that of a base of exponential size with respect to the number of attributes as well as
the computing time of such bases.

In [22] it is proved that the complexity of computing the Canonical-Direct Basis is of order
𝒪(𝑛2 (𝑚2 )

2 2𝑚)), where 𝑚 is the number of attributes and 𝑛 is the number of records (the
size of the dataset). In [16] it is proved that any algorithm computing the dependencies that
hold in a dataset has a complexity of 𝒪(

(︀
𝑛
𝑛
2

)︀
), where 𝑛 is the number of attributes. As for the

Duquenne-Guigues basis, in [23] is is proved that (a) the size of a Duquenne-Guigues basis is
exponential in the worst-case and that (b) to estimate its size without computing it is #P-hard.
In fact, deciding whether a set is a pseudo-closed set is a coNP-complete problem [24].

4. Discussion and Conclusion

Relating the three main covers plus the D-Basis is relevant and very interesting. Actually,
while the D-Basis and the Canonical-Direct Basis are related by a subset relationship, such a
relationship is not known to exist between the Duquenne-Guigues basis and the Minimum
Cover, or between the Canonical-Direct Basis and the Duquenne-Guigues basis. In fact, in [12],
in the last sentence before the acknowledgements page 28, it is stated that:

We conclude that this paper is contradicting a conjecture of the literature (in [37]).
Indeed, one observes that the premise of implication (10) of Σ𝑐𝑑 (a direct cover) is not
contained in a premise of any implication of Σ𝑐𝑎𝑛 (the Duquenne-Guigues base).

This sentence goes back to a conjecture stated in [25] and can be interpreted as follows. The
left-hand sides of a Duquenne-Guigues basis, which is minimal, may not be a subset of the
left-hand sides of a direct cover.

The RDBM, Logic, and FCA fields are addressing two different, yet related problems: the
implication problem and the computation of a compact and representative set –cover or base–
of a complete set of dependencies. Although the first question is solved in the three fields
thanks to the same algorithms, that is, Closure or Linclosure, this unanimity disappears in
confronting with the choice of a cover. Table 2 summarizes the three types of covers reviewed
in Section 3, plus the D-Basis. It can be noticed that the Canonical-Direct Basis and the D-Basis
do not keep dependencies that can be inferred by the application of the augmentation axiom:
𝑋 → 𝑌 |= 𝑋𝑍 → 𝑌 𝑍 , while they include dependencies that can be inferred by transitivity.
This additional amount of information is enough to make direct these two covers. By contrast,
the Minimal Cover does not contain dependencies that can be inferred by augmentation or
transitivity as they are removed in the last step of the computation. And this explains why the
Minimal Cover is not direct.

We have there a kind of “no free lunch theorem”: the more information a base is keeping
the more direct the base can be. By contrast, minimality and non redundancy do not favor
directness.
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Canonical Canonical Duquenne-Guigues D-Basis
Minimal Direct Minimum

(found in) RDBM RDBM, Logic FCA/RDBM Lattice Th.
Minimum no no yes no
Direct no yes no yes
Redundant no yes no yes
Unique no yes yes yes

Table 2
Comparing the characteristics of the four bases.

The lack of unanimity can also be noticed in the RDBM only. Indeed textbooks such as
[14, 13, 3, 19, 20, 21] tend to present the Minimal Cover as the preferred cover, while algorithms
computing FDs output the Canonical-Direct Basis [26]. This can be interpreted as follows:
textbooks are preferring a cover left-reduced and non-redundant, and, hence, containing less
and more compact information. However, for discovering FDs, a left-reduced cover is computed
without removing redundant dependencies. A possible explanation is that algorithms computing
FDs take a dataset as input. Then it is easy to perform a left-reduction w.r.t. the input dataset
by removing an attribute from the left-hand side and test whether the dependency still holds.
However, a redundancy test is different in the sense that it can only be performed w.r.t. a set of
dependencies, once this set has completely been computed. Such a test is of a different nature
as it is not performed w.r.t. a dataset. Moreover, this does not prevent any algorithm from
performing it.

Although the Minimum Cover (or Duquenne-Guigues basis) is also introduced in the RDBM
field, it has not enjoyed the same popularity as the Minimal Cover. In fact, the Minimum Cover
is introduced and discussed only in Maier [13]. This lack of popularity is probably due to the
rather intricate characterization of the Minimum Cover and the related algorithm at that time
(see for example Section 5.6, Chapter 5 in [13]). This is especially true when compared with the
simplicity and expressiveness of the presentation of the Minimal Cover. The characterization
of Minimum Cover cannot compete either with the clear characterization of the Duquenne-
Guigues basis in FCA, or the simplicity of the NextClosure Algorithm in [9]. However, this
“simplicity” is not for free and it comes at the expense of the whole theoretical framework of
FCA.

The choice of a cover can be decided depending on the performance that Closure or Linclosure
are offering. Both Closure and Linclosure are closely dependent on the “nature” of the set of
dependencies Σ. By “nature” we mean the different characteristics explained in Section 3,
which have an impact on the amount of information as well as on the number of dependencies
considered. If Σ is a direct cover (Definition 3.3), both algorithms have to perform only a single
pass of their outer loop. If the cover is not direct, e.g., Canonical-Direct Basis or Duquenne-
Guigues basis, then, the number of iterations of the outer loop may be larger, while, at the
same time, the number of iterations of the inner loop may be shorter. Again, we are facing the
well-known trade-off between “expressivity and complexity”: the more expressive in terms of
information containment a cover is, the higher the cost of Closure and Linclosure is.
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Abstract
Rule Learning and Formal Concept Analysis (FCA) are two fields of science that study similar topic
yet speak in a very different terms. This paper describes rule-based machine learning models with
FCA-based terminology which results in decision quiver model. A decision quiver, discussed in the paper,
is a supervised machine learning model that is based on intents, generators of intents, and predictions
for each intent (or generator). We show that the finding of the optimal set of intents is a cornerstone
task in constructing a decision quiver (and thus, any rule-based model). The paper finishes with the
baseline algorithm to construct decision quivers. The algorithm produces machine learning models that
are much smaller than the state-of-the-art ensembles of decision trees, yet that offer the similar quality
of predictions.

Keywords
Supervised Machine Learning, Explainable Artificial Intelligence, Formal Concept Analysis

1. Introduction

Rule Learning [1] and Formal Concept Analysis (FCA) [2] are two fields of science that study
similar topic yet speak in a very different terms. Rule Learning searches for rules that could
accurately predict the attributes of unseen data. While FCA focuses on studying dependencies
in only the given data. This paper attempts to combine the language of FCA and the goal of
Rule Learning in one model called Decision Quivers. Thus, we combine the mathematicity of
FCA with the applicability of Rule learning.

Rule learning is a mature and well-recognised research area mainly concerned with finding
the Boolean rules (i.e. ”rules”) from the given attributes that are able to predict the value of
“target” attribute. One specific configuration of a rule-based model – an ensemble of decision
trees – is considered among the state-of-the-art machine learning models on tabular data.
However, the last big increment in the prediction quality of the ensembles was introduced in the
year 2016 [3] and is based on ensembling decision trees that are known since (at least) the year
1986 [4]. The later studies on Rule learning focus on interpreting and explaining big rule-based
models, ensembles of decision trees especially [5] [6] [7] [8]. We attribute the lack of novel
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state-of-the-art models in the area to the lack of a good formalism to describe rule-based models.
Such formalism could also propose new ways to interpret and explain big rule-based models.
Formal Concept Analysis is a formalism aimed at analysing data based on discrete (often

binary) descriptions. The FCA focus on binary descriptions promises its good applicability to
become a formalism for rule-based models.
The natural connections between FCA and rule-based machine learning were covered in

many works: [9] [10] [11] [12] [13] [14]. This paper does not attempt to highlight any new
connection between FCA and rule-based models. Instead, we discuss a model for rule-based
machine learning called Decision Quiver. The model is defined using the very basic notions
of FCA – closed descriptions and generators. The notion of generators allows decision quiver
describe any other rule-based model. While the notion of closed descriptions greatly shrinks
the search space while constructing the model.

The paper is structured as follows. Section 2 recalls the basics of Formal Concept Analysis and
Supervised Machine Learning, and defines Decision Quivers. Section 3 introduces the pipeline
and the simple algorithm to construct decision quivers. Section 4 evaluates the algorithm on
some of LUCS-KDD datasets. Section 5 concludes the paper.

2. Background

This subsection introduces definitions we use throughout the paper. Firstly, we provide the
basic terms of Formal Concept Analysis to describe the rule models. Secondly, we describe the
space of premises that contains the machine learning models discussed in the paper. Thirdly,
we describe the main topics of a binary classification in the language in the FCA notation.

2.1. Formal Concept Analysis

In Formal Concept Analysis the data is represented as a formal context 𝐾 = (𝐺,𝑀, 𝐼 ), which is
a triple of a set of objects 𝐺, a set of attributes 𝑀 and the relation 𝐼 ⊆ 𝐺 × 𝑀 among them.
A running example of a formal context is provided in Table 1 (together with “Target 𝕐”

column and “test objects” rows that will be introduced in the following sections). To lighten the
notation, we will represent a subset of attributes from the running example as a concatenation
of these attributes: e.g. we denote the subset of attributes {𝑐, ℎ} as 𝑐ℎ.

We call any subset of attributes 𝐷 ⊆ 𝑀 a description. And we denote the set of all descriptions
(i.e. the powerset of 𝑀) as 2𝑀:

2𝑀 = {𝐷 ∣ ∀𝐷 ⊆ 𝑀} (1)

Now we can define two “prime” operations: 𝐴′ would describe all attributes 𝑀 shared by
objects𝐴 ⊆ 𝐺, and 𝐵′ would describe all objects 𝐺 covered by attributes 𝐵 ⊆ 𝑀. Prime operations:

𝐴′ = {𝑚 ∈ 𝑀 ∣ ∀𝑔 ∈ 𝐴 ∶ (𝑔, 𝑚) ∈ 𝐼 }, 𝐴 ⊆ 𝐺
𝐵′ = {𝑔 ∈ 𝐺 ∣ ∀𝑚 ∈ 𝐵 ∶ (𝑔, 𝑚) ∈ 𝐼 }, 𝐵 ⊆ 𝑀

(2)

Two prime operations, combined together, result in “double prime” operator (⋅)″ that has
the properties of a closure operator. For example, if 𝐵 is a subset of attributes 𝑀 then 𝐵″ is the
closure of 𝐵 on set 𝑀.
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Attributes 𝑀 Target 𝕐
l w c h 𝜏

Objects
𝐺

dog x x x 100%
corn x 0%

bream x x x 0%
egg 0%

Test
objects

reed x x ? (0%)
frog x x x x ? (0%)

Attr.
names

lives on land lives in water can move has limbs is mammal

Table 1
Running example of a formal context with additional target column 𝕐 and test objects

∅

l c h w

lc lh ch cw hw

lch chw

dog,corn,
bream, egg

dog,corn

dog,bream

dog bream

Figure 1: Descriptions of the example context grouped by the subsets of objects they describe. Descrip-
tions of the empty set of objects are omitted.

In FCA terminology, a closed description 𝐵 ⊆ 𝑀, 𝐵″ = 𝐵 is also referred to as an intent. The
set of all intent is denoted by 𝔹 and, together with set inclusion order, forms a lattice :

𝔹 = {𝐵 ⊆ 𝑀 ∣ 𝐵″ = 𝐵} (3)

Two different subsets of attributes 𝐷, 𝐸 ⊆ 𝑀,𝐷 ≠ 𝐸 can describe the same set of objects
𝐷′ = 𝐸′ and, consequently, have the same closure 𝐷″ = 𝐸″. Such descriptions are called
equivalent. Equivalence class [𝐷] of description 𝐷 ⊆ 𝑀 is denoted as [𝐷]:

[𝐷] = {𝐸 ⊆ 𝑀 ∣ 𝐸″ = 𝐷″}. (4)

Line diagram on Figure 1 shows the descriptions of a context from the running from Table 1
grouped by the equivalence classes. Descriptions equivalent to 𝑀 (that describe no objects) are
omitted as they would make the diagram harder to read.
In each equivalence class [𝐷], 𝐷 ⊆ 𝑀, there is a single maximal description 𝐷″ = 𝐵 (also

called closed description or intent) and possibly many minimal descriptions, that are called
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“keys”. Let 𝐵 ⊆ 𝑀 be a closed description 𝐵″ = 𝐵, then 𝑘𝑒𝑦𝑠(𝐵) is the set of minimal descriptions,
equivalent to 𝐵:

𝑘𝑒𝑦𝑠(𝐵) = {𝐸 ∈ [𝐵] ∣ ∄𝐷 ∈ [𝐵] ∶ 𝐷 ⊂ 𝐸}, 𝐵 ⊆ 𝑀 (5)

2.2. Supervised Machine Learning

This subsection covers the basic ideas of Supervised Machine Learning and introduces our
notation for these terms.

Let us define a formal context (𝐺,𝑀, 𝐼 ), a space of target values 𝕐, and a target label 𝜏 (𝑔) ∈ 𝕐
for each object 𝑔 ∈ 𝐺. The task of supervised machine learning is to find a function 𝜓 that maps
any description 𝑋 ⊆ 𝑀 to a target value 𝜓(𝑋) ∈ 𝕐 so that, for any object 𝑔 ∈ 𝐺, the prediction
𝜓(𝑔′) would be close to the target label 𝜏 (𝑔). The “closeness” of target labels 𝜏 and predictions 𝜓
on objects 𝐺 is evaluated by non-negative loss functionℒ(𝜏 , 𝜓 ∣ 𝐺) ∈ ℝ+, whereℒ(𝜏 , 𝜓 ∣ 𝐺) = 0
means that 𝜓 is optimal. Here we provide two loss functions that can be used to evaluate the
prediction function 𝜓: negative F1-scoreℒ𝐹1 for binary classification task (i.e. when 𝕐 = {0, 1}),
and Mean Squared Error (MSE) ℒ𝑀𝑆𝐸 for regression task (i.e. when 𝕐 = ℝ).

ℒ𝐹1(𝜏 , 𝜓 ∣ 𝐺) = 1 − 2
∑𝑔∈𝐺 𝜏 (𝑔)𝜓 (𝑔′)

∑𝑔∈𝐺 (1 − 𝜏(𝑔)𝜓 (𝑔′))

ℒ𝑀𝑆𝐸(𝜏 , 𝜓 ∣ 𝐺) = 1
|𝐺|

∑
𝑔∈𝐺

(𝜏(𝑔) − 𝜓(𝑔′))2

It should be noted that, since the loss functionℒ is evaluated on objects𝐺, the “best” prediction
function 𝜓 for these objects would be the function 𝜓 ∶ 𝑔′ ↦ 𝜏(𝑔) that predicts the label 𝜏 (𝑔)
of every objects 𝑔 ∈ 𝐺 based on its description 𝑔′. Such function 𝜓 would give zero loss on
objects 𝐺 but it will not extrapolate well on new descriptions, not shared by objects 𝐺. This
issue is often mitigated by introducing the “test” formal context (𝐺test, 𝑀, 𝐼test)with target labels
𝜏test ∶ 𝐺test → 𝕐. Then, prediction function 𝜓 is constructed by minimizing the loss on “train”
context (𝐺,𝑀, 𝐼 ), but the final evaluation of the loss of function 𝜓 is done on the test context
(𝐺test, 𝑀, 𝐼test). In the running example from Table 1, objects 𝐺test are denoted as Test objects.

In what follows we use the “average” operation over the target space (Equation 6). We assume,
therefore, that the space 𝕐 is “averageble”, i.e. for every list of tuple of target values 𝑌, its average
avg(𝑌 ) is also a target value from 𝕐. This assumption does not make the following reasoning
too specific, as many Supervised Machine Learning problems can be reformulated to satisfy it.
For example, binary classification task suggests only two target values 𝕐bin = {0, 1}. However,
it can be reformulated as a regression task with 𝕐 = [0, 1] where the values of 𝕐 represent the
probability of an object to belong to the positive class 1 ∈ 𝕐bin.

avg(𝑌 ) = 1
|𝑌 |

∑
𝑦∈𝑌

𝑦, 𝑌 ∈ 𝕐1 ∪ 𝕐2 ∪ … ∪ 𝕐∞ (6)

2.3. Rule set

Given a description 𝑋 ⊆ 𝑀, a rule-based machine learning model makes prediction 𝜓(𝑋) based
on a set of rules of the form: “if 𝑋 is described by 𝑃 ⊆ 𝑀 then predict 𝜚(𝑃) ∈ 𝕐”. That is, every
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rule is characterised by a pair (𝑃, 𝜚(𝑃)) where 𝑃 ⊆ 𝑀 is a subset of attributes called premise,
and 𝜚(𝑃) ∈ 𝕐 is a prediction of premise 𝑃. A rule set is a pair (𝒫 , 𝜚) where 𝒫 ⊆ 2𝑀 is a set of
premises and 𝜚 is a function that maps each premise to a target value (𝜚 ∶ 𝒫 ↦ 𝕐).

Now, let us consider two special cases when predicting with rule set (𝒫 , 𝜚). Let 𝑋 ⊆ 𝑀 be a
description and let 𝑃1, 𝑃2 ∈ 𝒫 be two comparable premises covered by 𝑋: 𝑃1 ⊂ 𝑃2 ⊆ 𝑋. Then
we follow the intuition that a more precise premise 𝑃2 should give a more precise prediction
𝜚(𝑃2), therefore we only use premise 𝑃2 to make a prediction about the target of 𝑋. Now,
let 𝑃1, 𝑃2 ∈ 𝒫 be incomparable premises, covered by 𝑋: 𝑃1 ⊈ 𝑃2, 𝑃2 ⊈ 𝑃1, 𝑃1 ⊆ 𝑋, 𝑃2 ⊆ 𝑋.
Then we use both premises 𝑃1, 𝑃2 to make a prediction for 𝑋 by averaging their predictions
𝜓(𝑋) = avg((𝜚(𝑃1), 𝜚(𝑃2))).
With these ideas in mind we define prediction function 𝜓(𝒫 ,𝜚) ∶ 2𝑀 → 𝕐 for rule set (𝒫 , 𝜚)

as follows:

𝜓(𝒫 ,𝜚)(𝑋) = avg((𝜚(𝑃) ∣ 𝑃 ∈ 𝒫𝑋,max)), 𝑋 ⊆ 𝑀 (7)

where 𝒫𝑋,max = {𝑃 ∈ 𝒫 ∣ 𝑃 ⊆ 𝑋 , ∀𝑃2 ∈ 𝒫 ∶ (𝑃 ⊂ 𝑃2) ⟹ (𝑃2 ⊈ 𝑋)} (8)

Prediction 𝜚(𝑃) for a premise 𝑃 ∈ 𝒫 is often computed as the average of target labels of
objects described by 𝑃:

𝜚(𝑃) = avg((𝜏 (𝑔) ∣ 𝑔 ∈ 𝑃 ′)) (9)

Example 1. Let us provide an example of a rule set (𝒫 , 𝜚) constructed on the example context 1.
For the sake of readability, we represent the rule set as a set of implications {𝑃 ⟹ 𝜚(𝑃) ∣ 𝑃 ∈ 𝒫 }:

{∅ ⟹ 25%, 𝑙 ⟹ 50%, 𝑙𝑐 ⟹ 100%, 𝑙ℎ ⟹ 100%, 𝑤 ⟹ 0%}. (10)

Let us make a prediction for object reed with description 𝑋 = 𝑙𝑤. There are three premises
from 𝒫 that can be applied for 𝑋: {∅, 𝑙, 𝑤}. Out of these three, there are two maximal descriptions:
𝒫𝑋,max = {𝑙, 𝑤}. The former predicts that reed is mammal with 𝜚(𝑙) = 50% probability, and the
latter predicts that reed is mammal with 𝜚(𝑤) = 0% probability. Therefore, the final prediction is
𝜓(𝒫 ,𝜚)(𝑋) = 25% probability of reed being a mammal.

Analogously, let us predict whether object frog with description 𝑋 = 𝑙𝑤𝑐ℎ is a mammal. All
premises of 𝒫 can be applied for the given 𝑋. However, only three of them are maximal: 𝒫𝑋,max =
{𝑙𝑐, 𝑙ℎ, 𝑤}. The corresponding premise predictions are 𝜚(𝑙𝑐) = 100%, 𝜚(𝑙ℎ) = 100%, 𝜚(𝑤) = 0%.
Therefore, the final prediction is 𝜓(𝒫 ,𝜚)(𝑋) = 67% probability of frog being a mammal.

This process of making predictions is schematically depicted in Figure 2.

X = lw {l, w} (50%, 0%) 25% = ψ(P,%)(X)
PX,max % avg.

X = lwch {lc, lh, w} (100%, 100%, 0%) 67%= ψ(P,%)(X)
PX,max % avg.

Figure 2: The pipeline of making predictions with Rule Set of Example 1 for a reed (𝑋 = 𝑙𝑤) (top
subfigure) and a frog (𝑋 = 𝑙𝑤𝑐ℎ) (bottom subfigure)
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2.4. Implicitly equivalent premises

Let us rewrite the predictions from Example 1 in more details, considering what objects from 𝐺
we use to make predictions.

For object reed with description 𝑋 = 𝑙𝑤 the set 𝒫 contains two maximal premises describing
𝑋: 𝒫𝑋,max = {𝑙, 𝑤}. Premise 𝑙 describes training objects 𝑙′ = {𝑑𝑜𝑔, 𝑐𝑜𝑟𝑛} ⊂ 𝐺 with corresponding
target labels 𝜏 (𝑑𝑜𝑔) = 100%, 𝜏 (𝑐𝑜𝑟𝑛) = 0% whose average label is 50%. Premise 𝑤 describes
training object 𝑤 ′ = {𝑏𝑟𝑒𝑎𝑚} ⊂ 𝐺 with target label 𝜏 (𝑏𝑟𝑒𝑎𝑚) = 0%. So the rule set (𝒫 , 𝜚) from
Example 1 predicts that reed is mammal with 25% probability.

For object frog with description 𝑋 = 𝑙𝑤𝑐ℎ the set 𝒫 contains three maximal premises describ-
ing 𝑋: 𝒫𝑋,max = {𝑙𝑐, 𝑙ℎ, 𝑤}. Premise 𝑙𝑐 describes training object 𝑙′ = {𝑑𝑜𝑔} ⊂ 𝐺 with target label
𝜏 (𝑑𝑜𝑔) = 100%; premise 𝑙ℎ describes the same training object training object 𝑤 ′ = 𝑙′ = {𝑑𝑜𝑔} ⊂ 𝐺
with target label 𝜏 (𝑑𝑜𝑔) = 100%; and premise 𝑤 describes training object 𝑤 ′ = {𝑏𝑟𝑒𝑎𝑚} ⊂ 𝐺 with
target label 𝜏 (𝑏𝑟𝑒𝑎𝑚) = 0%. So the rule set (𝒫 , 𝜚) from Example 1 predicts that frog is mammal
with 67% probability.

This process of making predictions is schematically depicted in Figure 3.

X = lw {l, w}
{dog, corn} (100%, 0%) 50%

25% = ψ(P,%)(X)

{bream} (0%) 0%

PX,max
l′

w′

τ

τ

avg.

avg.

avg.

avg.

X = lwch {lc, lh, w}

{dog} (100%) 100%

67% = ψ(P,%)(X){dog} (100%) 100%

{bream} (0%) 0%

PX,max

lc′

lh′

w′

τ

τ

τ

avg.

avg.

avg.

avg.

avg.

avg.

Figure 3: The explicit pipeline of making predictions with Rule Set of Example 1 for a reed (𝑋 = 𝑙𝑤)
(top subfigure) and a frog (𝑋 = 𝑙𝑤𝑐ℎ) (bottom subfigure)

Notice that two premises {𝑙𝑐, 𝑙ℎ} ⊂ 𝒫 used for target prediction of object frog (𝑋 = 𝑙𝑤𝑐ℎ)
have the same extent: 𝑙𝑐′ = 𝑙ℎ′ = {𝑑𝑜𝑔}. Therefore, the information that subset of objects {𝑑𝑜𝑔}
has average target of 100% is used two times inside the rule set. In fact , if we count only one
premise with extent {𝑑𝑜𝑔} dog when making the final prediction 𝜓(𝒫 ,𝜚) we will get the value
50%, which is closer to the true value 0% than 67%.
There are many possible ways to overcome this issue. For example, one can construct rule

set (𝒫 , 𝜚) such that the set 𝒫 would only contain premises that are either comparable or
contradicting (i.e. ∀𝑃1, 𝑃2 ∈ 𝒫 ∶ 𝑃1 ⊆ 𝑃2 or 𝑃2 ⊆ 𝑃1 or ∃𝑚 ∈ 𝑃1, s.t. “not 𝑚” ∈ 𝑃2). This is
the approach, used by decision trees. One can also construct rule set (𝒫 , 𝜚) such that the all
premises in 𝒫 are closed (i.e. 𝒫 ⊆ 𝔹 ⊆ 2𝑀). Then, there will be no two premises that describe
the same set of objects. This is the approach commonly used in FCA literature.
In this paper we propose another approach by enriching the rule set (𝒫 , 𝜚) with the set of

closures ℬ of premises 𝒫: ℬ = {𝑃″ ∣ 𝑃 ∈ 𝒫 }.
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2.5. Decision Quiver

The previous sections introduced equivalent descriptions and covered their importance for
making predictions with rule sets. This section presents Decision Quiver: a rule set model
enriched with the information about equivalent descriptions.

The model of Decision Quiver was introduced in [15] as a directed multigraph (i.e. a quiver)
with intents as nodes, generators as edges, and predictions for each nodes. This paper inherits
the name of Decision Quiver but presents its definition in a more set-theoretic way, as we have
found the latter to be more concise.

Definition 1. Let (𝐺,𝑀, 𝐼 ) be a (training) context and 𝔹 be its set of closed descriptions, a
decision quiver is a triplet 𝑄 = (𝒫 ,ℬ, 𝜚) of premises 𝒫 ⊆ 2𝑀, their intents ℬ ⊂ 𝔹 ∶ {𝑃″ ∣ 𝑃 ∈
𝒫 } = ℬ, and predictions 𝜚 ∶ ℬ → 𝕐 for every intent.

Given a description 𝑋 ⊆ 𝑀, prediction 𝜓(𝒫 ,ℬ,𝜚)(𝑋) is computed as the average of predictions
𝜚 of maximal intentsℬ𝑋,max ⊆ ℬ, whose generators 𝒫𝑋 ⊆ 𝒫 are covered by 𝑋.

𝜓(𝒫 ,ℬ,𝜚)(𝑋) = avg((𝜚(𝐵) ∣ 𝐵 ∈ ℬ𝑋,max)), (11)

whereℬ𝑋,max = {𝐵 ∈ ℬ ∣ ∃𝑃 ∈ 𝒫𝑋,max ∶ 𝐵 = 𝑃″, ∄𝑃2 ∈ 𝒫𝑋,max ∶ 𝐵 ⊂ 𝑃″2 } (12)

𝒫𝑋,max = {𝑃 ∈ 𝒫 ∣ 𝑃 ⊆ 𝑋 , ∀𝑃2 ∈ 𝒫 ∶ (𝑃 ⊆ 𝑃2) ⟹ (𝑃2 ⊈ 𝑋)} (13)

Example 2. Let us provide an example of a decision quiver (𝒫 ,ℬ, 𝜚) having the same premises
as a rule set (𝒫 , 𝜚) from Example 1. For the sake of readability, we represent the quiver (𝒫 ,ℬ, 𝜚)
as two sets of implications: {𝑃 ⟹ 𝐵 ∣ 𝑃 ∈ 𝒫 , 𝐵 ∈ ℬ, 𝑃″ = 𝐵} and {𝐵 ⟹ 𝜚(𝐵) ∣ 𝐵 ∈ ℬ}:

𝒫 → ℬ ∶{∅ ⟹ ∅, 𝑙 ⟹ 𝑙, 𝑙𝑐 ⟹ 𝑙𝑐ℎ, 𝑙ℎ ⟹ 𝑙𝑐ℎ, 𝑤 ⟹ 𝑐ℎ𝑤},
ℬ → 𝕐 ∶{∅ ⟹ 25%, 𝑙 ⟹ 50%, 𝑙𝑐ℎ ⟹ 100%, 𝑐ℎ𝑤 ⟹ 0%} = 𝜚.

Contrary to the rule set (𝒫 , 𝜚) from Example 1, the quiver (𝒫 ,ℬ, 𝜚) “knows” that premises 𝑙𝑐
and 𝑙ℎ are equivalent as they correspond to the same closure 𝑙𝑐ℎ. Therefore, when making prediction
for a frog with description 𝑋 = 𝑙𝑤𝑐ℎ, the quiver uses only two subsets of objects: {𝑑𝑜𝑔} = 𝑙𝑤𝑐ℎ′
with average target equal to 100%, and {𝑏𝑟𝑒𝑎𝑚} = 𝑐ℎ𝑤 ′ with average target equal to 0%. This
prediction process is schematically represented on Figure 4.

X = lwch {lc, lh, w}
lch 100%

50% = ψ(P,B,%)(X)

chw 0%

PX,max

lc′′

lh′′

w′′

%

%

avg

avg

Figure 4: The pipeline of making predictions with Decision Quiver based on a Rule Set of Example 1 for
a frog (𝑋 = 𝑙𝑤𝑐ℎ)

3. Quivers construction pipeline

The previous section introduced target-based and arrow-based decision quivers. Now, let us
discuss, how these quivers can be constructed.
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3.1. Algorithm to find the optimal quiver

Decision quiver 𝑄 = (𝒫 ,ℬ, 𝜚) consists of three elements. Note that prediction function
𝜚 ∶ ℬ → 𝕐 depends on intentsℬ and not the premises 𝒫. And considering the training formal
context, every premise 𝑃 ∈ 𝒫 describes the same objects as itc closure 𝐵 ∈ ℬ, 𝑃″ = 𝐵. So, when
making predictions on the training context, the choice of a specific subset of premises 𝒫 is
irrelevant. Therefore, the task of finding the optimal quiver (𝒫 ,ℬ, 𝜚) on the training formal
context reduces to finding the optimal rule set (ℬ, 𝜚) whose premises are limited to intents.
After finding (ℬ, 𝜚) one should select the optimal set of premises 𝒫 to construct a quiver

(𝒫 ,ℬ, 𝜚) that would be generalisable to the test data. However, since premises with the same
intent describe the same objects, they are empirically indistinguishable. Thus, the choice of
the premises 𝒫 relies on a priori intentions: for example, one may want to make premises as
precise as possible (then 𝒫 = ℬ), or as general as possible (then 𝒫 = ⋃𝐵∈ℬ 𝑘𝑒𝑦𝑠(𝐵)).
More formally, let ℒ be a loss function, (𝐺,𝑀, 𝐼 ) be a training context, and 𝑄opt =

(𝒫opt,ℬopt, 𝜚opt) be the quiver, that achieves the minimal loss ℒ on the context (𝐺,𝑀, 𝐼 ):
ℒ(𝜏 , 𝜚𝑄opt

∣ 𝐺) → 0. Then, the task of finding such optimal quiver 𝑄opt can be separated into
three independent steps:

0. Fix the search space of intents 𝔹search ⊆ 𝔹 of context (𝐺,𝑀, 𝐼 ),
1. Find the optimal rule set (ℬopt, 𝜚opt) of intents ℬopt ⊆ 𝔹search and their predictions

𝜚opt ∶ ℬopt → 𝕐,
2. Construct the set of premises 𝒫opt of intents ℬopt.

The initial step of the pipeline is fixing the search space 𝔹search. For the sake of simplicity,
in this paper we assign the search space 𝔹search to be the space of all intents 𝔹. The ways to
minimise the search space is one of the future research directions.

The first and the main step of the algorithm is finding the optimal rule set (ℬopt, 𝜚opt) where
the choice of premises is limited to intents from the search space: ℬopt ⊆ 𝔹search. Remind that
the prediction function 𝜚opt is often evaluated the same way for every intent. For example,
similar to Equation 9, prediction 𝜚opt(𝐵) for an intent 𝐵 ∈ 𝔹 is the average target label of objects
𝐵′ described by intent 𝐵. Thus, the search for optimal rule set (ℬopt, 𝜚opt) is a search for optimal
subset of intents ℬopt ⊆ 𝔹search:

ℬopt = arg min
ℬ⊆𝔹search

ℒ(𝜏 , 𝜓(ℬ,𝜚) ∣ 𝐺) (14)

The last step of the pipeline is to construct the set of premises𝒫opt of quiver 𝑄opt to generalise
the latter to the possible test descriptions. Here we propose two options for the set of generators
𝒫opt: the set of closed descriptions𝒫closed = ℬopt, and the set of keys𝒫keys = ⋃𝐵∈ℬopt

keys(𝐵).

3.2. Algorithm to find the optimal subset of intents

This paper uses the very basic greedy discrete optimisation algorithm to find the optimal subset
of intents (i.e. solving the task from Equation 14).

When finding the optimal subset of intents ℬopt ⊆ 𝔹search we operate the fixed set training
context (𝐺,𝑀, 𝐼 ), the fixed targets 𝜏 ∶ 𝐺 → 𝕐, and the fixed way to compute the prediction 𝜚(𝐵)
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for an intent 𝐵 ∈ 𝔹search (see eq. 9). Therefore, for the sake of brevity, we define the training
loss ℒtrain(ℬ) of a subset of intents ℬ as follows:

ℒtrain(ℬ) = ℒ(𝜏 , 𝜓(ℬ,𝜚) ∣ 𝐺). (15)

The algorithm (to find ℬopt given 𝔹search):

0. Start with ℬ containing the top intent ℬ = {∅″},
1. Find the intent 𝐵opt ∈ 𝔹search that gives the minimal loss, when added to the current set

of intents ℬ:
𝐵opt = argmin𝐵∈𝔹search

ℒtrain(ℬ ∪ {𝐵})
2. Add intent 𝐵opt to the set ℬ,
3. Repeat the steps 1, 2 while the set ℬ contains less than ℬmax ∈ ℕ elements and the loss

decrease is higher than 𝜖 ∈ ℝ+:
repeat until |ℬ| ≤ ℬmax, and ℒtrain(ℬ)−ℒtrain(ℬ∪{𝐵opt})>𝜖.

4. Experiments

The main limitation for the current algorithm is that considers the intents search space 𝔹search
as the set of all intents 𝔹. Therefore, we can only apply the algorithm on the datasets where
we can compute the intents 𝔹. For the experiments we chose nine dataset from LUCS-KDD
repository [16] that are discretized versions of real-world datasets from UCI repository. The set
of intents 𝔹 for every dataset was computed by LCM algorithm implemented in Scikit-mine
repository.

The selected datasets give the task of multi-class classification. For example, Iris dataset asks
to classify a flower into one of the three types (Setosa, Versicolour, and Virginica) based on
its petal and sepal lengths and widths. We used F1 score with weighted averaging as a loss
function so that it can be applied to all datasets with no adjustments.

For each dataset we fit a gradient boosting model provided by Sci-Kit learn [17] and XGBooost
[3] to get the state-of-the-art prediction quality scores. Then we construct two decision quivers
for each dataset: one makes predictions via intents (denoted by ”Quiver, intents”), and the other
makes predictions via keys of these intents (denoted as ”Quiver, keys”).
Table 2 compares the test prediction quality of models on the selected datasets. One can

see that the Gradient boosting models gave the best scores. However, in some cases, quiver
models showed comparable decision quality: e.g. Iris, Congres, Breast, Flare datasets. Also,
on this data, we see almost no differences between quivers that make predict with intents
and quivers that prediction with keys. The only dataset where the difference occurs is Zoo
dataset. Currently, we cannot explain this fact as we assumed the difference would be much
more apparent. So we should proceed with more profound studies comparing intents and keys
as means for predictions.
Now, let us compare the sizes of the models, provided in Table 3. One can see that quiver

models contain no more that 6 intents for all the datasets. While each gradient boosting consists
of one hundred of decision trees. Note that each decision tree in each gradient boosting consist
of many Boolean rules. In that regard, decision quiver model are more efficient, as they are able
to achieve the similar prediction quality score with much lesser number of rules.
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Table 2
Test F1 score

Dataset Quiver, intents Quiver, keys Grad. Boosting sklearn XGBoost

zoo 0.819 0.869 1.000 0.929
iris 0.967 0.967 0.967 0.967
ecoli 0.703 0.703 0.757 0.808
congres 0.909 0.909 0.909 0.920
breast 0.936 0.936 0.936 0.936
ticTacToe 0.745 0.745 0.984 0.990
flare 0.878 0.878 0.901 0.880
led7 0.460 0.460 0.774 0.769
nursery 0.863 0.863 0.988 1.000

Table 3
Model complexity in size and in construction time

Dataset Model size Construction time (seconds)
# intents in quiver # trees, GB sklearn # trees, XGBoost Quiver GB, sklearn XGBoost

zoo 6 100 100 12.333 0.159 0.057
iris 3 100 100 2.250 0.067 0.047
ecoli 3 100 100 161.508 0.223 0.125
congres 2 100 100 158.786 0.039 0.037
breast 3 100 100 0.786 0.028 0.032
ticTacToe 5 100 100 53.155 0.060 0.065
flare 1 100 100 661.792 0.204 0.196
led7 5 100 100 2.047 0.961 0.726
nursery 5 100 100 1165.161 2.774 0.835

However, the better algorithm to construct decision quivers should be developed. As the
current algorithm construct the quivers for too long. For example, on Nursery dataset, it took
XGBoost 0.8 seconds to construct 100 decision trees, and it took decision quivers algorithm 19
minutes to select 5 intents.

5. Conclusion

In this paper we have presented decision quivers as a formalism for describing rule-based
machine learning models. We showed that description quiver can describe any rule-based
model. And, by incorporating closed descriptions, it can possibly suggest efficient algorithms to
create more optimal machine learning models.

We have also presented a general pipeline to construct decision quivers. We showed that the
most important part of the pipeline is finding the optimal set of intents. Thus, many FCA-based
algorithm can be used to construct decision quivers. The current baseline algorithm for quivers
construction is very slow, compared to the state-of-the-art models. However, it can produce
much smaller models with the similar prediction quality.
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