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Preface

The eleven preceding editions of the FCA4AI Workshop (see http://www.fca4ai.hse.

ru/) showed that many researchers working in Arti�cial Intelligence are deeply interested in
a well-founded method for classi�cation and data mining such as Formal Concept Analysis
(see https://upriss.github.io/fca/fca.html).

The FCA4AI Workshop Series started with ECAI 2012 (Montpellier) and the last edition
was co-located with IJCAI 2023 (Macao, China). The FCA4AI workshop has now a long
history and all proceedings are available as CEUR proceedings (see http://ceur-ws.org/,
volumes 939, 1058, 1257, 1430, 1703, 2149, 2529, 2729, 2972, 3233, and 3489). This year,
the workshop has again attracted researchers from di�erent countries working on actual and
important topics related to FCA, showing the diversity and the richness of the relations
between FCA and AI.

Formal Concept Analysis (FCA) is a mathematically well-founded theory aimed at data
analysis and classi�cation. FCA allows one to build a concept lattice and a system of de-
pendencies, i.e., implications and association rules, which can be used for many AI needs,
e.g. knowledge discovery, machine learning, knowledge representation and reasoning, natural
language and text processing. Recent years have been witnessing increased scienti�c activity
around FCA. In particular an important line of work is aimed at extending the possibilities
of FCA w.r.t. data and knowledge processing, and dealing with complex data. These ex-
tensions open new directions for AI practitioners. Accordingly, the workshop will investigate
the following issues:

� How can FCA support AI activities such as knowledge discovery, knowledge repre-
sentation and reasoning, machine learning, natural language processing, information
retrieval. . .

� How can FCA be extended for helping AI researchers to solve new and complex prob-
lems, in particular how to combine FCA, neural classi�ers, and LLMs, for allowing
interpretability and producing valuable explanations. . .

First of all we would like to thank all the authors for their contributions and all the PC
members for their reviews and their precious collaboration. The papers submitted to the
workshop were carefully peer-reviewed by three members of the program committee, and
the revised papers were prepared according to the reviews. We hope that these proceedings
will be practical and useful for partipants to the FCA4AI 2024 Workshop and as well to all
readers who are intersted in the close relations existing between FCA and AI.

The Workshop Chairs

Sergei O. Kuznetsov
National Research University Higher School of Economics, Moscow, Russia

Amedeo Napoli
Université de Lorraine, CNRS, LORIA, 54000 Nancy, France

Sebastian Rudolph
Technische Universität Dresden, Germany

3



Program Committee

Jaume Baixeries (UPC Barcelona, Catalunya)

Alexandre Bazin (LIRMM, Université de Montpellier, France)

Karell Bertet (L3I, Université de La Rochelle, France)

Peggy Cellier (IRISA, Université de Rennes, France)

Miguel Couceiro (LORIA, Université de Lorraine, Nancy France)

Diana Cristea (Babes-Bolyai University, Cluj-Napoca, Romania)

Florent Domenach (Akita International University, Japan)

Sébastien Ferré (IRISA, Université de Rennes, France)

Dmitry I. Ignatov (HSE University Moscow, Russia)

Mehdi Kaytoue (Infologic, Lyon, France)

Francesco Kriegel (Technische Universität Dresden, Germany)

Florence Le Ber (ENGEES/Université de Strasbourg, France)

Jesùs Medina (University of Càdiz, Spain)

Rokia Missaoui (UQO University Ottawa, Canada)

Sergei A. Obiedkov (Technische Universität Dresden, Germany)

Christian Sacarea (Babes-Bolyai University, Cluj-Napoca, Romania)

Baris Sertkaya (Frankfurt University of Applied Sciences, Germany)

Martin Trnecka (Palacky University Olomouc, Czech Republic)

Francisco José Valverde Albacete (Universidad Rey Juan Carlos de Madrid, Spain)

Renato Vimieiro (Universidade Federal de Minas Gerais, Belo Horizonte, Brazil)

4



Contents

1 Modelling Commonsense Knowledge about Concepts with Language Models

Zied Bouraoui . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 KLM-style Defeasible Reasoning on Concepts

Fei Liang, Krishna Manoorka, Alessandra Palmigiano, and Apostolos Tzimoulis 9

3 Conjunctive Concept Algebras � Named Perspective

Jens Kötters and Stefan E. Schmidt . . . . . . . . . . . . . . . . . . . . . . . 15

4 When contranominal scales give a solution to the Zarankiewicz problem?

Dmitry I. Ignatov . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5 Training Neural Networks Based on Formal Concepts

Sergei O. Kuznetsov and Mariia Zueva . . . . . . . . . . . . . . . . . . . . . . 39

6 Clustering with Stable Pattern Concepts

Egor Dudyrev, Mariia Zueva, Sergei O. Kuznetsov, and Amedeo Napoli . . . 47

7 Clustering with Axialities

Sergei O. Kuznetsov . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

8 A system for di�erent concepts generation and application

Xenia Naidenova, Victor Shagalov, and Tatiana Martirova . . . . . . . . . . . 67

9 Improvements to lattice drawing with fca.sty

Tobias Schlemmer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5



6



Modelling Commonsense Knowledge about
Concepts with Language Models
Zied Bouraoui1

1UFR des Sciences Jean Perrin, Rue Jean Souvraz SP 18, 62307 Lens Cedex, France

Abstract
Modeling concepts and their relationships is crucial for many knowledge-intensive tasks, such as few-
shot and zero-shot learning and knowledge base completion. In this talk, I will explore strategies for
learning effective concept and relation representations from language models and provide an overview
of how these embeddings can enhance downstream applications, such as completing ontologies with
plausible missing rules.

Keywords
concepts and relations, few-shot and zero-shot learning, language models, knowledge base completion
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KLM-style Defeasible Reasoning on Concepts
Fei Liang3, Krishna Manoorkar1,*, Alessandra Palmigiano1,2 and Apostolos Tzimoulis1

3School of Philosophy and Social Development, Shandong University, China
1Vrije University, Amsterdam, the Netherlands
2Department of Mathematics and Applied Mathematics, University of Johannesburg, South Africa

Abstract
In this paper, we introduce a KLM-style framework for defeasible reasoning about formal concepts. This framework
can be used both for theoretical developments and in applications of non-monotonic reasoning about formal
concepts.

Keywords
Formal Concept Analysis, Non-monotonic reasoning, KLM framework

1. Introduction

Non-monotonic logics are a class of logics which allow for inference relation to be non-monotonic,
i.e. such that adding more knowledge or preferences can lead to some inferences to be retracted. These
logical frameworks are intended to formally account for forms of reasoning which allow for exceptions
and revision of conclusions. Non-monotonic logics play a crucial role in several fields of artificial
intelligence, such as common-sense reasoning [1], ethical AI [2], and argumentation theory [3]. Various
formal frameworks for non-monotonic reasoning have been developed, including Default Logic [4],
AGM Belief Revision [5], Defeasible Entailment Reasoning [6], Conditional Logic [7], Circumscription
[8], Autoepistemic logic [9].

Formal Concept Analysis (FCA) [10] is an established mathematical framework used in Knowledge
Representation and Reasoning to study FCA hierarchies. The basic structures in FCA, namely formal
contexts and their associated concept lattices, have been systematically linked with—and used as
semantic environments of—a large family of lattice-based propositional logics, prominent examples
of which are lattice-based modal logics, and their theory has been developed as a family of logics for
reasoning about (formal) concepts in the context of data structures and information theory [11, 12, 13, 14].
Each logic in this family is defined in terms of a monotone consequence (or entailment) relation 𝐶1 ⊢ 𝐶2

between concepts, which is semantically interpreted as ‘𝐶1 is a subconcept of𝐶2’, that is, ‘all the objects
in the extension of 𝐶1 are in the extension of 𝐶2’, or equivalently, ‘all the features in the intension
of 𝐶2 are in the intension of 𝐶1’. On the basis of this framework, various more sophisticated logical
frameworks have been proposed, including epistemic logic for categories and categorization endowed
with a ‘common knowledge’ operator accounting for prototypicality [12], a basic environment for a
Dempster-Shafer theory of concepts [15], a unifying environment for Rough Set Theory and FCA [16],
many-valued logics accounting for vague categories [17], a specifically FCA-based description logic
for FCA [18, 19], and various proof-theoretic frameworks laying the foundations of the computational
theory of these logics [20, 21].

Deciding whether some concept inclusion is entailed by a given FCA knowledge base (e.g. a set of
concept inclusions) is an important reasoning task which can be efficiently carried out by lattice-based
propositional logics such as those mentioned above. However, in many applications, especially in

Workshop ’What can FCA do for AI’?, 2024
*Corresponding author.
$ f.liang@sdu.edu.cn (F. Liang); k.b.manoorkar@vu.nl (K. Manoorkar); alessandra.palmigiano@vu.nl (A. Palmigiano);
a.tzimoulis@vu.nl (A. Tzimoulis)
� 0000-0002-4932-1329 (F. Liang); 0000-0003-3664-7757 (K. Manoorkar); 0000-0001-9656-7527 (A. Palmigiano);
0000-0002-6228-4198 (A. Tzimoulis)

© 2024 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
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context of large data, as well as in many real-life situations, a part of the available knowledge may be
defeasible (i.e. presented in form of concept-inclusions which allow for exceptions). Studying defeasible
entailment on concepts would allow us to infer knowledge from knowledge consisting of defeasible
concept-inclusions, and to capture, and hence implement, common sense reasoning about concepts. For
example, if a generic object (animal) 𝑎 is in thecategory of ‘mammals’, then we can reasonably conclude
that 𝑎 is viviparous. However, if we receive additional information that the animal is a platypus, then
we can conclude it is not viviparous.

Formally, we can define the following three defeasible counterparts of the monotone entailment
relation ⊢ discussed above: (1) Relation |∼𝐴 interpreted as ‘all the objects in 𝐶1, with some possible
exceptions, are in 𝐶2’ or ‘typical objects of 𝐶1 are in 𝐶2’, (2) relation |∼𝑋 interpreted as ‘all the objects
𝐶1 have all the features shared by 𝐶2, with some possible exceptions’ or ‘all the objects of 𝐶1 have
typical features of 𝐶2’, and (3) relation |∼𝐴𝑋 interpreted as ‘all the objects 𝐶1, with some possible
exceptions, have all the features of 𝐶2 with some possible exceptions’ or ‘all the typical objects of 𝐶1

have all the typical features of 𝐶2’. For example, let 𝐶1 and 𝐶2 represent the concepts of ‘mammals’
and ‘viviparous animals’, respectively. Since mammals are typically viviparous, we have 𝐶1 |∼𝐴 𝐶2.
However, if we introduce 𝐶3, representing the concept of ‘echidnas’, which are a kind of oviparous
mammal, we find that 𝐶3 ⊢ 𝐶1 (i.e., all echidnas are mammals), hence 𝐶3 |∼𝐴 𝐶1, but 𝐶3 ̸ |∼𝐴 𝐶2 (i.e.,
typically, echidnas are not viviparous).

In the present paper, we propose to extend the framework of Kraus, Lehmann, and Magidor (commonly
referred to as the KLM framework) [6] to formalize defeasible entailment between concepts.

Since FCA does not have a natural notion of negation on concepts, the KLM framework cannot be
directly applied to the FCA environment. Nonetheless, it can be suitably extended to FCA. Specifically,
we define the FCA-counterparts of classical non-monotonic entailment relations such as the cumulative
entailment C, and the cumulative entailment with loop CL. These counterparts are the three defeasible
entailment relations |∼𝐴, |∼𝑋 , and |∼𝐴𝑋 mentioned above. We do not include the preferential entail-
ment system P, as the counterpart of the rule OR in classical defeasible reasoning depends on the fact
that the semantic counterpart of classical disjunction is the set-theoretic union, while in FCA disjunction
is interpreted as the closure of the union. In fact, unlike what is the case in the classical setting, the
FCA-counterpart of C is already complete w.r.t. the class of FCA preferential models (cf. Theorems
1, 2, 2). Moreover, as the language of FCA does not have a natural notion of negation for concepts,
FCA-counterparts of axioms such as rational monotonicity are not available. It would be interesting for
future research to explore whether some FCA counterparts of such rules can be defined.

Open directions on the front of semantic investigations concern the definition of the FCA-counterparts
of cumulative models, cumulative ordered models, preferential models, and preferential ordered models
and the proof of completeness theorems for different reasoning systems w.r.t. these classes of models.
An interesting aspect of this research concerns exploring the similarities and differences between—as
well as the relationships among—the defeasible consequence relations |∼𝐴, |∼𝑋 , and |∼𝐴𝑋 .

2. KLM framework for reasoning on concepts

In [22], the first steps were taken for developing the KLM framework in the setting of FCA, by introducing
only the defeasible entailment relation |∼𝐴 on formal concepts. Here, we start by recalling this
framework and the results proved there.

To generalize the cumulative reasoning to the FCA setting, we modify the original framework [6]
as follows: In [6], the language of underlying logic is assumed to be closed under all the classical
connectives including negation and implication. However, lattice-based propositional logic does not
have negation and implication in its language. Thus, we replace the formula 𝜑→ 𝜓 in the rules and
axioms of C with the sequent 𝜑 ⊢ 𝜓, which encodes the entailment at a meta-logical level, rather
than at the object language level. For any formal context P = (𝐴,𝑋, 𝐼), a model based on P is a tuple
M = (P, 𝑉 ) s.t. 𝑉 : ℒ → P+ is a homomorphism from the term algebra ℒ of the propositional logic
of lattices into the concept lattice P+ associated with P. For any 𝜑 ∈ ℒ, we let [[𝜑]]M (resp. ([𝜑])M)
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denote the extension (resp. intension) of 𝑉 (𝜑) (dropping the subscripts when the context is clear), and
M |= 𝜑 ⊢ 𝜓 iff [[𝜑]]M ⊆ [[𝜓]]M iff ([𝜓])M ⊆ ([𝜑])M.

A lattice-based cumulative logic consists of an entailment relation, i.e. a set of ℒ-sequents 𝜑 ⊢ 𝜓
closed under all axioms and rules of lattice-based propositional logic, and a cumulative entailment
relation, i.e. a set of ℒ-sequents 𝜑 |∼𝐴 𝜓 closed under the Reflexivity axiom 𝜑 |∼𝐴 𝜑 and the rules

Left Logical Equivalence (LLE)
𝜑⊢𝜓 𝜓⊢𝜑 𝜑 |∼𝐴𝜒

𝜓 |∼𝐴𝜒
𝜑⊢𝜓 𝜒 |∼𝐴𝜑

𝜒 |∼𝐴𝜓
Right Weakening (RW)

Cautious Monotonicity (CM)
𝜑 |∼𝐴𝜓 𝜑 |∼𝐴𝜒

𝜑∧𝜓 |∼𝐴𝜒
𝜑∧𝜓 |∼𝐴𝜒 𝜑 |∼𝐴𝜓

𝜑 |∼𝐴𝜒
(Cut).

From (LLE) and (RW) it follows that logically equivalent formulas are |∼𝐴-entailed by the same formulas.
A cumulative entailment relation |∼𝐴 is loop-cumulative if it satisfies the following rule.

𝜑0 |∼𝐴𝜑1 𝜑1 |∼𝐴𝜑2 ... 𝜑𝑛−1 |∼𝐴𝜑𝑛 𝜑𝑛 |∼𝐴𝜑0
𝜑0 |∼𝐴𝜑𝑛

(Loop)

Let us define the FCA-counterparts of the models of defeasible reasoning by suitably adapting the
approach used in [23] to define KLM-style modal logics.

A pointed model is a tuple M𝑎 = (P, 𝑉, 𝑎), where M is a model, and 𝑎 ∈ 𝐴. Let ℳ = (𝑆, 𝑙,≺) be a
tuple s.t. 𝑆 is a non-empty set (of states), 𝑙 : 𝑆 → 𝒫(𝒰) maps each state to a set of pointed models, and
≺ is a binary relation on 𝑆. For any 𝜑 ∈ ℒ and 𝑠 ∈ 𝑆, 𝑠 |= 𝜑 iff 𝑎 ∈ [[𝜑]]M for all M𝑎 ∈ 𝑙(𝑠). ℳ is a
cumulative model if, for any 𝜑 ∈ ℒ, the set ̂︀𝜑 := {𝑠 | 𝑠 ∈ 𝑆, 𝑠 |= 𝜑} is smooth (i.e. for any 𝑡 ∈ ̂︀𝜑, either 𝑡
is ≺-minimal in ̂︀𝜑, or 𝑠 ≺ 𝑡 for some ≺-minimal element 𝑠 ∈ ̂︀𝜑). A cumulative model ℳ = (𝑆, 𝑙,≺)
is strong if ≺ is asymmetric (i.e. 𝑠 ≺ 𝑡 implies 𝑡 ̸≺ 𝑠 for all 𝑠, 𝑡 ∈ 𝑆) and ̂︀𝜑 has a minimum for every
𝜑 ∈ ℒ; is ordered if ≺ is a strict partial order; is preferential if 𝑙 assigns a single pointed model to each
state. Any cumulative model ℳ defines a cumulative entailment |∼ℳ by: 𝜑1 |∼ℳ 𝜑2 iff for any 𝑠, if 𝑠
is minimal in ̂︁𝜑1, then 𝑠 ∈ ̂︁𝜑2.

It is easy to check that |∼ℳ is a cumulative entailment relation. Reflexivity follows from min(̂︀𝜑) ⊆ ̂︀𝜑.
(LLE) holds since ̂︀𝜑 = ̂︀𝜓 implies min(̂︀𝜑) = min( ̂︀𝜓). (RW) holds since min(̂︀𝜒) ⊆ 𝜑 and ̂︀𝜑 ⊆ ̂︀𝜓 imply
that min(̂︀𝜒) ⊆ 𝜓. As to (CM), if min(̂︀𝜑) ⊆ ̂︀𝜓, min(̂︀𝜑) ⊆ ̂︀𝜒, and 𝑠 ∈ min(ˆ︂𝜑 ∧ 𝜓), then, if 𝑠 /∈ min(̂︀𝜑),
by smoothness, 𝑠′ ≺ 𝑠 for some 𝑠′ ∈ min(̂︀𝜑). Hence, as min(̂︀𝜑) ⊆ ̂︀𝜓, 𝑠′ ∈ ˆ︂𝜑 ∧ 𝜓, contradicting the
minimality of 𝑠. The soundness of (Cut) is shown similarly.

Theorem 1. (cf. [22]) A consequence relation is cumulative (resp. loop-cumulative) iff it coincides with
|∼ℳ for some strong (resp. ordered) cumulative model ℳ, iff it coincides with |∼ℳ for some preferential
(resp. preferential ordered) cumulative model ℳ.

The defeasible entailment |∼𝑋 can be characterized by dualizing the rules for |∼𝐴, using the well
known fact that the order on concepts is defined by reverse inclusion on their intensions.

A lattice-based dually cumulative logic consists of the entailment relation ⊢ of a lattice-based proposi-
tional logic, and a dually cumulative entailment relation, i.e. a set of ℒ-sequents 𝜑 |∼𝑋 𝜓 closed under
the Reflexivity axiom 𝜑 |∼𝑋 𝜑 and the rules

Right Logical Equivalence (RLE)
𝜑⊢𝜓 𝜓⊢𝜑 𝜒 |∼𝑋𝜑

𝜒 |∼𝑋𝜓
𝜑⊢𝜓 𝜓 |∼𝑋𝜒

𝜑 |∼𝑋𝜒
Left Weakening (LW)

Dual Cautious Monotonicity (DCM)
𝜓 |∼𝑋𝜑 𝜒 |∼𝑋𝜑

𝜒 |∼𝑋𝜑∨𝜓
𝜒 |∼𝑋𝜑∨𝜓 𝜓 |∼𝑋𝜑

𝜒 |∼𝑋𝜑
Dual Cut (DCut).

The rules above are obtained from the rules for |∼𝐴 by switching the order of the consequence relation
and interchanging ∨ and ∧. This corresponds to the idea that the lattice of set of concept intensions
under set inclusion forms a complete lattice dual to the concept lattice. From (RLE) and (LW) it follows
that logically equivalent formulas |∼𝑋 -entail the same formulas.

Note that the rule loop is invariant under dualizing. A dually cumulative entailment relation is
loop-cumulative if it satisfies the rule Loop.

𝜑0 |∼𝑋𝜑1 𝜑1 |∼𝑋𝜑2 ... 𝜑𝑛−1 |∼𝑋𝜑𝑛 𝜑𝑛 |∼𝑋𝜑0
𝜑0 |∼𝑋𝜑𝑛

(Loop)

We can define models for the various types of dually cumulative relations (i.e. dually cumulative
models and their strong, ordered, and preferential subclasses) by replacing pointed models with dually
pointed models, i.e. tuples M𝑥 := (M, 𝑥) s.t. M is a model and 𝑥 ∈ 𝑋 . All other parts of the definitions
remain unchanged, including the dually cumulative entailment |∼ℳ associated with a dual cumulative
model ℳ. We can show soundness of all the above rules w.r.t. these models in a manner analogous
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to soundness proof of |∼𝐴 rules. The proof of the following completeness theorem is similar to the
previous one.

Theorem 2. A consequence relation is dually cumulative (resp. dually loop-cumulative) iff it coincides
with |∼ℳ for some strong (resp. ordered) dually cumulative model ℳ, iff it coincides with |∼ℳ for some
preferential (resp. preferential ordered) dually cumulative model ℳ.

A lattice-based bi-cumulative logic consists of an entailment relation ⊢ for lattice-based propositional
logic, a cumulative entailment relation |∼𝐴 and a dually cumulative entailment relation |∼𝑋 . Such a
logic is loop-cumulative when both |∼𝐴 and |∼𝑋 are. Semantic models for these logics can be defined as
tuples ℳ𝐴𝑋 = (ℳ𝐴,ℳ𝑋), s.t. ℳ𝐴 is a cumulative model and ℳ𝐴 is a dually cumulative model; the
corresponding (strong, ordered, and preferential) subclasses are defined by imposing the corresponding
conditions on ℳ𝐴 and ℳ𝑋 , and the bi-cumulative logic associated with ℳ𝐴𝑋 is specified by |∼ℳ𝐴

and |∼ℳ𝑋
.1 The following is a straightforward corollary of the previous completeness results.

Theorem 3. A pair of entailment relations defines a (loop-cumulative) bi-cumulative logic iff it arises
from some (ordered) strong bi-cumulative model, iff it arises from some preferential (resp. preferential
ordered) bi-cumulative model.

Finally, we consider expanded bi-cumulative logics as bi-cumulative logics endowed with a third type
|∼𝐴𝑋 of defeasible entailment, closed under the following rules except (Loop); when satisfying also
(Loop), such a logic is loop-cumulative.

(LLE)
𝜑⊢𝜓 𝜓⊢𝜑 𝜑 |∼𝐴𝑋𝜒

𝜓 |∼𝐴𝑋𝜒
𝜑⊢𝜓 𝜓⊢𝜑 𝜒 |∼𝐴𝑋𝜑

𝜒 |∼𝐴𝑋𝜓
(RLE)

𝐶𝑜𝑚𝑏𝐴
𝜑 |∼𝐴𝜓
𝜑 |∼𝐴𝑋𝜓

𝜑 |∼𝑋𝜓
𝜑 |∼𝐴𝑋𝜓

𝐶𝑜𝑚𝑏𝑋

(CM𝐴)
𝜑 |∼𝐴𝜓 𝜑 |∼𝐴𝑋𝜒

𝜑∧𝜓 |∼𝐴𝑋𝜒
𝜓 |∼𝑋𝜑 𝜒 |∼𝐴𝑋𝜑

𝜒 |∼𝐴𝑋𝜑∨𝜓 (CM𝑋 )

(Cut𝐴)
𝜑∧𝜓 |∼𝐴𝑋𝜒 𝜑 |∼𝐴𝜓

𝜑 |∼𝐴𝑋𝜒
𝜒 |∼𝐴𝑋𝜓∨𝜑 𝜓 |∼𝑋𝜑

𝜒 |∼𝐴𝑋𝜑
(Cut𝑋 )

(Loop)
𝜑0 |∼𝐴𝑋𝜑1 𝜑1 |∼𝐴𝑋𝜑2 ... 𝜑𝑛−1 |∼𝐴𝑋𝜑𝑛 𝜑𝑛 |∼𝐴𝑋𝜑0

𝜑0 |∼𝐴𝑋𝜑𝑛

The intuition behind these rules can be explained in the following manner.

• (LLE) and (RLE): These rules simply say that |∼𝐴𝑋 respects logical equivalence. Note that
|∼𝐴𝑋 is not assumed to be monotonic in either argument. This is consistent with the intended
interpretation of 𝐶1 |∼𝐴𝑋 𝐶2 as ‘typical objects of 𝐶1 have typical features of 𝐶2’. As typicality,
which is a non-monotonic operator, is applied both to 𝐶1 and 𝐶2, it is natural to allow |∼𝐴𝑋 to
be non-monotonic in both arguments.

• Comb𝐴 and Comb𝑋 : These rules are sound under the intended interpretations of |∼𝐴, |∼𝑋 ,
and |∼𝐴𝑋 .

• CM𝐴 and CM𝑋 : These rules state that the condition 𝜑 |∼𝐴 𝜓 (resp. 𝜓 |∼𝑋 𝜑) is enough to
ensure the monotonicity of |∼𝐴𝑋 in the second (resp. first) argument.

• CutA andCutX: We can perform a cut on the formula which is the second (resp. first) argument
in a sequent containing |∼𝐴𝑋 using a sequent containing |∼𝐴 and |∼𝐴𝑋 .

• Loop: The loop rule behaves analogously to the loop rule for |∼𝐴 or |∼𝑋 .

We believe that a further justification for these rules will be given by the completeness theorem for the
expanded FCA bi-cumulative logic and FCA bi-cumulative ordered logic w.r.t. natural models for such
systems conjectured below.
An entailment relation |∼ℳ𝐴𝑋

can be associated with any bi-cumulative model ℳ as follows: for
any 𝜑1, 𝜑2, 𝜑1 |∼ℳ𝐴𝑋

𝜑2 iff 𝑎𝐼𝑥 for any 𝑠1 ∈ 𝑆𝐴 and 𝑠2 ∈ 𝑆𝑋 , and all pointed models M𝑎 ∈ 𝑙(𝑠1),
M𝑥 ∈ 𝑙(𝑠2) based on the same formal context P = (𝐴,𝑋, 𝐼) and valuation 𝑉 on it. This corresponds to
the idea that a typical object of 𝜑1 should have a typical feature of 𝜑2 when described in same (formal)
context. We finish with the following conjecture.
1Note that we do not assume any relationship between the partial orders on ℳ𝐴 and ℳ𝑋 . However, in many applications
these two orders have some relationship which needs to be formalized. Studying logics with such relationships would be an
interesting future direction for this project.
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Conjecture 1. A triple of of entailment relations defines an expanded (loop-cumulative) bi-cumulative
logic iff there exists a (ordered) strong bi-cumulative model ℳ, iff there exists some preferential (resp. pref-
erential ordered) bi-cumulative model ℳ, such that |∼𝐴= |∼ℳ𝐴

, |∼𝑋= |∼ℳ𝑋
, and |∼𝐴𝑋= |∼ℳ𝐴𝑋

.

3. Conclusion and future directions

In this work, we take first steps in defining a KLM style framework for defeasible reasoning on concepts.
This opens several directions for future research and applications:

Formally modelling scenarios involving defeasible concept inclusions: Several real-life sce-
narios involving reasoning about concepts include defeasible reasoning. Our framework can be used to
formally model these scenarios. A toy example (consisting only of |∼𝐴) is discussed in [22].

Reasoning from defeasible knowledge bases: As discussed in the introduction, one of the primary
aim of this work is to develop a framework for reasoning from knowledge given in the form of conceptual
inclusions. In this direction, it would be interesting to study the complexity of various reasoning systems
described in the present paper. In the classical setting, it is known that the complexity of defeasible
reasoning is same as the complexity of the underlying logic [24]. As reasoning about conceptual
inclusions is known to be polynomial-time, showing a similar result in the FCA-setting would show
that reasoning in these logics is computationally efficient.

Belief revision for conceptual knowledge: In several applications, we are interested in scenarios
where the reasoner may need to incorporate new possibly inconsistent knowledge with existing beliefs
of the agents. In the classical setting, non-monotonic logics have been used to define belief revision
operators [25]. It would be interesting to define and study revision operators in the setting of FCA
using the non-monotonic reasoning systems introduced in the present paper.
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Conjunctive Concept Algebras
Named Perspective
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Abstract
Concept lattices of relational structures establish a database-theoretic variant of Formal Concept Analysis (FCA).
As shown in recent work, these concept lattices naturally extend to concept algebras, by means of a semigroup
action. Extensionally, these concept algebras form subalgebras of (a variant of) SPJR table algebras (the conjunctive
query fragment of Codd’s relational algebra). By that means, an axiomatic characterization of the concept ∧-
subalgebras (up to isomorphism, u.t.i.) has been obtained. However, the axioms are difficult to memorize, and in
some respects, the semigroup action proved cumbersome to work with. In this paper, we reformulate the axioms,
using the signature of Tarski’s cylindric algebras (an algebraization of first-order predicate logic). The axioms
compare surprisingly well to the cylindric algebra axioms, and the concept ∧-subalgebras correspond to cylindric
set algebras. We also obtain an axiomatic characterization of the concept

⋀︀
-subalgebras (u.t.i.).

Keywords
Concept Algebras, Cylindric Algebra, Conjunctive Queries, Database Theory, Algebraic Logic

1. Motivation

Formal Concept Analysis (FCA) [1] is a mathematical theory of concepts. The central notion in FCA is
the concept lattice, a complete lattice which describes a hierarchy of concepts. As the Basic Theorem of
FCA states [1, p. 20], every complete lattice can be represented as a concept lattice. So in this sense,
FCA is the theory of complete lattices, from a different perspective.

In the first publication on FCA [2], Rudolf Wille explains what this different perspective was meant
to achieve. He was inspired by von Hentig [3], who warned that, as an effect of growing specialization,
sciences were becoming disconnected from their surroundings and original motivations, and needed to
be restructured to re-enable such connections. Wille writes:

“Restructuring lattice theory is an attempt to reinvigorate connections with our general
culture by interpreting the theory as concretely as possible, and in this way to promote
better communication between lattice theorists and potential users of lattice theory.” [2,
emphasis added]

“For this purpose we go back to the origin of the lattice concept in nineteenth-century
attempts to formalize logic, where the study of hierarchies of concepts played a central
rôle [...].” [2]

More than a decade later, when FCA was already established and had been successfully applied, Wille
announced a second project [4], called restructuring mathematical logic.

“The connections of logic to reality have been narrowed since Frege’s turn to predicate logic,
the leading paradigm of mathematical logic today. Thus, restructuring has to establish a
broader understanding of mathematical logic, in particular, by elaborating the pragmatic
dimension.

For activating real communication and argumentation, it seems to be most important to
build enough bridges from the logic-mathematical theory to reality. One way to do this is
to revitalize the traditional paradigm of logic given by ’the three essential main functions
of thinking - concepts, judgments and conclusions’ ([5, p. 6]).” [4, in-text citation adapted]

FCA4AI (Twelfth Edition), co-located with ECAI 2024, October 19, 2024, Santiago de Compostela, Spain
© 2024 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
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A formalization of concepts had already been achieved by FCA. In a follow-up paper [6], Wille
observed that another well-known theory of concepts, Conceptual Graphs [7] by John Sowa, already
offered a formalization of judgments and conclusions. More concretely, Wille points to a mathema-
tization of conceptual graphs by Chein and Mugnier [8]. We gather that S-graphs (with “S for Sowa,
for simple, [...]” [8]), which formalize the most basic type of conceptual graph, represent judgments,
and that conclusions can be characterized by graph homomorphism [8, Thm. 1]. The question was
then how the two theories can be unified, and Wille proceeds with a proposal. First, he introduces
abstract concept graphs as slightly modified S-graphs. Then he introduces power context families, which
represent relational data, and also support the usual notion of concepts for FCA. Finally, he introduces
concept graphs, which combine abstract concept graphs with concepts from a power context family,
thereby obtaining a formalization of judgments that builds on FCA concepts. A summary of concept
graphs is presented in [9, Sect. 6.5].

Wille’s inspirational paper [6] marked the beginning of a new era of FCA, where relations entered
the stage. Relational Concept Analysis (RCA) [10][11] provides a deeper integration of concepts with
relations, adapts to relational databases through conceptual scaling [1], supports different kinds of logical
quantifiers, and is being applied in practice. Baader et al. [12] combine FCA with Description Logics, a
more human-centered branch of logic (cf. Wille’s criticism w.r.t. predicate logic above). Kötters [13]
introduces a database-theoretic FCA variant; a detailed and refined presentation is given in [14, Sects.
3–5], and the paper at hand continues the theoretical developments.

Conjunctive queries [15, Ch. 4] are a natural and fundamental class of database queries. They were
introduced by Chandra and Merlin [16], and have their origin in mathematical logic. Unifying the logical
and database-theoretic viewpoints, we identify conjunctive queries with primitive-positive formulas (i.e.
first-order formulas built from atoms using {∃,∧}), evaluated in relational structures, where

resG(𝜙) := {𝑡 ∈ 𝐺𝑋 | G |= 𝜙[𝑡]} (1)

defines the result table of a formula 𝜙 (with set 𝑋 := free(𝜙) of free variables) in a relational structure
G (with universe 𝐺).1 A relational database is a finite relational structure [16, p. 77]. For any relational
database G, the result operation resG is part of a Galois connection, which means that we obtain a
concept lattice B(G). This establishes a fundamental connection between FCA and database theory.

Tableau queries [15, p. 43] are structural representations of conjunctive queries. Accordingly, we
represent a formula 𝜙 with 𝑋 := free(𝜙) by a pair (N, 𝜈), consisting of a relational structure N and a
window 𝜈 : 𝑋 → 𝑁 , elsewhere called the summary [15, p. 43], and obtain the result table as a set

resG(N, 𝜈) = {𝑓 ∘ 𝜈 | 𝑓 : N → G} (2)

of homomorphisms as "seen through the window". From a graph-theoretical perspective, a relational
structure is a graph [19]. Likewise, a tableau query can be considered a graph (cf. [14, Sect. 3.1] for our
drawing conventions). Under this perspective, (N, 𝜈) is a query graph, and resG(N, 𝜈) contains the
pattern matches in the data graph G. Tableau queries offer a natural way to express infinite conjunctive
queries, and indeed, we have not required that (N, 𝜈) must be finite. In order to maintain the logical
perspective, a graph logic [14, Sect. 3.4] can be formulated. Homomorphisms 𝑓 : (N1, 𝜈1) → (N2, 𝜈2)
of tableau queries are defined in the obvious way, and correspond to logical implication in the graph
logic.

The following reasons suggest that the database-theoretic FCA variant matches Wille’s intention
with the restructuring project:

• Wille indicates [6, pp. 291f.,300] that suitable notions of judgments and conclusions are offered
by S-graphs and their homomorphisms. Since S-graphs represent primitive-positive formulas [8,

1Details of the unification: Note that queries can be represented in prenex normal form [17, Sect. 8.4]; constants are not allowed,
but unary relations can play the role of constants [17, Sect. 8.1]; equality is allowed, e.g. the query 𝑥=𝑥 requests a list of all
objects in the database, even though such a query is not natively supported in Codd’s data model [18]; equality does not
enhance expressivity greatly, because in many instances, equality can be eliminated by substitution [15, p. 47f.] or would be
expressed by variable repetition in a conjunctive calculus query [15, p. 45].
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Sect. 9.1], we might as well consider tableau queries and their homomorphisms; the difference
being that S-graphs represent closed formulas (i.e. sentences), whereas tableau queries may, and
generally do, represent open formulas (having one or more free variables). By allowing free
variables, we obtain concept extensions (cf. eq. (1)).2

• Conceptual graphs were initially motivated as a human-centered query language for relational
databases [20].3

• The widespread use of relational databases suggests practical relevance and good availability of
data.

• The result operation corresponds to the activity of querying a database, which suggests a pragmatic
dimension.

• The implementation of the classical flight example [21] is not based on concept graphs, but on
abstract concept graphs, interpreted as conjunctive queries.

We provide some logical background in Sect. 2, and give a short account of cylindric algebra in Sect. 3.
In Sect. 4 we summarize recent results on table algebras [22][23], and also extend a result in Sect.4.4. In
Sect. 5, we introduce conjunctive concept algebras and present our main results (Props. 10 and 11).

2. Preliminaries

We assume it is generally known what is meant by a first-order formula, and what it means that a first-
order formula 𝜙 holds in a structure A under a variable assignment 𝛼, written A |= 𝜙[𝛼] or (A, 𝛼) |= 𝜙,
cf. [17]. A signature is generally a set 𝑀 of function symbols, constants, and relation symbols. The
set of first-order formulas over the signature 𝑀 is denoted by FO(𝑀). If 𝑀 contains only relation
symbols, it is called a relational signature, and a structure A over 𝑀 is called a relational structure.
Because of our take on database theory, we always assume that 𝑀 is a relational signature; this does
not limit expressivity in general [17, Sect. 8.1]. Each symbol 𝑚 ∈𝑀 has an arity |𝑚| ≥ 1. For technical
convenience, we identify the countably infinite set of variables with the ordinal 𝜔 = {0, 1, 2, . . . }. An
atomic formula in FO(𝑀) is either a relational atom 𝑅𝑥1 . . . 𝑥𝑛, an equality atom 𝑥=𝑦, or one of the
special atoms true (the tautology) or false (the contradiction), for arbitrary 𝑥1, . . . , 𝑥𝑛, 𝑥, 𝑦 ∈ 𝜔.

Logical implication between formulas 𝜙,𝜓 ∈ FO(𝑀) in the standard semantics is introduced as
in [17]. We say that 𝜙 logically implies 𝜓, and denote this by 𝜙 |= 𝜓, if (G, 𝛼) |= 𝜙 implies (G, 𝛼) |= 𝜓
for all structures G of signature 𝑀 and all variable assignments 𝛼 ∈ 𝐺𝜔 . From (5) we obtain that
𝜙 |= 𝜓 holds if and only if 𝜙G ⊆ 𝜓G for all structures G (of signature 𝑀 ), i.e. logical implication is
conveniently expressed via the solution sets. Accordingly, 𝜙 and 𝜓 are logically equivalent, denoted by
𝜙 |=|=𝜓, if 𝜙𝐺 = 𝜓𝐺 for all G.

Then clearly, in the table semantics, 𝜙 and 𝜓 should be logically equivalent if resG(𝜙) = resG(𝜓) for
all G. The formulas 𝑥=𝑥 and 𝑦=𝑦 are then not equivalent, because the result tables have schemas {𝑥}
and {𝑦}, respectively, at least for nonempty G and different 𝑥, 𝑦. So while the special atom true is a
tautology, the equality atoms 𝑥=𝑥 and 𝑦=𝑦 are not. A logic with undefined variables provides a formal
underpinning: the modified result operation

res*G(𝜙) := {𝑡 ∈ Tup(𝐺) | (G, 𝑡) |= 𝜙} (3)

uses the finite tuples in Tup(𝐺) :=
⋃︀{𝐺𝑋 | 𝑋 ∈ 𝒫fin(𝜔)} as variable assignments, and if an

assignment 𝑡 is not defined on all variables in free(𝜙), then (G, 𝑡) ̸|= 𝜙. We refer to this as the tuple set

2Beyond the formal analogy, the distinction between concepts and judgments in the conjunctive query approach needs to be
clarified.

3Interestingly, Sowa’s article predates Chandra and Merlin’s [16] by a year.
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semantics. The function

ℎ :

{︃
Tab(𝐺) → 𝒫fin(Tup(𝐺))

𝑇 ↦→ {𝑡 ∈ Tup(𝐺) | 𝑡|schema(𝑇 ) ∈ 𝑇}
(4)

satisfies res*G = ℎ ∘ resG, so it relates table semantics and tuple set semantics. It forms an embedding
ℎ : (Tab(𝐺),⋊⋉) → (𝒫fin(Tup(𝐺)),∩) of meet-semilattices, i.e. an injective homomorphism; and as
such, it also forms an order embedding ℎ : (Tab(𝐺),≤) → (𝒫fin(Tup(𝐺)),⊆); thereby providing a
set interpretation of the tables and their order, see also [14, Sect. 3.5][24]. In particular, 𝜙 ≲ 𝜓 :⇔ ∀G :
resG(𝜙) ≤ resG(𝜓) ⇔ ∀G : res*G(𝜙) ⊆ res*G(𝜓) denotes logical implication in both the table semantics
and the tuple set semantics. So both semantics are equivalent; we can use either of them, depending
on the purpose. Finally, we write 𝜙 ≃ 𝜓 if and only if 𝜙 ≲ 𝜓 and 𝜓 ≲ 𝜙, which coincides with our
initially postulated notion of equivalence.

The following proposition relates table semantics with standard semantics.

Proposition 1. Let 𝜙,𝜓 ∈ PP(𝑀). Then 𝜙 ≲ 𝜓 if and only if 𝜙 |= 𝜓 and free(𝜓) ⊆ free(𝜙).

Proof. The case 𝜙 = false is trivial. Now let 𝜙 ̸= false and 𝜓 = false. Because 𝜙 is primitive-positive
(and not the contradiction), it is satisfiable (cf. [17, Ex. 3.4]), i.e. there exists G such that 𝜙G ̸⊆ ∅ = 𝜓G,
so 𝜙 ̸|= 𝜓; and likewise, we obtain 𝜙 ̸≲ 𝜓. The case 𝜙,𝜓 ̸= false is covered in [14, Prop. 3].

3. Cylindric Algebra

The two most fundamental disciplines of logic, as of today, are propositional logic and predicate logic; and
by predicate logic, we usually mean first-order logic. Boolean algebras are well-known algebraizations of
propositional logic. Likewise, cylindric algebras by Alfred Tarski are algebraizations of first-order logic.
The classical monographs on cylindric algebras are the works of Henkin, Monk and Tarski [25][26],
and for an introduction, we refer to the papers of Németi [27] and Monk [28]. We first present cylindric
set algebras (Sect. 3.1), then turn to cylindric algebras in general (Sect. 3.2).

3.1. Cylindric Set Algebras

Every relational structure G with signature 𝑀 induces a solution operation (·)G : FO(𝑀) → 𝒫(𝐺𝜔)
that maps each first-order formula 𝜙 to its solution set

𝜙G := {𝛼 ∈ 𝐺𝜔 | (G, 𝛼) |= 𝜙} . (5)

The algebra FO(𝑀) = (FO(𝑀),∨,∧,¬, false, true,∃𝑥, 𝑥=𝑦)𝑥,𝑦∈𝜔 interprets ∨, ∧, ¬ and ∃𝑥 (for
all 𝑥 ∈ 𝜔) as syntactic operations, e.g. ∨(𝜙,𝜓) := (𝜙 ∨ 𝜓) and ∃𝑥(𝜙) := (∃𝑥𝜙). Moreover, it contains
false, true, and all equality atoms 𝑥=𝑦 as distinguished elements. The solution operation forms a
homomorphism (·)G : (FO(𝑀),∨,∧,¬, false, true) → (𝒫(𝐺𝜔),∪,∩, (·)∁, ∅, 𝐺𝜔). In this sense, the
logical operations are represented by set operations. Likewise, existential quantification over 𝑥 is
represented by the cylindrification 𝐶𝑥 : 𝒫(𝐺) → 𝒫(𝐺), defined by

𝐶𝑥(𝐴) := {𝛼 ∈ 𝐺𝜔 | ∃𝑔 ∈ 𝐺 : 𝛼 𝑔𝑥 ∈ 𝐴} , (6)

where 𝛼 𝑔𝑥 ∈ 𝐺𝜔 is the modification of 𝛼 that satisfies 𝛼 𝑔𝑥(𝑥) = 𝑔 and 𝛼 𝑔𝑥(𝑦) = 𝛼(𝑦) for all 𝑦 ∈ 𝜔 ∖ {𝑥}.
Finally, the equality atoms 𝑥=𝑦 are represented by the diagonals

𝐷𝑥𝑦 := {𝛼 ∈ 𝐺𝜔 | 𝛼(𝑥) = 𝛼(𝑦)} . (7)

This motivates Cs(𝐺) := (𝒫(𝐺𝜔),∪,∩, (·)∁, ∅, 𝐺𝜔, 𝐶𝑥, 𝐷𝑥𝑦)𝑥,𝑦∈𝜔 as a set-theoretic counterpart of
FO(𝑀); but note that in principle, 𝐺 and 𝑀 are independent. In summary, the relational structure G
induces the solution homomorphism (·)G : FO(𝑀) → Cs(𝐺).

The homomorphic image Cs(G) := [FO(𝑀)]G is the subalgebra of Cs(𝐺) that consists of the
solution sets. More generally, a subalgebra of Cs(𝐺) is called a cylindric set algebra with base 𝐺 and
dimension 𝜔. We now pose two questions, and state the answers below, as found in Monk [28]:
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a) How are the solution set algebras Cs(G) characterized from among all cylindric set algebras of
dimension 𝜔?

b) Is there an axiomatic characterization for the cylindric set algebras of dimension 𝜔?

a) The algebras Cs(G) are precisely the locally finite-dimensional and regular cylindric set algebras
of dimension 𝜔 (cf. [28, Thm. 12.2]), b) The cylindric set algebras of dimension 𝜔 are not first-order
axiomatizable (cf. [28, p. 279]).

3.2. Cylindric Algebras

Because of negative results with regard to first-order axiomatization of cylindric set algebras and other
concrete notions, cylindric algebra were introduced. They are defined by a finite schema of equations,
to provide for a good theory, and are meant to circumscribe the interesting classes of concrete algebras
sufficiently well. In that sense, the notion of cylindric algebra is arbitrary, cf. [27, Sect. 4].

Definition 2. A cylindric algebra is an algebra (𝑉,∨,∧,¬, 0, 1, 𝑐𝑥, 𝑑𝑥𝑦)𝑥,𝑦∈𝜔 consisting of a binary
supremum ∨, a binary infimum ∧, a unary complement ¬, a zero element 0, a one element 1, a unary
cylindrification 𝑐𝑥 for each 𝑥 ∈ 𝜔, and a diagonal element 𝑑𝑥𝑦 for each (𝑥, 𝑦) ∈ 𝜔 × 𝜔, which satisfies

(CA0) (𝑉,∨,∧,¬, 0, 1) is a Boolean algebra

(CA1) 𝑐𝑥(0) = 0

(CA2) 𝑢 ≤ 𝑐𝑥(𝑢)

(CA3) 𝑐𝑥(𝑢 ∧ 𝑐𝑥(𝑣)) = 𝑐𝑥(𝑢) ∧ 𝑐𝑥(𝑣)

(CA4) 𝑐𝑥(𝑐𝑦(𝑢)) = 𝑐𝑦(𝑐𝑥(𝑢))

(CA5) 𝑑𝑥𝑥 = 1

(CA6) 𝑥 ̸= 𝑦, 𝑧 ⇒ 𝑑𝑦𝑧 = 𝑐𝑥(𝑑𝑦𝑥 ∧ 𝑑𝑥𝑧)
(CA7) 𝑥 ̸= 𝑦 ⇒ 𝑐𝑥(𝑑𝑥𝑦 ∧ 𝑢) ∧ 𝑐𝑥(𝑑𝑥𝑦 ∧ ¬𝑢) = 0

for all 𝑢, 𝑣 ∈ 𝑉 and all 𝑥, 𝑦, 𝑧 ∈ 𝜔.

4. Table Algebras

From an extensional point of view, concept lattices of relational structures are table algebras. In quest
for a Basic Theorem, this motivates the study of table algebras.

4.1. DPJR Algebras

The SPJR algebra [15, Sect. 4.4] allows to specify conjunctive queries using algebraic operations; these
are the table operations of selection, projection, (natural) join and renaming, indicated by the letters.
It is also called the named conjunctive algebra, because it operates on tables with named columns (as
opposed to tables with ordered columns). While Abiteboul et al. [15] refer to SPJR algebra as a query
language, it better suits our extensional viewpoint to think of it as an algebra of tables, with concrete
operations.

We define a table as a set 𝑇 ⊆ 𝐺𝑋 , where 𝑋 ⊆ 𝜔 is a finite set of column names (not column
numbers), an element 𝑡 ∈ 𝑇 is a row, 𝑡(𝑥) is the entry in row 𝑡 and column 𝑥, and 𝐺 is an arbitrary set.
Hence,

Tab(𝐺) =
⋃︁

{𝒫(𝐺𝑋) | 𝑋 ⊆ 𝜔 finite} (8)

contains all tables with entries in 𝐺. Note that while 𝑋 must be finite, a table can have an infinite
number of rows if 𝐺 is infinite. Naturally, the empty set ∅ represents the empty table. The schema of a
table 𝑇 ∈ Tab(𝐺) is uniquely defined by

schema(𝑇 ) :=

{︂
𝑋 if 𝑇 ∈ 𝐺𝑋 and 𝑇 ̸= ∅
𝜔 if 𝑇 = ∅ . (9)
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Note that 𝐺∅ has a single element ∅, called the empty tuple, and {∅} ∈ 𝒫(𝐺∅) is the unique table with
schema ∅.

For finite 𝑋 ⊆ 𝜔, the set Tab(𝐺)[𝑋] := 𝒫(𝐺𝑋) is the 𝑋-slice of Tab(𝐺). The natural join of tables
𝑆 ∈ Tab(𝐺)[𝑋] and 𝑇 ∈ Tab(𝐺)[𝑌 ] is a table 𝑇 ∈ Tab(𝐺)[𝑋 ∪ 𝑌 ], defined by

𝑆 ⋊⋉ 𝑇 := {𝑡 ∈ 𝐺𝑋∪𝑌 | 𝑡|𝑋 ∈ 𝑆 and 𝑡|𝑌 ∈ 𝑇} . (10)

Moreover, for all 𝑥, 𝑦 ∈ 𝜔, we define the diagonal

𝐸𝑥𝑦 := {𝑡 ∈ 𝐺{𝑥,𝑦} | 𝑡(𝑥) = 𝑡(𝑦)} . (11)

The natural join is associative and commutative [15, p. 58], and trivially idempotent, i.e. (Tab(𝐺),⋊⋉) is
a meet-semilattice, with the implied table order 𝑇1 ≤ 𝑇2 :⇔ 𝑇1 = 𝑇1 ⋊⋉ 𝑇2. The tables ∅ and {∅} are
the absorbing element and neutral element, respectively, w.r.t. to the join. This means that they are also
the smallest and greatest elements in the lattice order.

A finite partial transformation of 𝜔 is a partial function 𝜆 : 𝜔 ⇀ 𝜔, defined on a finite set def(𝜆) =
𝑋 ⊆ 𝜔, and we set rng(𝜆) = {𝜆(𝑥) | 𝑥 ∈ def(𝜆)}. We use 𝒯fp(𝜔) to denote the set of finite partial
transformations on 𝜔. The pair (𝒯fp, ∘) is a semigroup, with ∘ as composition of partial functions,
which naturally acts on the tables through the right multiplication

·
{︂

Tab(𝐺)× 𝒯fp(𝜔) → Tab(𝐺)
(𝑇, 𝜆) ↦→ 𝑇 · 𝜆 := {𝑡 ∘ 𝜆 | 𝑡 ∈ 𝑇} . (12)

The right multiplicaton encodes three different table operations: projection, renaming and column
duplication. For the partial identity 𝜋𝑋 : 𝜔 ⇀ 𝜔, which can be written {(𝑥, 𝑥) | 𝑥 ∈ 𝑋} as a relation,
𝑇 · 𝜋𝑋 is the projection of 𝑇 on the column set 𝑋 . Note that right multiplication is totally defined, so
generally schema(𝑇 · 𝜋𝑋) = schema(𝑇 ) ∩𝑋 . A partial bijection is an injective function 𝜉 : 𝜔 ⇀ 𝜔,
and it acts as a renaming on Tab(𝐺). Moreover, a folding is a partial function 𝛿 : 𝜔 ⇀ 𝜔 with 𝛿 ∘ 𝛿 = 𝛿,
and for each 𝑥 ∈ def(𝛿), the table 𝑇 · 𝛿 has a column 𝑥 which is a copy of 𝛿(𝑥); the column 𝛿(𝑥) is fixed
because of 𝛿 ∘ 𝛿 = 𝛿. This completely describes right multiplication, since every 𝜆 ∈ 𝒯fp(𝜔) acts as a
sequence of these operations [22, Lemma 1]; more concretely, there is a decomposition 𝜆 = 𝜋𝑋 ∘ 𝜉 ∘ 𝛿,
and furthermore 𝑇 · (𝜋𝑋 ∘ 𝜉 ∘ 𝛿) = ((𝑇 · 𝜋𝑋) · 𝜉) · 𝛿. For the above reason, we call

DPJR(𝐺) = (Tab(𝐺),⋊⋉, ∅, {∅}, ·, 𝐸𝑥𝑦, schema)𝑥,𝑦∈𝜔 (13)

the full DPJR algebra with base 𝐺. A DPJR algebra with base 𝐺 is a subalgebra of DPJR(𝐺). Before we
proceed, the relation with SPJR algebras shall be explained.

Abiteboul et al. [15, p. 57] refer to two kinds of selection, denoted by 𝜎𝐴=𝑎 and 𝜎𝐴=𝐵 , where 𝐴 and
𝐵 are column names, and 𝑎 denotes an object in the universe. The reference to 𝑎 reflects a database-
theoretic convention, whereby objects in the universe are exposed as constants. Note however, that in
our formalization of conjunctive queries, which unifies the database-theoretic and logical viewpoints
(cf. the footnote in Sect. 1), we strictly allow relation symbols only. So the corresponding variant of
SPJR algebra would only use the second kind of selection (i.e. 𝜎𝐴=𝐵 , which deletes all rows having
different entries in the 𝐴 and 𝐵 columns). It is a moderately easy exercise to show that DPJR algebra
(without diagonals) is equivalent to this variant of SPJR algebra. The diagonals are not part of SPJR
algebra; their inclusion in the DPJR algebra also caters to the unified viewpoint.

4.2. Conjunctive Table Algebras

We motivate conjunctive table algebras in the same way we have motivated cylindric set algebras
in Sect. 3.1. A first-order formula is primitive-positive if it is built from atoms using {∧,∃}. The set
of primitive-positive formulas over the relational signature 𝑀 is denoted by PP(𝑀). The algebra
PP(𝑀) := (PP(𝑀),∧, false, true,∃𝑥, 𝑥=𝑦, free)𝑥,𝑦∈𝜔 extends PP(𝑀) with the respective syntactic
operations and constants (cf. the algebra FO(𝑀) in Sect. 3.1), and it also includes the function
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free : PP(𝑀) → 𝒫(𝜔), which maps each formula to its set of free variables; for the special atoms, we
define free(true) = ∅ and free(false) = 𝜔.

Every relational structure G, with universe 𝐺 and signature 𝑀 , induces a result operation resG :
PP(𝑀) → Tab(𝐺) that maps each formula 𝜙 to its result table, given by

resG(𝜙) := {𝑡 ∈ 𝐺free(𝜙) | (G, 𝑡) |= 𝜙} . (14)

In particular, we have resG(false) = ∅ and resG(true) = {∅}. Note that each variable in free(𝜙)
corresponds to a column in the result table resG(𝜙).

Next, we identify the table operations which correspond to the logical operations. Existential
quantification is matched by column deletion; we define the deletion operation del𝑥 : Tab(𝐺) → Tab(𝐺)
by

del𝑥(𝑆) := {𝑡|𝑋∖{𝑥} | 𝑡 ∈ 𝑆} . (15)

Note that del𝑥(𝑆) = 𝑆 if 𝑥 ̸∈ 𝑋 . The other required operations have already been defined in Sect. 4.1.
As expected, we have

resG(𝜙 ∧ 𝜓) = resG(𝜙) ⋊⋉ resG(𝜓)

resG(false) = ∅
resG(true) = {∅}
resG(∃𝑥𝜙) = del𝑥(resG(𝜙))

resG(𝑥= 𝑦) = 𝐸𝑥𝑦 ,

and if resG(𝜙) ̸= ∅, then also schema(resG(𝜙)) = free(𝜙). This motivates to define Tab(𝐺) :=
(Tab(𝐺),⋊⋉, ∅, {∅},del𝑥, 𝐸𝑥𝑦, schema)𝑥,𝑦∈𝜔 as the full conjunctive table algebra with base 𝐺.

As indicated, in the case resG(𝜙) = ∅, the free variables of𝜙 can not be recovered from the result table,
and in this sense they are not preserved. Consequently, we do not consider resG : PP(𝑀) → Tab(𝐺)
to be a proper homomorphism, and refer to it as a zero-tolerant homomorphism, a slightly weaker kind
of homomorphism. But it does preserve all logical operations and constants, so the homomorphic image
Tab(G) := resG[PP(𝑀)] is a subalgebra of Tab(𝐺). This motivates our main definition.

Definition 3 (Conjunctive Table Algebra). A conjunctive table algebra with base 𝐺 is a subalgebra A of
Tab(𝐺).

The 𝑋-slice of A, for each 𝑋 ∈ 𝒫fin(𝜔), is the set A[𝑋] := {𝑇 ∈ 𝐴 | 𝑇 ∈ 𝐺𝑋}. For convenience,
we define A*[𝑋] := {𝑇 ∈ 𝐴 | schema(𝑇 ) = 𝑋} = A[𝑋] ∖ {∅}. Note that 𝑛 = {0, . . . , 𝑛 − 1}, so
A[𝑛] = A[{0, . . . , 𝑛− 1}] and A*[𝑛] = A[{0, . . . , 𝑛− 1}].

In Sect. 3.1, we have presented two questions (and their answers) on cylindric set algebras. We
formulate their counterparts in our database-theoretic setting:

a) How are the algebras Tab(G) characterized from among all conjunctive table algebras?

b) Is there an axiomatic characterization for the conjunctive table algebras?

Proposition 4. Conjunctive table algebras and DPJR algebras are equivalent:

i) Every conjunctive table algebra is closed under right multiplication.

ii) Every DPJR algebra is closed under deletions.

Proof. i) Let A be a conjunctive table algebra. We show 𝑇 · 𝜆 ∈ 𝐴 for all 𝑇 ∈ A[𝑌 ], 𝑌 ∈ 𝒫fin(𝜔), and
𝜆 ∈ 𝒯fp(𝜔). Since 𝑇 · 𝜆 = 𝑇 · 𝜆|𝜆−1(𝑌 ), we may assume w.l.o.g. that rng(𝜆) ⊆ 𝑌 , i.e. 𝜆 : 𝑋 → 𝑌 for
some 𝑋 ∈ 𝒫fin(𝜔). If 𝑋 ∩ 𝑌 = ∅, then 𝑇 · 𝜆 = del𝑌 (𝑇 ⋊⋉ 𝐸𝜆) ∈ A[𝑋]. Otherwise, let 𝜉 : 𝑌 → 𝑍 be a
bijection onto some 𝑍 ∈ 𝒫fin(𝜔) with 𝑍 ∩𝑋 = ∅ and 𝑍 ∩ 𝑌 = ∅. By reduction to the previous case,
we first obtain 𝑇 · 𝜉−1 ∈ A[𝑍], and then 𝑇 · 𝜆 = (𝑇 · 𝜉−1) · (𝜉 ∘ 𝜆) ∈ A[𝑋].

ii) Let A be a DPJR algebra. For all 𝑇 ∈ A[𝑋], 𝑋 ∈ 𝒫fin(𝜔) and 𝑥 ∈ 𝜔, we have del𝑥(𝑇 ) =
𝑇 · 𝜋𝑋∖{𝑥} ∈ A[𝑋 ∖ {𝑥}].
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Proposition 5. The conjunctive table algebras are precisely the result table algebras Tab(G) of relational
structures G.

Proof. By definition, every algebra Tab(G) is a conjunctive table algebra. Now let A be a conjunctive
table algebra with base 𝐺. Let 𝑀A =

⋃︀
𝑛≥1A

*[𝑛] be the relational signature which uses A*[𝑛] as its
set of 𝑛-ary relation symbols. Each 𝑇 ∈ A*[𝑛] is also a set of 𝑛-tuples, i.e. an 𝑛-ary relation. Let GA

be the relational structure with universe 𝐺 and signature 𝑀A, given by the map 𝐼 :𝑀A →𝑀A that
maps each 𝑇 ∈ A*[𝑛] (as a symbol) to 𝑇 ∈ A*[𝑛] (as a relation), i.e. 𝐼 = id𝑀A

. It remains to show
resGA

[PP(𝑀A)] = A.
"⊆:" By definition of GA, we have resGA

(𝑇 (0, . . . , 𝑛 − 1)) = 𝑇 ∈ 𝑀A ⊆ 𝐴 for all relational
atoms 𝑇 (0, . . . , 𝑛 − 1). Let 𝜎 : 𝑛 → 𝑋 be a substitution of variables, such that 𝑛 ∩ 𝑋 = ∅. Then
𝑇 (𝜎(0), . . . , 𝜎(𝑛 − 1)) is equivalent to 𝜙𝑇,𝜎 := ∃0 . . . ∃𝑛 − 1 : (𝑇 (0, . . . , 𝑛 − 1) ∧ 0=𝜎(0) ∧ · · · ∧
𝑛− 1=𝜎(𝑛− 1)). So resGA

(𝑇 (𝜎(0), . . . , 𝜎(𝑛− 1))) = resGA
(𝜙𝑇,𝜎) = del0 . . . del𝑛−1(𝑇 ⋊⋉ 𝐸0𝜎(0) ⋊⋉

· · · ⋊⋉ 𝐸𝑛−1,𝜎(𝑛−1)) ∈ 𝐴. Every relational atom 𝑇 (𝑥1, . . . , 𝑥𝑛) is obtained from 𝑇 (0, . . . , 𝑛− 1) by two
such substitutions, i.e. resGA

(𝑇 (𝑥1, . . . , 𝑥𝑛)) ∈ 𝐴 for all relational atoms. By induction, resGA
(𝜙) ∈ 𝐴

for all 𝜙 ∈ PP(𝑀).
"⊇:" Let 𝑇 ∈ A*[𝑋] for some 𝑋 ∈ 𝒫fin(𝜔) with cardinality 𝑛 := #𝑋 . We choose an arbitrary

bijection 𝜉 : 𝑛→ 𝑋 , and obtain 𝑇 · 𝜉 ∈ A*[𝑛] ⊆ resGA
[PP(𝑀A)]. By Prop. 4, the homomorphic image

is closed under right multiplication, so we also have 𝑇 = (𝑇 · 𝜉) · 𝜉−1 ∈ resGA
[PP(𝑀A)].

Proposition 5 provides a simple answer to our question a) above: The algebras Tab(G) are precisely
the conjunctive table algebras. The primary question is how the algebras Tab(G) can be axiomatized.
As we have seen now, the formal framework of cylindric set algebras fits the question perfectly (which
was not the case for cylindric set algebra, cf. question a) in Sect. 3.1). An answer to our question b) is
given in Sect. 4.3.

4.3. Projectional Semilattices

The main result of [23] is the axiomatic characterization of conjunctive table algebras by projective
semilattices. The given axiomatization is not a first-order axiomatization, but a comparison with
cylindric algebra axioms, given below, should convince the reader of their value.

Definition 6 ([23, Def. 2]). A projectional semilattice is an algebra
(𝑉,∧, 0, 1, 𝑐𝑥, 𝑑𝑥𝑦,dom)𝑥,𝑦∈𝜔 consisting of a binary infimum ∧, a zero element 0, a one element 1, a
unary cylindrification 𝑐𝑥 for each 𝑥 ∈ 𝜔, a diagonal element 𝑑𝑥𝑦 for each (𝑥, 𝑦) ∈ 𝜔 × 𝜔, and a domain
function dom : 𝑉 → 𝒫(𝜔), which satisfies

(PS0) (𝑉,∧, 0, 1) is a bounded semilattice

(PS1) 𝑐𝑥(0) = 0

(PS2) 𝑢 ≤ 𝑐𝑥(𝑢)

(PS3) 𝑐𝑥(𝑢 ∧ 𝑐𝑥(𝑣)) = 𝑐𝑥(𝑢) ∧ 𝑐𝑥(𝑣)
(PS4) 𝑐𝑥(𝑐𝑦(𝑢)) = 𝑐𝑦(𝑐𝑥(𝑢))

(PS5) 𝑢 ̸= 0 ⇒ (𝑢 ̸= 𝑐𝑥(𝑢) ⇔ 𝑢 ≤ 𝑑𝑥𝑥)

(PS6) 𝑥 ̸= 𝑦, 𝑧 ⇒ 𝑑𝑦𝑧 = 𝑐𝑥(𝑑𝑦𝑥 ∧ 𝑑𝑥𝑧)

(PS7) 𝑥 ̸= 𝑦 ⇒ 𝑑𝑥𝑦 ∧ 𝑐𝑥(𝑑𝑥𝑦 ∧ 𝑢) ≤ 𝑢

(PS8) 𝑢 ̸= 0 ⇒ dom(𝑢) finite

(PS9) dom(𝑢) = {𝑥 ∈ 𝜔 | 𝑢 ≤ 𝑑𝑥𝑥}

(PS10) dom(𝑢) = ∅ ⇒ 𝑢 = 1

(PS11) 𝑑𝑥𝑥 ̸= 0

(PS12) 𝑑𝑥𝑦 = 𝑑𝑦𝑥

for all 𝑢, 𝑣 ∈ 𝑉 and 𝑥, 𝑦, 𝑧 ∈ 𝜔.

Proposition 7 ([23, Thms. 1,3]). The conjunctive table algebras over non-empty universes are precisely
(up to isomorphism) the projectional semilattices.

The axioms (PS0), . . . , (PS7) correspond to the axioms (CA0),. . . ,(CA7) for cylindric algebras.
Axiom (CA0) asserts a Boolean algebra; since we do not consider disjunction and negation, axiom
(PS0) only asserts a bounded semilattice. The Axioms (CA1), (CA2), (CA3), (CA4) and (CA6)
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are identical to (PS1), (PS2), (PS3), (PS4) and (PS6), respectively. Cylindric algebra axiom (CA5)
states 𝑑𝑥𝑥 = 1, reflecting that 𝑥=𝑥 is a tautology; however, the table semantics in eq. (1) corresponds to
a logic with undefined variables, where 𝑥=𝑥 is not a tautology! We consider (PS5) to be a suitable
replacement: Under the definition axiom (PS9), axiom (CA5) asserts dom(𝑢) = 𝜔 for all 𝑢 ̸= 0;
whereas axiom (PS5) asserts dom(𝑢) = {𝑥 ∈ 𝜔 | 𝑐𝑥(𝑢) ̸= 𝑢} for all 𝑢 ̸= 0; the latter set is known as
the dimension set Δ(𝑢) in the terminology of cylindric algebras. Axiom (PS7) is the historical axiom
(CA7); the contemporary axiom (CA7) is equivalent but involves negation! Historically, there was
also an axiom (CA8), stating that Δ(𝑢) is finite for all 𝑢 ∈ 𝑉 . Since dom(𝑢) = Δ(𝑢) for 𝑢 ̸= 0, we
can identify (CA8) with (PS8), disregarding the case 𝑢 = 0.

4.4. Complete Projectional Semilattices

The table algebras Tab(𝐺) are complete lattices [14, Sect. 3.5]. The join ⋊⋉𝑖∈𝐼 𝑇𝑖 of a family (𝑇𝑖)𝑖∈𝐼
is the empty table if

⋃︀
𝑖∈𝐼 schema(𝑇𝑖) is infinite (because no other tables with infinite schema are

contained in Tab(𝐺)), and is otherwise defined in the natural way.
A conjunctive table algebra A is complete if⋊⋉𝑖∈𝐼 𝑇𝑖 ∈ 𝐴 for all families (𝑇𝑖)𝑖∈𝐼 in 𝐴. In this section,

we provide an axiomatic characterization of complete conjunctive table algebras. Likewise, we say that
a projectional semilattice (𝑉,∧, 0, 1, 𝑐𝑥, 𝑑𝑥𝑦, dom)𝑥,𝑦∈𝜔 is complete if (𝑉,≤) is a complete lattice.

Proposition 8. The complete conjunctive table algebras over non-empty universes are precisely (up to
isomorphism) the complete projectional semilattices.

Proof. Trivially, every complete conjunctive table algebra is a complete projectional semilattice. Now
let A be a complete projectional semilattice. In the proof of [23], an embedding ext𝛼 : A → Tab(𝐺)
into a full table algebra with non-empty base 𝐺 is obtained, where 𝛼 :

⋃︀
𝑋∈𝒫fin(𝜔)

𝐺𝑋 → 𝐴 is a tuple
labeling of A (cf. [22, Def. 4]), in particular it satisfies schema(𝛼(𝑡)) = def(𝑡) and

𝛼(𝑡) · 𝜆 = 𝛼(𝑡 ∘ 𝜆) (16)

for all 𝜆 ∈ 𝒯fp(𝜔). The embedding ext𝛼 is defined by

ext𝛼(𝑢) := {𝑡 ∈ 𝐺𝑋 | 𝛼(𝑡) ≤ 𝑢} (17)

for all 𝑢 ∈ A[𝑋] and 𝑋 ∈ 𝒫fin(𝜔). Our proof amounts to an adaptation of the infimum case in the
proof of [22, Thm. 2]. From that paper, we also obtain [22, Prop. 3x)]

𝛼(𝑡) ≤ 𝑢𝑖 ⇔ 𝛼(𝑡) · 𝜋𝑋𝑖 ≤ 𝑢𝑖 . (18)

Now let (𝑢𝑖)𝑖∈𝐼 be a family of elements in A. We have to show ext𝛼(
⋀︀
𝑖∈𝐼 𝑢𝑖) = ⋊⋉𝑖∈𝐼 ext𝛼(𝑢𝑖). If⋃︀

𝑖∈𝐼 dom(𝑢𝑖) is infinite, we obtain ext𝛼(
⋀︀
𝑖∈𝐼 𝑢𝑖) = ext𝛼(0) = ∅ =⋊⋉𝑖∈𝐼 ext𝛼(𝑢𝑖). Otherwise,

𝑡 ∈ ext𝛼(
⋀︁

𝑖∈𝐼
𝑢𝑖) ⇔

(17)
∀𝑖 ∈ 𝐼 : 𝛼(𝑡) ≤ 𝑢𝑖 ⇔

(18)
∀𝑖 ∈ 𝐼 : 𝛼(𝑡) · 𝜋𝑋𝑖 ≤ 𝑢𝑖

⇔
(16)

∀𝑖 ∈ 𝐼 : 𝛼(𝑡|𝑋𝑖) ≤ 𝑢𝑖 ⇔
(17)

∀𝑖 ∈ 𝐼 : 𝑡|𝑋𝑖 ∈ ext𝛼(𝑢𝑖) ⇔ 𝑡 ∈⋊⋉
𝑖∈𝐼

ext𝛼(𝑢𝑖) .

5. Conjunctive Concept Algebras

For every relational structure G, the result operation resG of eq. (2) is part of a Galois connection, from
which a concept lattice is obtained in the usual way, cf. [14, Sect. 5][13]. The pair of maps can be stated
as

resG(N, 𝜈) := {𝑡 ∈ 𝐺def(𝜈) | (N, 𝜈) ≲ (G, 𝑡)} (19)
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infoG(𝑇 ) :=
∏︁

𝑡∈𝑇
(G, 𝑡) (20)

where (N, 𝜈) ≲ (G, 𝑡) :⇔ ∃𝑓 𝑓 : (N, 𝜈) → (G, 𝑡) denotes the existence of a tableau query homomor-
phism, and

∏︀
𝑡∈𝑇 (G, 𝑡) is the direct product of tableau queries. A concept of G is a pair (𝑇, (N, 𝜈))

such that 𝑇 = resG(N, 𝜈) and (N, 𝜈) = infoG(𝑇 ). The table ext(𝑇, (N, 𝜈)) := 𝑇 is the concept’s
extent, and the tableau query int(𝑇, (N, 𝜈)) := (N, 𝜈) is the concept’s intent. For practical purposes,
the intents can be simplified by reduction to connected components and query minimization, cf. [13,
Figs. 5,2]. Complexity of intents can be further reduced by pattern projections [14, Sect. 6.2][29], but
this amounts to considering an

⋀︀
-sublattice of B(G). For theoretical purposes, we use eqs. (19) and (20)

as they are. The concept lattice of G is denoted by B(G). It is a complete lattice; we denote the
infimum by ∧, the supremum by ∨, the top concept by ⊤ and the bottom concept by ⊥. Every con-
cept of B(G) has a domain dom(𝑇, (N, 𝜈)) := schema(𝑇 ) ⊆ 𝜔, and the 𝑋-slice of B(G) is the set
B(G)[𝑋] := {𝐶 ∈ B(G) | dom(𝐶) = 𝑋} ∪ {⊥}.

The operations of the DPJR algebra can be lifted to concepts, which results in orbital concept lat-
tices [30]. The right multiplication on concepts is defined by (𝑇, [(N, 𝜈)]) · 𝜆 := (𝑇 · 𝜆, [(N, 𝜈 ∘ 𝜆)]) ∈
B(G), where intents are classes of equivalent tableau queries, or their representives (for technical
details see [14, Sect. 4.3]). Note that if 𝐶 ∈ B(G)[𝑌 ] and 𝜆 : 𝑋 → 𝑌 , then 𝐶 · 𝜆 ∈ B(G)[𝑋]. Also
in [30], we have introduced equality concepts E𝑥𝑦 for each (𝑥, 𝑦) ∈ 𝜔 × 𝜔. We now introduce a deletion
operation del𝑥 on B(G) for every 𝑥 ∈ 𝜔, given by del𝑥(𝐶) := 𝐶 · 𝜋𝑋∖{𝑥} for 𝐶 ∈ B(G)[𝑋]. The
following definition is inspired by the definition of cylindric set algebras.

Definition 9. The algebra C(G) := (B(G),∧,⊥,⊤,del𝑥,E𝑥𝑦, dom)𝑥,𝑦∈𝜔 is the full conjunctive con-
cept algebra with base G. A conjunctive concept algebra with base G is a subalgebra of C(G).

We infer from Prop. 4 that right multiplication is a derived operation on C(G); i.e. the conjunctive
concept algebras coincide with the subalgebras of orbital concept lattices. Note that the primitive-
positive formulas correspond to the finite tableau queries [14, Sect. 3.2][15]. The subalgebra Cfin(G) :=
{𝐶 ∈ B(G) | ext(𝐶) ∈ resG(PP(𝑀))} consists of the primitive-positive definable concepts of G.
The concept algebra Cfin(G) is essentially a concept algebra in the sense of Andreká and Németi [31],
applied there specifically to cylindric set algebras, and used with other kinds of logic in [32].

By Prop. 5, for each set 𝐺, there exists a relational structure G such that Tab(𝐺) = resG[PP(𝑀)].
In other words, Cfin(G) is isomorphic to Tab(𝐺). Then necessarily, we have Cfin(G) = C(G). So in
conclusion, for every set 𝐺, there exists a conjunctive concept algebra C(G) that is isomorphic to the
table algebra Tab(𝐺). This means that Props. 7 and 8 translate to concepts:

Proposition 10. The subalgebras of conjunctive concept algebras (up to isomorphism) are precisely the
projectional semilattices.

Proposition 11. The complete subalgebras of conjunctive concept algebras (up to isomorphism) are
precisely the complete projectional semilattices.

While we have not arrived at a Basic Theorem, a substantial connection to algebraic logic has been
made. The remaining question is whether every complete subalgebra of a concept lattice B(G) is itself
isomorphic to a concept lattice. We conjecture that this is the case.

Conjecture 12. The complete concept algebras (up to isomorphism) are precisely the complete projectional
semilattices.

6. Related Work

Imieliński and Lipski [24] have described a mapping from a relational algebra into a cylindric set algebra,
which acts as an embedding under certain assumptions. As Düntsch and Mikulás[33] have pointed
out, the table schema is not preserved by this mapping, so this mapping can not be truly considered
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an embedding. In order to preserve the table schema, they include a new element in the cylindric set
algebra, which does not occur in tables. This new element amounts to a value of "undefined", so that
the sets in the cylindric set algebra become sets of partial functions.

In this paper, we suggest to take a different route, and adapt the axioms of cylindric algebra to the
database-theoretic setting. In his survey paper, Németi [27] presents variants of cylindric algebras, and
also discusses the merits of such an approach [27, Sect. 7(4)], citing Howard [34] and Craig [35] as
protagonists. However, they work with a different signature, which includes negation/complements, and
which supports the unnamed perspective, while we present an axiomatization in the named perspective
(cf. [15] for perspectives), which is closer to the original axioms. Variants of cylindric algebras, which are
based on other first-order fragments (cylindrification only, cylindrification with union, cylindrification
with union and intersection) are presented by Hansen [36].

7. Conclusion

We have characterized conjunctive concept ∧-subalgebras by axioms in the style of cylindric algebras,
and have more specifically likened them to cylindric set algebras. This establishes a connection between
FCA and algebraic logic in the database-theoretic setting. In addition, we have obtained an axiomatic
characterization of conjunctive concept

⋀︀
-subalgebras. Since

⋀︀
-sublattices correspond to pattern

projections [29], we have thus axiomatized conjunctive pattern concept algebras (to be defined in a
suitable way). Moreover, we have conjectured that the conjunctive concept

⋀︀
-subalgebras are precisely

the conjunctive concept algebras (u.t.i.). The results raise the question how concept ∨-subalgebras and
concept

⋁︀
-subalgebras can be axiomatically characterized. Moreover, while conjunctive concept ∧-

subalgebras correspond to cylindric set algebras, is there also a well-motivated counterpart of cylindric
algebras in this setting? Finally, we suggest to use relational concept algebra as a generic notion, and
consider conjunctive concept algebras, as well as their orbital counterpart [30], as special kinds.
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When contranominal scales give a solution to
the Zarankiewicz problem?

Dmitry I. Ignatov
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Abstract. The paper formulates Zarankiewicz problem in terms of for-
mal contexts as follows: What is z(m,n; s, t), the largest size of the inci-
dence relation of a formal context with m objects and n attributes, for
which there is no a formal concept with the given extent s and t intent
sizes and larger? Exact formulas for the case n = m, and s+t = n+1+k
with valid ranges of s, t, and k using the contranominal scales of sizes
n− k and maximal symmetric contexts are obtained. Moreover symmet-
ric versions of zdn/2e(n) function are studied and expected ansatz-based
solutions as second degree polynomials for zbn/2c(n) are disproven with
Formal Concept Analysis assisted tools and concrete lower bounds ob-
tained for z5(11), z6(13), z7(15), z8(17), and z9(19).

Keywords: Zarankiewicz problem, maximal biclique, formal concepts,
contranominal scale, extremal combinatorics

1 Introduction

The Zarankiewicz problem dates back to 1950s and asks for the maximal number
of edges in a bipartite graph of fixed size free of bilcliques with given sizes of
its parts [21]. This is an analogue of a famous problem studied by Turan on the
maximal size of a graph free of p-clique. The corresponding function z(m,n; s, t)
counting the number of edges in a bipartite graph with parts of sizes m and
n and no biclique with sizes of components s and t respectively is called the
Zarankiewicz function or number and is the subject of ongoing research, while
the problem still open in general.

It is interesting that the original problem was published first in terms of grids
in French [21]. We take its translation from [20] except the term grid not lattice
to avoid confusion with French “trellis” normally used for lattice; moreover in
the original Zarankiewicz formulation “un réseau plan formé” was used):

“Let Rn where n > 3 be an n × n square grid. Find the smallest
natural number k2(n) for which every subset of Rn of size k2(n) contains
4 points that are all the intersections of 2 rows and 2 columns. More
generally, find the smallest natural number kj(n) for which every subset
of Rn of size kj(n) contains j2 points that are all the intersections of j
rows and j columns.”
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2 Dmitry I. Ignatov

Note that kj(n) is z(n, n; j, j) + 1.
Such incidence structrues like grids are naturally represented by binary re-

lations, Boolean matrices and formal contexts, while the latter serve for object-
attribute incidence representation if Formal Concept Analysis.

Formal Concept Analysis (FCA) is a branch of modern lattice theory and it
studies (formal) concepts and their hierarchies [8]. The adjective “formal” indi-
cates a strict mathematical definition of a pair of sets (of objects and attributes,
respectively), called, the extent and the intent and named the formal concept as
a whole. This formalisation is possible because of the use of the algebraic lattice
theory and Galois connections.

So, our goal here is to consider the formualtion of Zarankiewicz problem in
terms of FCA and see what this approach and the existing tools can add to the
state of the art. Thus, bipartite graphs can be considered as formal contexts,
and its maximal bicliques as formal concepts of the context.

Moreover, recent results on extremal lattice theory and Boolean matrix fac-
torisation with FCA show that formal contexts called contranominal scales are
of high importance. For example, the work of Albano and Chornomaz [2] an-
swers the question how large is the size of concept lattices when contranominal
scales of a certain size are not contained in the input context of a fixed size,
while our previous work shows that the state-of-the-art Boolean matrix factori-
sation algorithms are suboptimal on contranominal scales. This is also a basic
fact that a contranominal scale of size n× n has the largest possible number of
formal concepts, 2n, for the given n, while the concept extent sizes run through
all {1, 2, . . . , n} = [n].

The paper is organised as follows. Section 2 gives basics of FCA theory.
Section 3, formulates the studied problem for z(n,m; s, t) in FCA terms. Sec-
tion 4 presents obtained theoretical results including fully symmetric case for
the Zarankiewicz function like z(n, n; bnc). Section 5 briefly overviews the most
relevant works. Section 6 concludes the paper.

2 FCA Basics

We mainly follow notation from [8].

Definition 1. Formal context K is a triple (G,M, I) where G is a set of objects,
M is a set of attributes, and I ⊆ G×M is an incidence binary relation.

The binary relation I is interpreted as follows: for g ∈ G, m ∈ M we write
gIm if the object g has the attribute m.

For a formal context K = (G,M, I) and any A ⊆ G and B ⊆ M a pair of
mappings is defined:

A↑ = {m ∈M | gIm for all g ∈ A}, B↓ = {g ∈ G | gIm for all m ∈ B},
these mappings define Galois connection between partially ordered sets (2G,⊆)
and (2M ,⊆) on disjunctive union of G and M . The set A is called closed set, if
A↑↓ = A [5].
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Definition 2. A formal concept of the formal context K = (G,M, I) is a pair
(A,B), where A ⊆ G, B ⊆ M , A↑ = B and B↓ = A. The set A is called the
extent, and B is the intent of the formal concept (A,B).

It is evident that the extent and intent of any formal concept are closed sets.
The set of all formal concepts of a context K is denoted by B(G,M, I). This

set forms an algebraic lattice call concept lattice where the concepts are ordered
via set inclusion of their extents (dually intents).

Note that (.)↑ and (.)↓ derivation operators are usually unified by a single
symbol like prime (.)′ or (.)I , when formal contexts with different incidence
relations, say I and J are used simultaneously.

For every set S the contranominal scale is defined as Nc
S = (S, S, 6=). In what

follows, we consider Nc
n with S = [n] = {1, . . . , n} without loss of generality.

The surveys on advances in FCA theory and its applications can be found in
[17, 18].

3 Problem Statement

We propose the following most general formulation of the Zarankiewiecz prob-
lem.

Problem 1. What is z(m,n; s, t), the largest size of the incidence relation I of a
formal context K = (G,M, I) with |G| = m and |M | = n, for which there is no
a formal concept (A,B) with |A| ≥ s and |B| ≥ t?

We need these inequalities in the formulation, |A| ≥ s and |B| ≥ t, since there
might be a concept of size (s + 1) × t = |A||B| but not of s × t containing the
subcontext of sizes s× t due to maximality of concepts in terms of the number
of objects and attributes (cf. maximal bicliques).

4 Results

4.1 Contranominal Scales and Maximal Symmetric Contexts

Lemma 1. ([10, 20]) Let K = (G,M, I ⊆ G ×M) with G = {g1, . . . , gn} and
M = {m1, . . . ,mn}, then this context does not contain a concept with extent and
intent sizes p and q or larger, respectively, if

n∑

i=1

(|m′i|
p

)
≤ (q − 1)

(
n

p

)
. (1)

Lemma 1 is the instantiation of the pingeonhole principle [1], where the
pigeons are subsets of attributes’ extents of size p, while the holes are subsets of
objects of the same size.

Lemma 2. ([8]) For each concept (A,B) of the contranominal scale of size n,
([n], [n], 6=), |A|+ |B| = n.
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Property 1. z(n;n+ 1, q) = n2 for any q > 0.

Form Lemma 2 we infer Property 2.

Property 2. If a formal context K = (G,M, I) contains as its subcontext a con-
tranominal scale of size k, Nc

k, then K should contain a formal concept (A,B)
with |A| ≥ p and |B| ≥ q where p+ q = k.

Theorem 1. A contranominal scale of size n, ([n], [n], 6=), gives a solution to
Zarankiewicz problem with m = n, p + q = n for p, q > 0, and z(n; p + 1, q) =
z(n; p, q + 1) = n(n− 1).

Proof. 1) Admissibility. By Lemma 1 we should have

n∑

i=1

(
n− 1

p+ 1

)
≤ (q − 1)

(
n

p+ 1

)
.

Or

(n− 1− p)
(

n

p+ 1

)
≤ (q − 1)

(
n

p+ 1

)
,

n− 1− p ≤ q − 1.

We substitute n− p = q by the condition and get the identity q − 1 ≤ q − 1.
One can also show that our context ifs free of any concept (A,B) with |A| =

p+1, |B| = q and |A| = p, |B| = q+1. By Lemma 2 |A|+ |B| = n, which implies
p+ q + 1 = n, the contradiction.
2) Maximality. Then let us also show that the contranominal scale is the maximal
context in terms of its number of incident object-attribute pairs.

Assume that we can add one more object-attribute pair, say (gn,mn) to the
contranominal scale. Then our context will contain one full row, full column and
a contranominal scale of size n − 1 as subscontext disjoint from these full row
and column. Since full rows and columns are both reducible, then the resulting
context give rise the same number of concepts that the contranominal scale of
size n − 1. For each concept (A,B) of the Nc

n with |A| = p and |B| = q, either
gn ∈ A (mn 6∈ B) or mn ∈ B (gn 6∈ A), so the concept of the new context
I, (AII , AI) or (BI , BII), will have extent and intent sizes p, q + 1 or p + 1, q,
respectively. Due to the context symmetry, cases p, q + 1 and p + 1, q are both
realised for each p, q pair.

Similarly, for Lemma 1, its inequality becomes false.

�
Can we also use contranominal scales for other types of solutions? The answer

is yes. Thus one can place new object-attribute pair on the main diagonal of a
contranominal scale.

Theorem 2. A context K obtained from a contranominal scale of size n as
K = ([n], [n], 6= ∪(i, i)) for i ∈ [n] gives a solution to Zarankiewicz problem with
m = n, p + q = n − 1 for p, q > 0, and z(n; p + 2, q + 1) = z(n; p + 1, q + 2) =
n(n− 1) + 1.
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Proof. 1) Admissibility. By Lemma 1 the following inequality should hold

(
n

p+ 2

)
+

n−1∑

i=1

(
n− 1

p+ 2

)
≤ q
(

n

p+ 2

)
.

After simplification we get the inequality n−1
n (q − 1) ≤ q − 1.

2) Let us check maximality by adding a new pair, say (gn−1,mn−1). First,
we should note that our context contains contranominal scale isomorphic to
([n − 1], [n − 1], 6=). So, the sum of sizes of its concept’s extent and intent is
n− 1 = p+ q, but since we have extra full row and column, each concept of the
considered context will have extent and intent size p + 1 and q + 1. It implies
that there is no any concept with sizes of extent p+ 2 and intent q+ 1 (same for
p+ 2 and q + 1).

�

Can we generalise this solution up to k added pairs to the contranominal
scale of size n? Again, the answer is yes.

Theorem 3. A context K obtained from a contranominal scale of size n as

K = ([n], [n], 6= ∪
⋃

i∈S
(i, i))

for S ∈
(
[n]
k

)
gives a solution to Zarankiewicz problem with m = n, p+q = n−k,

0 < k ≤ n for
1) p, q > 0 (or p = q = 0), and

z(n; p+ 1 + k, q + k) = z(n; p+ k, q + 1 + k) = n(n− 1) + k,

2) q = 0, p > 0,

z(n; p+ 1 + k, q + k) = n2

and

z(n; p+ k, q + 1 + k) = n(n− 1) + k,

3) p = 0, q > 0,

z(n; p+ 1 + k, q + k) = n(n− 1) + k

and

z(n; p+ k, q + 1 + k) = n2.

Proof. The proof of Admissibility is similar.

k

(
n

p+ k + 1

)
+ (n− k)

(
n− 1

p+ k + 1

)
≤ (q + k − 1)

(
n

p+ k + 1

)
.

We get inequality n−k
n (q − 1) ≤ q − 1, which is true for q > 0. For q = 0 the

inequality is false.
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The solution for 2) q = 0 falls into two basic cases (up to the symmetry p and
q). When p = 0, n = k and by Property 1 z(n;n + 1, n) = z(n;n, n + 1) = n2,
which coincides with n(n− 1) + k. When p > 0, p+ k = n, and

z(n;n+ 1, k) = n2

(by Property 1) and
z(n;n, 1 + k) = n(n− 1) + k

(has to be proven).
The last subcase admissible by noting that any new object-attribute pair

on the diagonal will result in the full column and we get the concept of size
n × (1 + k). And the contranominal scale of size n − k cannot be replaced by
any other subcontext within the context region of size n− k × n with the same
number of incident pairs since placing at least two missing pairs in one row gives
rise to a full column but placing all n− k into distinct rows results in presence
of the contranominal scale of the same size. Case 3) is similar.

The maximality condition for 1) is proven similarly to Theorem 2.

�

Corollary 1. A context ([n], [n],= \ ⋃
i∈S

(i, i)) with S ∈
(
[n]
k

)
has the maximal

number of incident pairs being free from the concept with extent and intent sizes
n and k + 1 (symmetrically, k + 1 and n), respectively.

Remark 1. Note that z(n; p+1+k, q+k) and z(n; p+k, q+1+k) can be recast
as z(n; p+ 1 + k, n− p) and z(n; p+ k, n− p− 1).

4.2 Single variable Zarankiewicz function

In earlier works, Zarankiewicz, Guy [10] and others paid a lot attention to the
function za(n) = z(n, n; a, a).

An interesting question would be what the obtained results can do for this
case.

For an odd n, i.e. n = 2t− 1 for t > 0, we get

z(2t− 1; t, t) = 2(2t− 1)(t− 1),

but we cannot tackle the even case since p+ 1 and q have different parity when
p+ q = 2t and cannot be equal. However, by Theorem 1.3 from [4] we have

z(2t; t, t) = 4t2 − 3t− 1 = 2(2t− 1/2)(t− 1).

We combine these two results into a single formula as follows:

z(n; dn/2e, dn/2e) = 2
(

2t− 1

4
+ (−1)n

3

4

)(
t− 1

)
,

here t = dn/2e
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When contranominal scales give a solution to the Zarankiewicz problem? 7

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
dn/2e 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 10

zdn
2
e(n) 0 0 6 9 20 26 42 51 72 84 110 125 156 174 210 231 272 296 342 369

Or

zdn2 e(n) = 4dn/2e2 − 9

2
dn/2e+

1

2
+ (−1)n

(3

2
dn/2e − 3

2

)
.

This upper symmetrisation for odd n = 2t−1 is possible with contranominal
scales, however they do not work in z(n; bnc, bnc) = z(2t− 1; t− 1, t− 1), since
bnc = t − 1 and p = t − 2 and q = t − 1 violates p + q = n. Similarly, for
n = 2t+ 1 we deal with z(2t+ 1; t, t) and have p+ q = t−1 + t = 2t−1 6= 2t+ 1,
the violation. This case is also beyond of reach for Theorem 3 (since p + q =
(t−1−k) + (t−k) 6= n−k), Theorems 1.2 (n = 2t+ 1 implies the contradiction
2t+ 1 ≤ 2t− 1)) and 1.3 (valid for even cases) from [4].

We know from the literature [20] and OEIS that z2(5) = 12, z3(7) = 33, and
z4(9) = 61. This is enough to find coefficients of z(2t + 1; t, t) as a quadratic
polynomial at2 + bt + c. Case n = 3 is omitted resulting in zero pairs by the
definition.

The system





4a+ 2b+ c = 12

9a+ 3b+ c = 33

16a+ 4b+ c = 61.

results in P2t+1(t) = 7
2 t

2 + 7
2 t−9 = 7

2 t(t+ 1)−9 as a candidate for z(2t+ 1; t, t).

n 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
bn/2c 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10

zbn
2
c(n) 0 0 9 12 26 33 51 61 84 ? 125 ? 174 ? 231 ? 296 ? 369

If our ansatz based on the fact that z(n, n; p, q) is totally bounded by n2 and
all possible variables enters linearly or quadratically is correct, we should obtain
the next value for z5(11) as 96.

In reality, the following contexts for n = 11 in Figure 1 and 2 were obtained ad
hoc based on the usage of contranominal scales as building blocks and validated
with our implementations of CbO [15] and NextClosure [8] and cross-checked
with concept generation algorithm In-Close [3], by adding extra crosses (pairs)
to the context and checking absence of concepts larger than or equal to 5 × 5
and 6× 6 full subcontexts, respectively, in terms of extent times intent sizes.

So, the knowledge base on the behaviour of z2t+1(t) is updated. At least, it
is not that regular to be described by the same polynomial of degree 2, P2t+1(t),
for the range t ≥ 2.

But what if we still have doubts, especially, since z(2t−1, t, t) = 2(2t−1)(t−1)
and its even n = 2t counterpart has roots at t = 1. We can consider another
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Kz5(11)≥97
1 2 3 4 5 6 7 8 9 10 11

1 × × × × × × × ×
2 × × × × × × × ×
3 × × × × × × × × ×
4 × × × × × × × × × ×
5 × × × × × × × × ×
6 × × × × × × × × ×
7 × × × × × × × × ×
8 × × × × × × × ×
9 × × × × × × × ×
10 × × × × × × × × × ×
11 × × × × × × × × ×

Fig. 1. A formal context for the obtained lower bound z5(11) ≥ 97

quadratic polynomial Q2t+1(t) = 9
2 t

2− 3
2 t− 3 = 9

2 (t+ 2
3 )(t− 1). Then for n = 9,

t = 4 we have Q2t+1(4) = 63 but it contradicts previous knowledge z9(4) = 61
([20], OEIS sequence for kn(4) = zn(4)+1 is A0066161). Q starts to overestimate
z at t=4, while P underestimates z first at t = 11, the lowest upper bound for
z4(9) from the best known ones is by Roman [19] (the bound by Nikiforov [16]
give higher values) is 64, while for z5(11) it is 102, and 148 for z6(13) (smaller
than Q2t+1(13)).

n 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
bn/2c 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10

Q2t+1(t) 0 12 33 63 102 150 207 273 348
zbn

2
c(n) 0 0 9 12 26 33 51 61 84 ≥97 125 ≥142 174 ≥ 192 231 ≥253 296 ≥320 369

P2t+1(t) 12 33 61 96 138 187 243 306

All the contexts and codes are placed in Dropbox for reviewing purposes2.

4.3 Reality Checks

Let us have a look at the function behaviour for some small n, for example, 5.
The rows and columns of Table 1 with s = 1 or t = 1 are filled by the conditions
that every object (or attribute) should have (be shared by) t−1 attributes s−1
(objects).

Assembling Theorems 1, 2, 3 altogether, we have p+ q = n− k and p+ 1 +
k + q + k = s+ t. For t = s in the region s+ t = n+ k + 1, 0 ≤ k ≤ n− 1, if we
substitute k in n(n−1)+k, we get z(n; t, t) = n2−2n+2t−1 for n+1 ≤ 2t ≤ 2n.

1 https://oeis.org/a006616
2 https://www.dropbox.com/scl/fo/z7k82pyu3xwmnu4cun884/

AOLV3EAueoUfy7jM-D1Gm0c?rlkey=vs6hbn6i2vn2e6ncnim8qg0b2&dl=0
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Kz6(13)≥142
1 2 3 4 5 6 7 8 9 10 11 12 13

1 × × × × × × × × × ×
2 × × × × × × × × × ×
3 × × × × × × × × × × ×
4 × × × × × × × × × × × ×
5 × × × × × × × × × × ×
6 × × × × × × × × × × ×
7 × × × × × × × × × × ×
8 × × × × × × × × × × × ×
9 × × × × × × × × × × ×
10 × × × × × × × × × ×
11 × × × × × × × × × ×
12 × × × × × × × × × × × ×
13 × × × × × × × × × × ×

Fig. 2. A formal context for the obtained lower bound z6(13) ≥ 142

Actually, within that region (on and below the backward diagonal), in axes n, z
when t is fixed, we deal with the parabola, while on the level n = const we have
the family of disjoint lines.

Table 1. z(5, 5, s, t); the numbers given in the literature are italic, while obtained by
our formulas are below the stepwise line on the diagonal (and also in bold if present in
the referenced literature, e.g., in [11])

s, t 1 2 3 4 5

1 0 5 10 15 20
2 5 12 16 20 21
3 10 16 20 21 22
4 15 20 21 22 23
5 20 21 22 23 24

s, t 1 2 3 4 5 6

1 0 6 12 18 24 30
2 6 16 22 25 30 31
3 12 22 26 30 31 32
4 18 25 30 31 32 33
5 24 30 31 32 33 34
6 30 31 32 33 34 35

What if we would to see a solution for a certain non-trivial value of z from
those tables above the stepwise line? We can check a suitable context of a given
size with |I| = z(n; s, t).

For example, take the value z(6; 2, 4) = z(6; 4, 2) = 25 (see OEIS sequence
A0066143).

Thus, starting with a contranominal scale of size 5 = 4−1+2, we have found
the non-extensible (by adding new crosses) context Kz(6;4,2) shown in Figure 3.
Its concept lattice diagram shows that there are no concepts of sizes 4 × 2 or
(2× 4).

3 https://oeis.org/006614
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10 Dmitry I. Ignatov

Kz(6;4,2) a b c d e f

1 × × × ×
2 × × × ×
3 × × × ×
4 × × × ×
5 × × × ×
6 × × × × ×

Fig. 3. A formal context for z(6; 4, 2) = 25 and its concept lattice diagram with labeling
by extent size and full intent

Actually, if we are given s and t and an examined context, we should care that
contranominal scales of size s + t are not contained in the given context, while
scales of size s+ t− 1 can be used as biulding blocks, allocated and modified.

5 Related Work

The most relevant for our studies are the works by Balbuena et al. [4] and
Tan [20]. The work of Tan [20] demonstrates how to obtain not only values
but also possible solutions to the first several dozen values of n for za(n) and
a ∈ {2, 3, 4} with SAT solvers. In [4] more general cases for z(m,n; s, t) are
considered under max{m,n} ≤ s+ t− 1 and z(m,n; t, t) if 2t ≤ n ≤ 3t− 1; the
exact formulas obtained. The authors used matchings to subtract them from the
considered bipartite graphs and obtain the solutions and claimed formulas. Our
theorems are in accordance with their results where the scopes of the theorems
overlap for m = n. They also rely on [9], where the so called half-half case was
considered with z(2s, 2t; s, t), which is not applicable for cases with odd n.

We partially reproduce Theorem 1.2 and Theorem 1.3 from [4] since we rely
on them in Subsection 4.2.

Theorem 4. (A part of Theorem 1.2 [4]) Let m,n, s, t be integers with 2 ≤ s <
m, 2 ≤ t < n and such that max{m,n} ≤ s+ t− 1. Then

z(m,n; s, t) = mn− (m+ n− s− t+ 1).

Theorem 5. (A part of Theorem 1.3 [4]) Theorem 1.3. Let m, t be integers such
that 2 ≤ t ≤ m ≤ 2t. Then

z(m, 2t; t, t) = m · 2t− (2m− t+ 1).

There is also Theorem 1.4 but it forbids t = n/2.
A large fraction of past and recent works devoted to various inequalities [19]

and asymptotic studies [16, 6] whose estimates are usually overly high for rather
small n like 11 or not enough general by considering special cases for za(n) with
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small a like 2, 3 or with rather complex a being a polynomial, or cases when
ratio of m and n in z(m,n; s, t) is rather high up to some binomial coefficient
including m or n to sample out.

6 Conclusion

One can see that FCA as a theory and as an analytical tool can help to study
combinatorial mathematical problems, which is in line with works of B. Gan-
ter [7] on integer partiton lattices, work C. Jakel on the ninth Dedekind num-
ber [14] and on our previous works on (maximal) antichains enumeration in
Boolean and partitions lattices [12] and symmetric contexts and maximal inde-
pendent sets for the cover graph of a Boolean cube [13]. We hope it can also do
both in other cases when we deal with Boolean matrices or ordered structures, to
provide theoretical keys to enumeration and counting problems and help to com-
pute missing numbers, which may lead to interesting conjectures and theorems.
Last but not least it contributes to the inventory of Experimental Mathematics
as AI-assisted tool.
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Abstract
This paper presents a modernization of the neural network architecture based on concept lattices, FCA-CLNet,
utilizing pre-clustering of data based on groups of attributes, unified by a shared interpretable meaning. This
approach aims to create a compact model for data classification, with the added benefit of enabling subsequent
interpretation of results in scenarios involving a large number of data features.

Keywords
Neural Networks, Clustering, Formal Concept Analysis

1. Introduction

Interpretability in the context of neural networks is an important aspect of research, as it allows
us to understand how and why the model makes certain decisions. In recent years, interpretable
neural networks have been actively researched and developed in order to overcome the problem of the
"black box" and ensure the clarity and explainability of the decision-making process. This is especially
important in areas where the decisions made by the model have a significant impact on people’s lives
and well-being, such as medicine, finance and justice. Finding a balance between the high performance
of the model and its interpretability is a key factor for creating reliable and transparent systems capable
of interacting with people in confidence.

With the growing demand for AI explainability, many papers addressed the problem of explaining
«black box» systems and simultaneously tried to formulate the criteria and measures for evaluating
explainability of the model design. In [1] the authors suggested using three core criteria for evaluating
machine learning models, namely, interpretability, transparency and explainability. In [2] it was
proposed to use expert opinions combined with statistical methods to measure the effectiveness of
machine learning models. A first attempt in making a theory of interpretable neural networks (INNs)
seems to be made in [3]. The authors managed to align the sparse coding method with existing neural
network’s architecture, so that the system had the interpretability of the model-based method and the
efficiency of the learning-based one.

A series of works have intended to review and classify all existing interpretable methods. In [4] the
authors have classified existing interpretable approaches by problem addressed, black-box type and
explanation provided, with the purpose to help researchers solve the needed tasks. In [5] the authors
suggested to divide interpretable neural network approaches into two types, model decomposition neural
networks and semantic interpretable neural networks (INNs). The first one unites methods which inherit
domain theoretical knowledge and implement it in the neural network architecture. The decomposition
alternative INN starts by taking a complicated mathematical or physical model and breaking it down into
smaller, manageable modules. After that it maps the computing of the obtained modules in accordance
with the prior knowledge with hyper-parameters of neural network or its hidden layers, thus enhancing
their interpretability [6, 7]. The idea can be described as using controllable artificial parameters and
structures of neural network instead of the weights without mathematical and physical meaning. This
approach requires a theoretical model of the domain. An illustration of this concept is the utilization of
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convex or non-convex optimization algorithms to address mathematical modeling challenges, providing
a framework for shaping the objective function. This method is applicable to such tasks as solving partial
differential equations (PDE) [8], image deblurring, super-resolution, and other problems [9, 10, 11]. The
second approach is semantic INNs [12], which is meant to explain the model’s decision afterwards, with
the process close to human semantic interpretation. The authors highlighted three different branches in
this approach, namely, convolution neural network (CNN) visualization [6], decision tree regularization
[13], and semantic knowledge graph [14]. In [15] the taxonomy of interpretable methods was proposed.
This paper categorized existing architecture designs by three criteria, namely, the type of engagement
(passive or active), the type of explanation and the focus, varying from local to global interpretability
and provided the way how to order them in subcategories. The first architecture of neural networks
based on the formal concept analysis (FCA) approach was proposed in [16]. In this work the authors
propose building neural networks based on concept lattices and on lattices coming from monotone
Galois connections. Later, in 2022 in [17] the authors integrated conceptual information into the message
passing through graph neural networks (GNNs). The authors of [18] proposed an approach using BERT,
which can learn more information from the maximal bi-cliques, which correspond to formal concepts,
and use them to make link prediction.

This paper explores the potential of incorporating clustering methods into a compact neural network
architecture. Specifically, it introduces a modernization of the neural network framework, FCA-CLNet,
which leverages concept lattices in conjunction with pre-clustering of data based on semantic attribute
groups. The proposed approach is particularly suited for scenarios involving a large number of data
features and aims to improve the interpretability of the model’s performance.

2. Clustering

Clustering is a widely used useful tool for working with big data and data mining. A large number of
clustering algorithms have been developed, each of which has its own area of application. A number
of works have been devoted to creating a taxonomy of clustering methods. In [19] authors proposed
a categorization framework to classify existing clustering algorithms into groups. They divided all
algorithms into partitioning-based, hierarchical-based, density-based, grid-based and model-based:

Partitioning-based algorithms [20] first set the clusters from initial data and then redistribute the data
points towards better group organization. Widely used K-means algorithm belongs to this category.

Hierarchical-based methods are intended to organize data hierarchically, based on the medium of
proximity. Using these methods datasets can be represented by dendrograms, where each leaf node
corresponds to an individual data point. Hierarchical-based methods are divided into agglomerative
(bottom-up) and divisive (top-down) approaches [21]. In the former the process starts with clusters
containing one object, and then they are united together towards more suited. In the latter the whole
dataset is one cluster at the beginning and then it is recursively split into smaller ones till reaching the
stopping criterion.

Grid-based methods are based on splitting the data space on grids and accumulating grid-data. The
advantages of this approach are fast processing time and independence of the number of data objects.

In model-based methods [22] it is supposed that there is a mixture of probability distributions that
generate the given data, so these approaches try to accommodate the data to the predefined mathematical
model. These approaches are divided into statistical and neural network approaches.

In this paper, we chose four well-known clustering algorithms for preclustering the data features:
K-means, Mean-Shift, DBSCAN and HDBSCAN.

3. Formal Concept Analysis

In FCA-CLNet architecture we operate with the terms related to formal concepts analysis (FCA). Let us
recall some basic definitions of FCA [23]. The basic FCA structure is a binary datatable, called formal
context, where rows stay for the set of objects, denoted by 𝐺, the columns stay for the set of attributes,

2
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denoted 𝑀 and binary relation 𝐼 ⊆ 𝐺 ×𝑀 is defined in the way so that (𝑔,𝑚) ∈ 𝐼 if the object 𝑔
possesses the attribute 𝑚. The triple 𝐾 = (𝐺,𝑀, 𝐼) is called a formal context. Derivation operators
(·)′ for 𝐴 ⊆ 𝐺, 𝐵 ⊆𝑀 are defined as follows:

𝐴′ = {𝑚 ∈𝑀 | 𝑔𝐼𝑚 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑔 ∈ 𝐴}, (1)

𝐵′ = {𝑔 ∈ 𝐺 | 𝑔𝐼𝑚 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑚 ∈ 𝐵}, (2)

These derivation operators form (antimonotone) Galois connection on the ordered powersets (2𝐺,⊆)
and (2𝑀 ,⊆).

we define a classical formal concept of a formal context 𝐾 as a pair (𝐴,𝐵) such that 𝐴 ∈ 𝐺,
𝐵 ∈ 𝑀 , 𝐴′ = 𝐵, 𝐵′ = 𝐴. Here 𝐴 is called an extent and 𝐵 is called an intent of the formal concept
(𝐴,𝐵).Classical formal concepts are ordered by the relation ≥:

(𝐴1, 𝐵1) ≤ (𝐴2, 𝐵2) ⇐⇒ 𝐴1 ⊆ 𝐴2, (3)

which defines a complete (algebraic) lattice on the set of concepts called concept lattice 𝐿 = (𝐺,𝑀, 𝐼).
The covering relation corresponding to the partial order ≤, (if it exists) is defined as ≺:

(𝐴1, 𝐵1) ≺ (𝐴2, 𝐵2) ⇐⇒ (𝐴1, 𝐵1) ≤ (𝐴2, 𝐵2) (4)

and there is no concept (𝐴3, 𝐵3) such that (𝐴1, 𝐵1) < (𝐴3, 𝐵3) < (𝐴2, 𝐵2).
Classical formal concepts are also called antimonotone formal concepts or formal concepts based on

antimonotone Galois connection.
In our study we use another type of formal concepts called formal concepts based on monotone Galois
connection or monotone formal concepts [24]. They are defined as pairs (𝐴,𝐵), which satisfy monotone
Galois connection, that is

𝐴∨ = {𝑏 | ∄𝑎 ∈ 𝐺∖𝐴 such that 𝑎𝐼𝑏}, (5)

𝐵∧ = {𝑎 | ∃𝑏 ∈ 𝐵 such that 𝑎𝐼𝑏}, (6)

where 𝐴 ⊆ 𝐺,𝐵 ⊆𝑀 and 𝐴 = 𝐵∨, 𝐵 = 𝐴∧.

In other words, for each set of objects 𝐴, we match all the attributes belonging only to objects from
𝐴′. On the other hand, the set of attributes 𝐵 corresponds to the set of all objects 𝐵′ satisfying at least
one attribute from 𝐵. 𝐴 and 𝐵 are also called an extent and an intent of the formal concept.
A partial order on the set of all monotone formal concepts is defined as:

(𝐴1, 𝐵1) ≤ (𝐴2, 𝐵2) ⇐⇒ 𝐴1 ⊂ 𝐴2 ↔ 𝐵1 ⊂ 𝐵2. (7)

.
We also can define monotone concept lattice based on this partial order.
All monotone formal concepts can be obtained from the given formal context𝐾 = (𝐺,𝑀, 𝐼) by finding
its complement context 𝐾̄ = (𝐺,𝑀, 𝐼) and then finding all its classical formal concepts.

4. FCA-CLNet

The proposed method utilizes a neural network architecture based on concept lattices. The idea of this
neural network was proposed in [16]. This article extends the approach by incorporating an additional
step, namely data pre-clustering, to derive novel features.

The method description is as follows:

Suppose 𝐾 = (𝐺,𝑀, 𝐼) is a formal context, where 𝐺 is the set of objects, 𝑀 is a set of attributes and
𝐼 is a binary relation.
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Figure 1: Dataset preprocessing using clustering

1. From the set of attributes 𝑀 choose disjoint sets of attributes 𝑀1,𝑀2, . . . ,𝑀𝑘, such that
𝑀1 ∪𝑀2 ∪ . . . ∪𝑀𝑘 =𝑀 and elements of each set can be unified by a shared interpretable
meaning. For example, for the formal context related to banking data, such attributes as “gender”,
“marital status”, “number of dependents” can be unified as “client personal information”, and
“education”, “self-employment”, “income”, “co-applicant’s income” as “the client’s ability to repay
the loan”.

2. Separately apply a chosen clustering method to the attribute sets𝑀1,𝑀2, . . . ,𝑀𝑘 and obtain clus-
tering results as sets of clusters 𝐶1 = {𝑐11, ..., 𝑐1𝑡}, 𝐶2 = {𝑐21, ..., 𝑐2𝑡}, . . . , 𝐶𝑘 = {𝑐𝑘1, ..., 𝑐𝑘𝑡}.

3. Create a new formal context 𝐾𝑐𝑙 = (𝐺,𝑀𝑐𝑙, 𝐼𝑐𝑙), where 𝐺 is the initial set of objects, 𝑀𝑐𝑙 =
{𝐶1 ∪ 𝐶2 ∪ . . . ∪ 𝐶𝑘} is a new attribute set, where each attribute stands for a cluster, 𝐼𝑐𝑙 - a
binary membership relation to a given cluster. The example of dataset transformation is shown
at Figure 1.

4. Find the most stable concepts based on monotone Galois connection [24] according to ∆ −
𝑠𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 index [25]. Algorithm Sofia [26] can be used for this purpose.

5. Choose the “most interesting” concepts based on interestingness indices [27] to reduce the size
of concept lattice (F1-score, accuracy, etc.) The example of concept lattice size reduction is shown
at Figure 2.

6. Build neural network based on the reduced concept lattice. The architecture of the neural network
is given as follows (Figure 3):

• Input layer is created by the obtained attributes from dataset pre-clustering. Each attribute
represents one of the clusters.

• Hidden layers consisting of neurons corresponding to the resulting clusters.
• Last hidden layer is connected to an output layer in which the number of neurons

corresponds to the number of classes.

Figure 2: Concept lattice size reduction using "most interesting" concepts

In the current study, two approaches for choosing “the best” concepts were tested: based on F1-score
and based on the accuracy metrics. For a single concept (𝐴,𝐵), the metrics was calculated with the
following method:

4
42



Sergei O. Kuznetsov et al. CEUR Workshop Proceedings 1–8

Figure 3: Neural network architecture based on concept lattice

• Assume that:
𝑦𝑝𝑟𝑒𝑑[𝑔𝑖] = 𝑇𝑟𝑢𝑒, 𝑖𝑓 𝑔𝑖 ∈ 𝐴,
𝑦𝑝𝑟𝑒𝑑[𝑔𝑖] = 𝐹𝑎𝑙𝑠𝑒, 𝑖𝑓 𝑔𝑖 /∈ 𝐴; - an object is predicted True if it is in the extent of the concept
and False otherwise;

• F1-score
F1-score = F1-score(𝑦, 𝑦𝑝𝑟𝑒𝑑𝑠), where 𝑦𝑝𝑟𝑒𝑑𝑠 - predicted target values, 𝑦 - real target values;

• accuracy = accuracy(𝑦, 𝑦𝑝𝑟𝑒𝑑𝑠);
• Sort the concepts by the metrics value and choose 10 top concepts for building the neural network.

5. Experimental Part

To automatically find concepts for the FCA-CLNet architecture, build and train a neural network, this
study uses the FCApy library (https://pypi.org/project/fcapy). This library provides the necessary tools
for working with formal concepts and allows to automate the process of building and training a neural
network based on these concepts.

Also, for a general understanding of the neural network, it is worth noting that sigmoid activation
function is used for hidden layers. The value of softmax function is used for the output layer. When
learning, binary cross-entropy is used as a loss function, and the Adam algorithm with the learning
rate = 0.01 is used as an optimizer.

In this study, the performance of the model was compared with the following basic methods: KNeigh-
borsClassifier, LogisticRegression, RandomForestClassifier, CatBoostClassifier, XGBClassifier and Tab-
NetClassifier. Each of these methods was tested both on the initial dataset and on the dataset after
clustering.

6. Data Description

For the purpose of our study we have chosen three datasets for binary classification from UCI Machine
Learning Repository (https://archive.ics.uci.edu/) (Table 1):
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Table 1
Dataset characteristics

Dataset Number of objects Number of attributes
Number of classes
in target attribute

Credit Approval 690 15 2
Wine Quality 4898 11 2
Mammographic Mass 961 5 2

Each dataset represents a separate task and has its own unique characteristics, such as feature types,
data size, class distribution, and noise presence. This approach allows one to consider different scenarios
and evaluate the performance of models on different types of data.

7. Results

For the experimental evaluation, four clustering methods were applied for feature pre-clustering: K-
means, Mean-Shift, DBSCAN, and HDBSCAN. 10 "most interesting" concepts were selected as neurons
for the neural network architecture using two distinct concept selection methods. The results obtained
for these two methods are presented in Table 2.

Table 2
FCA-CLNet concept selection method results (10 concepts). Weighted F1-score.

Clustering method Best concepts selection Loan Approval Wine Quality Mammographic
K-means F1-score 0.79 0.76 0.79

Accuracy 0.83 0.7 0.76
Mean-Shift F1-score 0.84 0.72 0.74

Accuracy 0.84 0.74 0.79
DBScan F1-score 0.79 0.7 0.75

Accuracy 0.81 0.69 0.76
HDBScan F1-score 0.79 0.71 0.77

Accuracy 0.86 0.7 0.73

The table shows that there is no significant difference in performance among the concept selection
methods across all three datasets. For the K-means clustering approach, the F1-score-based concept
selection method demonstrates better results in two out of the three datasets. The higher performance
observed in the Loan Approval dataset may be attributed to the fact that the grouped features for
clustering are more semantically similar than in the other datasets. Conversely, the method performs
worst on the Wine Quality dataset, potentially indicating that this method is more effective when
features can be easily divided into interpretable groups.

Subsequently, the performance of the proposed model was compared with that of classical machine
learning methods on the same datasets. The performance of the FCA-CLNet model is very close to that
of classical machine learning models, see Table 3.

8. Conclusion

In this paper, we investigated the application of feature pre-clustering for computing neural network
architecture based on concept lattices, The proposed FCA-CLNet method demonstrated performance
comparable to that of classical machine learning models, suggesting the potential for successfully
integrating clustering methods into FCA-based approaches. While the results are promising, further
development of the model is necessary to enhance its performance.
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Table 3
Model Comparison. Weighted F1-score.

ML method Clustering Method Loan Approval Wine quality Mammographic
K-Neighbors Without clustering 0.64 0.71 0.80

K-Means 0.70 0.69 0.82
Mean-Shift 0.71 0.66 0.81
DBScan 0.70 0.67 0.81
HBDScan 0.69 0.66 0.80

Logistic Regression Without clustering 0.72 0.74 0.81
K-Means 0.72 0.71 0.84
Mean-Shift 0.72 0.68 0.84
DBScan 0.74 0.69 0.81
HBDScan 0.72 0.69 0.81

Naive Bayes Without clustering 0.19 0.73 0.81
K-Means 0.72 0.68 0.80
Mean-Shift 0.22 0.38 0.84
DBScan 0.68 0.54 0.64
HBDScan 0.35 0.60 0.62

Random Forest Without clustering 0.72 0.80 0.79
K-Means 0.70 0.72 0.82
Mean-Shift 0.73 0.68 0.84
DBScan 0.72 0.69 0.81
HBDScan 0.72 0.74 0.82

XGBoost Without clustering 0.66 0.81 0.80
K-Means 0.72 0.73 0.82
Mean-Shift 0.73 0.68 0.84
DBScan 0.72 0.70 0.82
HBDScan 0.72 0.68 0.82

FCA - CLNet K-Means 0.79 0.76 0.79
Mean-Shift 0.84 0.72 0.74
DBScan 0.79 0.7 0.75
HBDScan 0.79 0.71 0.77
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Abstract
Clustering aims at finding disjoint groups of similar objects in data and is one major task in Machine Learning.
Yet, it is gaining more attention in Formal Concept Analysis community in these last years. This paper proposes
an original approach to the clustering of complex data based on Formal Concept Analysis (FCA) and Pattern
Structures. Stable concepts are considered as cluster candidates and the SOFIA algorithm is used to discover the
set of stable concepts in linear time. Then an algorithm inspired by a rare itemset mining algorithm is designed to
build a clustering with good properties, i.e., high internal cohesion within a cluster and high external separation
between the clusters. Some interestingness measures allowing us to choose the best clustering are discussed.
Finally the present approach is compared to some other well-known algorithms such as KMeans, DBScan, and
Optic.
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1. Introduction

Clustering aims at finding disjoint groups of similar objects in data and is one major task in Machine
Learning [1, 2]. Although the relations between clustering and Formal Concept Analysis (FCA) are
known and studied since a long time [3], clustering started gaining a new interest in the FCA com-
munity in the last years [4, 5]. Besides that, it should be noticed that Conceptual Clustering [6] and
Biclustering [7, 8] have always attracted attention in FCA community.

FCA can be considered as a powerful mathematical framework in data analysis and classification [9].
Thus relations between FCA and clustering are worth to study. However, FCA faces three main problems
when applied to clustering. Firstly, plain FCA only considers so called Formal Contexts based on binary
datasets while most of the data are either numerical or of more complex nature. Secondly, without
additional constraints, concept lattices can be exponential in the size of data (formal contexts) which
makes plain FCA algorithms not applicable to big data. Thirdly, FCA concepts are organized in a concept
lattice and are overlapping, while clustering is based on a partition into non-overlapping clusters. In this
paper we propose an original approach to overcome these three problems: (1) we use Pattern Structures
to extend FCA to deal with (almost) any kind of complex descriptions, (2) we use the SOFIA algorithm
to discover a limited set of cluster candidates in linear time, and (3) we propose an algorithm to select
non-overlapping clusters from the set of given cluster candidates based on Rare Itemset Mining.

Pattern Structures are used for clustering in [4], where authors are considering Pattern Structures
adapted to numerical and sequential data. The present paper studies clustering of tabular data of any
type, where every column is represented by an arbitrary pattern structure, making the present approach
more versatile and more universal.

The idea of concept stability in FCA was first introduced in [10] and then refined in [11] giving rise
to ∆-stability. Roughly speaking, the ∆-stability of a concept shows how many objects the concept will
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lose when making its description more precise (recall that a concept is composed of a set of objects and
a set of attributes materializing their common description). The use of concept stability for selecting
concepts adapted to clustering is studied in [12]. However, these authors are using concept stability
to select interesting concepts from the whole set of concepts which may be of exponential size. By
contrast, in our approach we make use of the Sofia algorithm [13, 14], to select the stable concepts in
linear time, without requiring to construct the whole set of concepts.

The problem of avoiding overlapping clusters when covering the whole data is addressed in various
ways. For example, the authors of [6] are trying to discover similar sublattices of concepts w.r.t. a
predefined similarity measure. Thus the latter approach is closer to “Conceptual Clustering” rather
than to clustering of objects. The authors of [15] are solving a biclustering problem, which is more
specific than clustering, and, firstly they are discovering a set of non-overlapping concepts that covers
most of the data, and then they are adding missing objects to the discovered biclusters until the whole
data is covered. By contrast, the authors of [4] are considering overlapping concepts as clusters, and
then delete objects lying in the overlap from all but one cluster to which they “mostly” belong.

From our side, we think that the overlap between clusters is a natural phenomenon as there are many
things in our world which cannot be strictly attached to only one single concept1. Thus, by contrast,
we propose to build clusters with the smallest possible overlap, and then to draw the attention of the
analyst to these overlapping objects.

2. Concepts as Clusters

2.1. A Bit of Formal Concept Analysis Terminology

Formal Concept Analysis [9] is a mathematical formalism based on lattice theory and aimed at data
analysis and classification. In FCA, data are represented thanks to a formal context (𝐺,𝑀, 𝐼) where𝐺
is the set of objects, 𝑀 is the subset of attributes, and 𝐼 ⊆ 𝐺×𝑀 is the binary relation between objects
and attributes. A formal context or more simply context can be represented as a binary table where
rows stand for objects, columns for attributes, and a cross is lying in a cell when the corresponding
object has the corresponding attribute.

Given a formal context (𝐺,𝑀, 𝐼), we define two derivation operations denoted as ’ (“prime”):
given a set of objects 𝐴 ⊆ 𝐺, the first operation returns 𝐴′ ⊆𝑀 , i.e., the set of attributes common to
all objects in 𝐴, while, given a set of attributes 𝐵 ⊆𝑀 the second operation returns 𝐵′ ⊆, i.e., the set
of all objects having all attributes in 𝐵. More formally:
𝐴′ = {𝑚 ∈𝑀 | ∀𝑔 ∈ 𝐴, (𝑔,𝑚) ∈ 𝐼}, ∀𝐴 ⊆ 𝐺, and
𝐵′ = {𝑔 ∈ 𝐺 | ∀𝑚 ∈ 𝐵, (𝑔,𝑚) ∈ 𝐼}, ∀𝐵 ⊆𝑀 .
For the sake of simplicity, we denote the description on a single object 𝑔 ∈ 𝐺 as 𝑔′ rather than {𝑔}′,

while we denote the objects described by a single attribute 𝑚 ∈𝑀 as 𝑚′, rather than {𝑚}′.
A formal concept (𝐴,𝐵) is a pair where the set of objects 𝐴 and the set of attributes 𝐵 verify

𝐴′ = 𝐵 and 𝐵′ = 𝐴. In concept (𝐴,𝐵), the set of objects 𝐴 is called the extent and the set of
attributes 𝐵 is called the intent. Moreover, objects can be organized into a concept lattice thanks to the
subsumption relation –a partial ordering– where a concept (𝐴1, 𝐵1) is subsumed by a concept (𝐴2, 𝐵2)
iff 𝐴1 ⊆ 𝐴2 or dually 𝐵2 ⊆ 𝐵1

A subset of attributes 𝐷 ⊆𝑀 is called a minimal generator of concept (𝐴,𝐵) when it is a minimal
subset of attributes, whose extent is 𝐴. In other words, removing any attribute 𝑚 ∈ 𝐷 from description
𝐷 will change its extent, i.e., ∀𝑚 ∈ 𝐷, (𝐷 ∖ {𝑚})′ ̸= 𝐷′.

Finally, the support of any description𝐷 ⊆𝑀 is given by the cardinality of the set of objects having
𝐷 as description, i.e., 𝑠𝑢𝑝𝑝(𝐷) = |𝐷′|.

1An interesting example is given by “Pheasant Island”, that belongs either to France or to Spain depending on the time of the
year!
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2.2. Formal Concepts as Clusters

Clustering is generally defined as the problem of discovering a set of disjoint clusters that cover all
the data, such that objects belonging to the same cluster are more similar than objects belonging to
different clusters. The choice of a similarity measure depends on a the type of data and the task at
hand. For example, considering numerical data, in clustering based on K-means (see for example [16])
every object is described by a vector of real numbers and the similarity between objects is in the inverse
proportion to the Euclidean distance between the object descriptions. In clustering based on DBScan
(see again [16]) the similarity between objects is based on the amount of close common neighbours in
the Euclidean space.

In our framework, when two objects 𝑔1, 𝑔2 ∈ 𝐺 are described by the corresponding sets of attributes
–aka itemsets– 𝑔′1, 𝑔

′
2 ⊆𝑀 , a natural way to define the similarity between two objects is provided by

the Jaccard similarity coefficient [16] between the descriptions:

sim(𝑔1, 𝑔2) := 𝐽(𝑔′1, 𝑔
′
2) =

|𝑔′1 ∩ 𝑔′2|
|𝑔′1 ∪ 𝑔′2|

. (1)

Using equation 1 the clustering task can be defined as follows, where ℘(𝐺) is the powerset of the set
of objects 𝐺:

Discover a set of clusters 𝒞 ⊆ ℘(𝐺), such that:
⋃︁

𝐶𝑖∈𝒞
𝐶𝑖 = 𝐺

∀𝐶𝑖, 𝐶𝑗 ∈ 𝒞, 𝐶𝑖 ∩ 𝐶𝑗 = ∅
∀ 𝑔, 𝑔𝑖 ∈ 𝐶𝑖, 𝑔𝑗 ∈ 𝐶𝑗 : sim(𝑔, 𝑔𝑖) ≫ sim(𝑔, 𝑔𝑗)

(2)

Now let us consider a formal concept (𝐴,𝐵) and the similarity between two objects 𝑔1, 𝑔2 ∈ 𝐴:

Proposition 2.1. Given a formal concept (𝐴,𝐵), the similarity between any pair of objects from extent
𝐴 is lower-bounded by the length of the concept intent |𝐵|:

sim(𝑔1, 𝑔2) ≥
|𝐵|
|𝑀 | (3)

Proof. Since 𝑔1 and 𝑔2 belong to concept (𝐴,𝐵), the concept’s intent 𝐵 is included in their common
description 𝑔′1 ∩ 𝑔′2. Meanwhile the union of the descriptions 𝑔′1 ∪ 𝑔′2 cannot be larger than the maximal
description 𝑀 , and then 𝑔′1 ∪ 𝑔′2 ⊆𝑀 . Thus, the following formulas hold true:

sim(𝑔1, 𝑔2) =
|𝑔′1 ∩ 𝑔′2|
|𝑔′1 ∪ 𝑔′2|

≥ |𝐵|
|𝑔′1 ∪ 𝑔′2|

≥ |𝐵|
|𝑀 | .

Therefore, a formal concept (𝐴,𝐵) can be considered as a cluster of objects 𝐴 that are at least
|𝐵|/|𝑀 | similar. Following this reformulation, the objective of clustering is to discover a set of concepts
with large intents but tiny or no overlapping between the extents of concepts.

3. Clustering pipeline

The clustering pipeline proposed in this paper is shown in Figure 1. Below we discuss the different FCA
techniques allowing us to efficiently build an optimal clustering.
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Step 0. Get Data Step 1. Initialise Pattern Structures Step 2. Enumerate Cluster Candidates

Step 4. Choose the Best Clustering Step 3. Enumerate Clusterings

Figure 1: The pipeline proposed for building a clustering pipeline based on FCA techniques.

3.1. Step 1. Initializing the Pattern Structure

While plain FCA works with contexts representing binary datasets, we rely in the present framework
on Pattern Structures, an extension of FCA allowing us to deal with many types of complex data. In the
following, we focus on Interval and Cartesian Pattern Structures to take into account multidimensional
numerical data. Below we recall the definitions and techniques of Pattern Structures.

Recall that a Formal Context is a triple (𝐺,𝑀, 𝐼) where 𝐺 is a set of objects, 𝑀 is a set of attributes,
and 𝐼 ⊆ 𝐺×𝑀 is a set of pairs (𝑔,𝑚) indicating that object 𝑔 is described by attribute𝑚. In such a formal
context, the space of object descriptions D = (D,⊆) is the powerset of attributes D = ℘(𝑀), ordered
by inclusion ⊆. It should be noticed that such description space D = (D,⊆) forms a lattice, i.e., for every
pair of descriptions 𝐷1, 𝐷2 ∈ D there is exactly one meet and one join: ∃!𝐷∧ ∈ D, 𝐷1 ∩𝐷2 = 𝐷∧ and
∃!𝐷∨ ∈ D, 𝐷1 ∨𝐷2 = 𝐷∨.

The Pattern Structure formalism [17, 18, 19] generalizes plain FCA and in particular the description
space D. The latter consists of a description set D equipped with operation ⊓ that defines a complete
meet semilattice on D, i.e., for any pair of descriptions 𝐷1, 𝐷2 ∈ D there exists meet (infimum):
∃!𝐷∧ ∈ D, 𝐷1 ⊓𝐷2 = 𝐷∧. The operation ⊓ defines natural order ⊑ : 𝑋 ⊑ 𝑌 ⇐⇒ 𝑋 ⊓ 𝑌 = 𝑋 .

Then the description space D combined with the set of objects 𝐺 and a mapping 𝛿 : 𝐺→ D forms a
pattern structure (𝐺,D, 𝛿), that can be considered as an analogue and a generalization of a formal
context (𝐺,𝑀, 𝐼) as follows. For any pattern description 𝐷 ∈ D, one can define the pattern extent:
𝐷◇ = {𝑔 ∈ 𝐺 | 𝐷 ⊑ 𝛿(𝑔)},
and for any subset of objects 𝐴 ⊆ 𝐺, one can define the pattern intent:
𝐴◇ = ⊓{𝛿(𝑔) | 𝑔 ∈ 𝐴}.
A pair of corresponding pattern extent 𝐴 and pattern intent 𝐷 forms a pattern concept: (𝐴,𝐷),

where 𝐴◇ = 𝐷,𝐷◇ = 𝐴.
This paper focuses on Interval and Cartesian Pattern Structures for modelling multidimensional

numerical data. The Interval Pattern Structure works with the description space Dint of intervals
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bounded by real numbers Dint ordered by interval subsumption ⊑int:

Dint = {[𝑙, 𝑟] | 𝑙, 𝑟 ∈ R, 𝑙 ≤ 𝑟}, and ∀[𝑙1, 𝑟1], [𝑙2, 𝑟2] ∈ Dint, [𝑙1, 𝑟1] ⊑int [𝑙2, 𝑟2] ⇐⇒ [𝑙1, 𝑟1] ⊇ [𝑙2, 𝑟2].

The Cartesian Pattern Structure allows to combine various description spaces D1,D2, . . . ,D𝑛 in a
single description space D× = (D×,⊑×) such that:

D× = ×
1≤𝑖≤𝑛

D𝑖 and ∀𝐷,𝐸 ∈ D×, 𝐷 ⊑× 𝐸 ⇐⇒
⋀︁

1≤𝑖≤𝑛
𝐷𝑖 ⊑𝑖 𝐸𝑖.

In this paper, every column in a numerical dataset is processed thanks to a distinct Interval Pattern
Structure (𝐺,D𝑖, 𝛿𝑖), and the whole dataset is processed thanks to a Cartesian Pattern Structure
(𝐺,D×, 𝛿×) built on top of base Interval Pattern Structures.

We also provide the “support function” supp : D → N to compute either the number of objects
described by a binary description 𝐵 ⊆𝑀 , or the number of objects described by a pattern description
𝐷 ∈ D:

supp(𝐵) = |𝐵′|,∀𝐵 ⊆𝑀, supp(𝐷) = |𝐷◇|, ∀𝐷 ∈ D (4)

This allows us to highlight the similarities when using either FCA or Pattern Structures for the
clustering task.

Although Interval Pattern Structures may work with an infinite space of intervals D, we restrict
each pattern structure to only deal with 11 evenly-spaced interval borders, i.e., 𝑉 ⊆ R, |𝑉 | = 11,
D = {[𝑙, 𝑟] | 𝑙, 𝑟 ∈ 𝑉, 𝑙 ≤ 𝑟}, assuming that every object description lies inside the largest interval
[min(𝑉 ),max(𝑉 )]. This restriction allows us to reduce the computational time and to improve the
stability of descriptions, as this is discussed in the next section.

3.2. Step 2. Enumerating Cluster Candidates

Previously, we have defined the Jaccard similarity measure between two objects in a formal context.
However, it is much less straightforward to define a similarity measure in a Pattern Structure. For
example, considering the two descriptions of cities: “population from 10k to 100k people, in East Asia”
and “population from 100k to 1M people, in France”. Discovering which cities are the more similar
depends on the arbitrary similarity function defined for each pattern dimension, e.g., population and
geographical location, and on the arbitrary way to aggregate these similarity functions into a single
similarity measure. Below we describe how to use stable concepts to mimic the similarity for any type
of descriptions.

Concept stability is defined in [10] as the percentage of subsets in a concept extent having a common
description 𝐵:

stab(𝐴,𝐵) :=
|{𝐴2 ⊆ 𝐴 | 𝐴′

2 = 𝐵}|
2|𝐴|

. (5)

However, due to its exponential nature, stability is hard to compute in practice. This is why ∆-stability
was introduced in [11] as a linear-time upper bound of concept stability:

∆stab(𝐴,𝐵) := |𝐴| − max
𝐵2⊆𝑀

s.t. 𝐵⊂𝐵2

supp(𝐵2). (6)

Delta-stability can also be adapted to a pattern concept (𝐴,𝐷) whose description belongs to a
description space D:

∆stab(𝐴,𝐷) := |𝐴| − max
𝐷2∈D

s.t. 𝐷⊏𝐷2

supp(𝐷2). (7)

In general terms, the value of ∆-stability can be interpreted as “how many objects from 𝐴 one will
lose when making description 𝐷 just a bit more precise”. Then, given a concept (𝐴,𝐷) with a high
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∆-stability, although the exact similarity between objects in 𝐴 cannot be measured, any more precise
concept describe fewer objects in a bounded way.

Another useful characteristic of stable concepts is that there exist efficient algorithms such as
SOFIA [13] and gSOFIA [14] that can be used to directly mine only stable concepts without computing
the excessively large amount of non-stable concepts.

3.3. Step 3. Enumerating Clustering Candidates

In our setting, there are some characteristics for determining a “good clustering”, e.g., a set of clusters
that are also well separated concepts. However, there are two main properties that are necessary for
achieving a good clustering: a clustering should cover most of the objects in the data and clusters should
not overlap too much. Below we present an algorithm enumerating clustering candidates satisfying
these two properties.

More formally, let us first consider a set of clusters candidates C ⊆ ℘(𝐺), where every cluster 𝐶 ∈ C
is a closed set of objects, i.e., 𝐶 ′′ = 𝐶 . Then a clustering is any subset of clusters 𝒞 ⊆ C. A clustering 𝒞
is called broad if it covers more than 𝜃𝑐𝑜𝑣 objects: cov(𝒞) = |⋃︀𝐶𝑖∈𝒞 𝐶𝑖| > 𝜃𝑐𝑜𝑣 . A clustering 𝒞 is called
minimal broad clustering if it is a broad clustering, and all its proper subsets are not broad clusterings:
cov(𝒞) > 𝜃𝑐𝑜𝑣 and ∀𝒞2 ⊂ 𝒞, cov(𝒞2) ≤ 𝜃𝑐𝑜𝑣 . A clustering 𝒞 is called 𝜃𝑜𝑙-non-overlapping if every
pair of clusters overlaps for at most 𝜃𝑜𝑙 objects: |𝐶𝑖 ∩ 𝐶𝑗 | ≤ 𝜃𝑜𝑙,∀𝐶𝑖, 𝐶𝑗 ∈ 𝒞. Then, our task consists
in enumerating minimal broad non-overlapping clusterings built from the set of clusters C.

The latter problem of discovering minimal broad non-overlapping clusterings is far from being simple,
as it can even be related to the famous Set Covering Optimisation Problem. However, a satisfactory
solution can be found when the problem is related to the “Rare Itemset Mining” problem [20], which
was formerly addressed in the pattern mining and FCA communities. Rare Itemset Mining focuses
on discovering minimal rare itemsets, that are minimal subsets of attributes 𝐷 ⊆ 𝑀 of a formal
context (𝐺,𝑀, 𝐼) whose support is below a given threshold 𝜃min: 𝐷 ⊆ 𝑀 s.t. supp(𝐷) = |⋂︀{𝑚′ |
𝑚 ∈ 𝐷}| < 𝜃min and ∀𝑚 ∈ 𝐷, supp(𝐷 ∖ {𝑚}) ≥ 𝜃min.

It can be noticed that discovering minimal broad clusterings –possibly overlapping– can be
reduced to discovering minimal rare itemsets, as minimal broad clusterings are the minimal subsets of
clusters 𝒞 ⊆ C whose coverage is above a given threshold 𝜃𝑐𝑜𝑣 , i.e., 𝒞 ⊆ C s.t. cov(𝒞) = |⋃︀𝐶𝑖| > 𝜃𝑐𝑜𝑣
and ∀𝐶𝑖 ∈ 𝒞, 𝑐𝑜𝑣(𝒞 ∖ {𝐶𝑖}) ≤ 𝜃𝑐𝑜𝑣 .

The relationship between discovering minimal broad clusterings and minimal rare itemsets allows us
to use Rare Itemset Mining algorithms for finding minimal broad clusterings. To do so, one should search
for minimal rare itemsets in the inverted clusters context (𝐺,C, /∈) with minimal support threshold
𝜃min = |𝐺| − 𝜃𝑐𝑜𝑣 .

Proposition 3.1. Let us consider the “inverted cluster context” 𝐾C = (𝐺,C, /∈), where 𝐺 is a set of
objects, C a set of clusters, and /∈ the incidence relation such that /∈= {(𝑔, 𝑐) ∈ 𝐺× C|𝑔 /∈ C}.

Then a subset of clusters 𝒞 ⊆ C is a minimal broad clustering in 𝐾C = (𝐺,C, /∈) w.r.t. the coverage
threshold 𝜃𝑐𝑜𝑣 if and only if it is a minimal rare itemset in context 𝐾C w.r.t. the minimal support threshold
𝜃min = |𝐺| − 𝜃𝑐𝑜𝑣 .

Proof. Consider the logical statement over two literals 𝑎 and 𝑏: 𝑎∧ 𝑏 = 𝑎 ∨ 𝑏. Now, let 𝑎, 𝑏 be attributes
of an arbitrary formal context (𝐺,𝑀, 𝐼). An analogous property of attribute extents can be inferred:
(𝐺 ∖ 𝑎′) ∩ (𝐺 ∖ 𝑏′) = 𝐺 ∖ (𝑎′ ∪ 𝑏′).

In the inverted cluster context 𝐾C = {𝐺,C, /∈}, every attribute is a cluster 𝐶 ∈ C, and the context
is designed in such a way –thanks to the the /∈ relation– that the extent of every cluster-as-attribute is
the complement of the cluster itself: 𝐶 ′ = 𝐺 ∖ 𝐶 . Here the expression “cluster-as-attribute” stands for
an attribute representing a cluster in the inverted context.

Thus, the extent of any subset of clusters-as-attributes𝐷 ⊆ 𝒞 in this context contains objects described
by none of the clusters:

⋂︀{𝐶 ′ | 𝐶 ∈ 𝐷} = 𝐺 ∖⋃︀{𝐶 | 𝐶 ∈ 𝐷}. Given that supp(𝐷) = |⋂︀{𝐶 ′ | 𝐶 ∈
𝐷}| and cov(𝐷) = |⋃︀{𝐶 | 𝐶 ∈ 𝐷}|, it comes that supp(𝐷) = |𝐺| − cov(𝐷). This equality, in turn,
gives rise to the proposition, i.e., supp(𝐷) < 𝜃min ⇐⇒ cov(𝐷) > |𝐺| − 𝜃min = 𝜃𝑐𝑜𝑣 .
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To the best of our knowledge, paper [21] was the first to propose the idea of representing the union
of attributes extents via the extents of the same attributes in the inverted context. There, the authors
considered the unions of attributes as the intents of monotone Galois connections and used formal
concepts to mimic the behaviour of linear regressions and neural networks.

As we have shown, one can reuse algorithms about Rare Itemset Mining to enumerate all broad
clusterings. For example, in this work we have re-implemented the algorithm MRG-Exp (also known as
Carpathia-G-Rare) proposed in [20]. However, there are two particularities of a clustering task that are
not really considered in Rare Itemset Mining: (1) minimal rare itemsets may contain an arbitrary amount
of attributes, while a clustering often contains only a few clusters, and (2) attributes in a minimal rare
itemset may have highly overlapping extents, while clusters in a clustering are supposed to be disjoint.
To satisfy these two requirements, we add two parameters in our implementation of MRG-Exp algorithm.
Firstly, we introduce maximal size parameter 𝜂size to only consider clusterings 𝒞 containing at most
𝜂size clusters: |𝒞| ≤ 𝜂size. And secondly, we add minimal added coverage parameter 𝜂cov that defines
the minimal amount of objects a cluster should add to a clustering: ∀𝐶 ∈ 𝒞, cov(𝒞)− cov(𝒞 ∖ {𝐶}) ≥
𝜂cov. It can be noticed that, when 𝜂cov is set to 1, the condition on minimal added coverage becomes the
condition on the minimality of a clustering: ∀𝐶 ∈ 𝒞, (cov(𝒞)− cov(𝒞 ∖ {𝐶}) ≥ 1) ⇐⇒ (cov(𝒞) ̸=
cov(𝒞 ∖ {𝐶}).

To summarize this section, we state that we solve the problem of enumerating minimal broad
non-overlapping clusterings by relating it to the problem Rare Itemset Mining with an additional
non-overlapping requirement. That is, we re-implement the MRG-Exp algorithm, while replacing all
intersections of extents in the algorithm with their unions, and replacing all tests of the form “support
< 𝜃min” by dual tests of the form “coverage > 𝜃𝑐𝑜𝑣”. Finally, we reduce the search space of clusterings
by specifying the restriction on the maximal size of a clustering, and by specifying the minimal added
support threshold for every concept in a clustering.

3.4. Step 4. Selecting the Best Clustering

Now we know how to enumerate minimal broad non-overlapping clustering candidates. However, one
can obtain multiple –sometimes, thousands of– minimal broad non-overlapping clustering candidates.
Below we propose some measures for guiding the choice of the best clustering out of the possibly very
large set of broad minimal non-overlapping candidates.

The main criterion for interestingness –or goodness– of a clustering 𝒞 ⊆ ℘(𝐺) is the coverage of
the clustering, i.e., the number of objects covered by the clustering 𝒞: cov(𝒞) = |⋃︀𝐶𝑖|.

The second most important criterion for goodness of a clustering 𝒞 ⊆ ℘(𝐺) is the overlap, i.e.,
the size of the pairwise intersections of clusters in 𝒞: ovlap(𝒞) =

∑︀
𝐶𝑖,𝐶𝑗∈𝒞 |𝐶𝑖 ∩ 𝐶𝑗 |. We do not

normalise the size of the overlaps by the number of pairs of concepts and the normalisation procedure
is explained at the end of this section.

Another criterion for differentiating two clustering candidates is to measure their sizes: size(𝒞) =
|𝒞|. Depending on the task and the data, the analyst running the clustering might prefer clustering
candidates with a specific number of clusters.

Moreover, in some cases, an analyst may prefer or penalize imbalanced clustering candidates where the
sizes of the clusters in the clustering 𝒞 are highly varying. The imbalance of a clustering 𝒞 is measured
as the standard deviation of the cardinalities of its clusters: imb(𝒞) = std(⟨|𝐶1|, |𝐶2|, . . . , |𝐶|𝒞||⟩).

An analyst may also prefer clustering candidates consisting of mostly stable concepts. Then the
stability of a clustering 𝒞 is measured as the average delta-stability of its concepts: stab(𝒞) =∑︀
𝐶𝑖∈𝒞

∆stab(𝐶𝑖)/|𝒞|.
Finally, since we study multidimensional numerical data, we will give priority to dense clus-

ters. More precisely, in 𝑛-dimensional data, the clusters have the form of hyperrectangles, i.e.,
𝐷 = ⟨[𝑙1, 𝑟1], [𝑙2, 𝑟2], . . . , [𝑙𝑛, 𝑟𝑛]⟩. The density of a clustering 𝒞 is defined as the average density of its
clusters-concepts (𝐴,𝐷) ∈ 𝒞: density(𝒞) = ∑︀

(𝐴,𝐷)∈𝒞
density

(︀
(𝐴,𝐷)

)︀
, where density

(︀
(𝐴,𝐷)

)︀
=

|𝐴|/Π𝑛𝑗=1(𝑟𝑗 − 𝑙𝑗).
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In order to aggregate all measures related to a clustering in a single measure, every clustering is
associated with a reward function, which is a weighted sum of the above measures. In addition, to
improve the interpretability of weights in the reward function, we normalize the values of each basic
measure in such a way that the lowest possible value of any basic measure is 0, and the maximal possible
value of any basic measure is 1, i.e., we apply MinMax scaling to the values of the computed basic
measures.

4. Experiments and Discussion

This paper presents our first attempt in building a clustering problem based on FCA and Pattern
Structures. For testing these first ideas, we have run tests over artificial and accessible datasets provided
by SciKit Learn to compare the present results with various State-of-the-Art clustering algorithms. The
results of the original algorithm comparison is presented on the web page https://scikit-learn.org/stable/
modules/clustering.html.

We chose to compare the experiment results returned by or FCA-based algorithm that follows the
pipeline presented above, with three well-known clustering methods. We considered (1) K-Means which
is one of the most popular and the most simple clustering methods, (2) DBScan which is one of the most
popular density-based clustering method, and (3) Optics which is one of the most versatile –while also
the less time efficient– algorithm presented in SciKit Learn.

The plots on Figure 2 present the clustering obtained by 4 algorithms on 6 datasets. It can be seen
that no clustering method is perfect: for example, K-Means does not work well on circular data (the top
row #1), DBscan and Optics do not find all three clusters on the "blobs" data (row #5), while FCA-based
algorithm works nicely on "blobs"-based data (rows #3 and #5) but fails on the other datasets.

It should be noticed that all these different clustering methods are based on different principles and
processes. K-Means clustering operates over centroids of clusters in multi-dimensional data. Thus, it
naturally tends to discover “blobs”-like clusters (rows #3, #5). DBScan and Optics are density-based
approaches. Therefore, they tend to discover nonlinear continuous clusters (e.g. rows #1, #2, #4) but fail
when the objects of two clusters are placed too close to each other. Finally, the FCA-based algorithm
searches for clusters that having more the form of a hyperrectangle. Thus, the latter tends to discover
“blobs”-like clusters as K-Means does.

The main disadvantage of the current FCA-based algorithm is the running time. As the results
in Figure 2 show, the FCA-based approach may work up to 1780 times slower than the the slowest
competitor which is Optics. Table 1 presents the running times and the sizes of the output computed
at each step of the proposed pipeline. It can be seen that most of the time is spent in Step 3 of the
pipeline, corresponding to the computing of minimal broad non-overlapping clustering candidates.
Actually, during this step hundreds of thousands of clustering candidates are produced leading to a very
high redundancy, while only a few best candidates are interesting. The minimization of the number
of clustering candidates discovered during Step 3 will also reduce the time required in Step 4 of the
pipeline, whose objective is the evaluation of the returned clustering candidates.

Thus, an important direction in future work is to develop a new algorithm for finding only hundreds
of best broad non-overlapping clustering candidates. Meanwhile, it should be noticed that in most of
the cases the total running time in Table 1 are already lying within “reasonable time slots” of tens of
seconds.

One could argue that an FCA-based algorithm can also find nonlinear clusters, as in rows #1, #2, and
#4, when using a polygon-based pattern structure (see [22, 23]) instead of the combination of Interval
and Cartesian pattern structures. Indeed, this is also one main future work.

The results for these experiments were obtained on a MacBook Pro with Apple M2 chip and 16 GB
of RAM. The source code for the experiments can be found in the Git repository https://github.com/
EgorDudyrev/Paper_StablePatternClustering.
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Step 2 Step 3 Step 4

dataset
# stable
concepts

stable
concepts
time (s)

# clusterings
clusterings
time (s)

statistics
time (s)

total time (s)

noisy_circles 1 150 0.06 129 629 84.73 4.28 89.07
noisy_moons 636 0.04 99 082 15.86 3.08 18.98

varied 564 0.04 71 696 8.77 2.26 11.07
aniso 342 0.03 21 353 1.55 0.96 2.54
blobs 554 0.04 51 796 7.17 2.37 9.57

no_structure 1 139 0.05 96 914 84.18 3.19 87.42

Table 1
The time and the size of the output for every step of the proposed clustering pipeline.

5. Conclusions

In this paper we have presented an original pipeline for clustering numerical data using Formal Concept
Analysis and Pattern Structures. The pipeline consists of four steps: (1) we encode the data via Interval
and Cartesian Pattern Structures, (2) we find the set of stable cluster candidates thanks to the gSofia
algorithm, (3) we enumerate the set of minimal broad non-overlapping clustering candidates, and (4)
we select the best clustering candidates based on a set of interestingness measures. We also show that
this approach outputs some reasonable clusterings when applied to artificial datasets from the SciKit
Learn package, while running in a matter of seconds.

As future work we are planning to mainly improve the third step of the pipeline, by reducing the
space of the clustering candidates. We will also run experiments over real-world complex datasets with
numerical, categorical, and textual elements. Finally, our research raises the question of the type of
clusters that can be found when using an FCA framework, i.e., how to define a pattern structure able to
describe dense continuous clusters, or rotated hyperrectangles, or any polygons in multidimensional
space.
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Figure 2: This visual comparison of the clusters produced by the different clustering approaches is inspired by
the figure from Sci-Kit learn https://scikit-learn.org/stable/modules/clustering.html. The sets of dots having the
same color correspond to clusters while sets of grey dots if any represent objects which are not belonging to any
cluster.
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Abstract. Formal concepts can be considered as rigid biclusters where
all objects from the bicluster (formal extent) share all attributes from the
intent. Relaxed versions of concept-based bicluster, e.g. OA-biclusters,
are also well-known. In this note we show that axial (aka monotone,
disjunctuve) concepts arising from axialities (adjunctions on powersets
of objects and attributes) can help to perform clustering of tricky data
like those where clusters are not separable by hyperplanes or present
complex dynamical objects, where standard formal concepts and interval
patterns would hardly help to catch the required patterns.

1 Introduction

It is well known that Formal Concept Analysis (FCA) presents natural tools for
clustering [1]. A formal concept can be considered as a rigid (bi)cluster where
all objects of the (bi)cluster (formal extent) share all attributes of the intent,
which embodies the similarity of the objects from the extent. Relaxed versions
of concept-based bicluster, e.g. OA-biclusters [5, 6] are also well-known. Another
well-studied FCA-based clustering model is the one based on interval pattern
structures [7]. In this note we show that axial (disjunctuve [9]) concepts arizing
from axialities (adjunctions aka residuated mappings or monotone Galois con-
nections on powersets of objects and attributes) [1] can help to naturally cluster
tricky data like dynamic streaming data or data of the form 1.1, 2.1, 4.1 in Fig.1,
where clusters are dense sets of points with clear connectivity property, so that
standard formal concepts and interval pattern concepts would hardly help to
catch the required patterns.

2 Definitions and Main Idea

First, let us recall the definitions of (interval) pattern structure and pattern
concept [4, 7].

A pattern structure [4] is a triple (G,D, δ), which is a generalization of a
formal context (G,M, I) so that G is a set of objects, D = (D,⊓) is a complete
semilattice on descriptions from set D with meet (infimum) ⊓, and δ : G → D
takes an object from G to its description in D. For any pattern description d ∈ D
one can define its pattern extent d⋄ = {g ∈ G | D ⊑ δ(g)} and for any subset of
objects A ⊆ G one can define its pattern intent A⋄ = ⊓{δ(g) | g ∈ A}. A pair
of corresponding pattern extent A and pattern intent d forms a pattern concept :
(A, d), where A⋄ = d, d⋄ = A.
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The description semilattice of an interval pattern structure [7] Dint consists
of tuples of real-numbered intervals Dint, where intervals are ordered by interval
subsumption ⊑int:

Dint = {[l, r] | l, r ∈ R, l ≤ r} and ∀[l1, r1], [l2, r2] ∈ Dint, [l1, r1] ⊓int [l2, r2] =
[min{l1, l2},max{r1, r2}] so that [l1, r1] ⊑int [l2, r2] ⇐⇒ [l1, r1] ⊇ [l2, r2].

Interval pattern concepts propose a natural way of clustering numerical data
as proposed in [7]. The experiments show that interval pattern concepts, whose
intents make hyperrectangles with axis-aligned edges and faces can be success-
fully used for clustering data like 5.1, 6.1 (Fig.1), can be used with less success
in clustering data like 3.1 and perform much worse for data of the form 1.1, 2.1,
4.1.

So, in this note we propose another FCA-based tool - called axial (aka dis-
junctive, monotone [9]) concepts - which can help in clustering data that are
hard to cluster using formal or interval pattern concepts.

Let K = (G,M, I) be a formal context, then axialities (aka adjunctions or
residuated mappings on powersets) [2] are defined for K as

←A = {b ∈M | aIb for no a ∈ G \A}, (1)

→B = {a ∈ G | aIb for some b ∈ B}. (2)

where A ⊆ G is a subset of objects and B ⊆M is a subset of attributes.
An axial (or disjunctive [9]) concept based on axialities is defined in a similar

way as the standard formal concept [3], i.e. as a pair (A,B), where A ⊆ G,B ⊆
M and A =→ B,B =← A. Unlike formal concepts, the extents and intents of
axial concepts are isotonic, i.e. for two axial concepts (X1, Y1) and (X2, Y2) one
has X1 ⊆ X2 iff Y1 ⊆ Y2

While for some clusterization tasks in the left column of Figure 1, like 3,5,6,
the generalization of formal concepts to interval pattern concepts fits quite well,
the clustering tasks 1,2,4 are hardly well-solvable by means of interval patterns,
since they make only axis-aligned hyperrectangles and are insensitive to density
and continuity properties of data.

Here we propose to apply axial concepts by first making a transformation of
original data, which is well-known in Machine Learning as the “kernel trick”[10].

First, we introduce data model which will be studied further. Let G be a
set of data points in a metric space with metric d. Let A1, . . . , An be disjoint
subsets of data points: Ai ⊆ G, Ai∩Aj = ∅. We call the family of sets A1, . . . , An

(ϵ, k)-dataset if d(ai, aj) > ϵ for every ai ∈ Ai and aj ∈ Aj where i ̸= j.
Let us define the following formal context, which we call ϵ-kernel context :

(G,G, Iϵ), where Iϵ ⊆ G×G is defined as (g, h) ∈ Iϵ iff d(g, h) ≤ ϵ.
Proposition For each cluster Ai there is an axial concept (Ai, Ai) of the

context (G,G, Iϵ).
Proof. By the construction of the context (G,G, Iϵ) every subset A ⊆ Ai

makes the monotone concept (A,A).
Example 1. Consider a simplified example of a dataset of type 2.1 in Fig.1

where the set of data points is G = {g1, . . . , g12} as in Fig. 2, with A1 =
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1.1

data

1.2

KMeans

1.3

DBSCAN

1.4

OPTICS

1.5

FCA-based

2.1 2.2 2.3 2.4 2.5

3.1 3.2 3.3 3.4 3.5

4.1 4.2 4.3 4.4 4.5

5.1 5.2 5.3 5.4 5.5

6.1 6.2 6.3 6.4 6.5

Fig. 1. The left-most column presents clustering data from Sci-Kit learn https://scikit-
learn.org/stable/modules/clustering.html. The other columns stay give visual compar-
ison of clusterings based on various approaches: KMeans, DBSCAN, OPTICS and
FCA-based. Dots colours correspond to clusters, black dots represent non-clustered
objects (outliers).
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Fig. 2. Data Visualization

{g1, . . . , g6},A2 = {g7, . . . , g12} and d(g1, g2), d(g2, g3), d(g3, g4), d(g4, g5), d(g5, g6) <
ϵ and d(g7, g8), d(g8, g9), d(g9, g10), d(g10, g11), d(g11, g12) < ε and for any gi ∈ A1

and gj ∈ A2 one has d(gi, gj) > ε. Then the cross-table of (G,G, Iϵ) is given in
Table 1.

Consider now that ε takes values ε1 < ε2 < ε3. For ε = ε1 close to zero, the
resulting clusters would contain only single points. Increasing ε to ε = ε2 we
obtain two clusters staying for sets A1 and A2. If we increase ε further to ε = ε3,
the clusters will merge in one.

Similar effects will be observed for data of the types 1.1, 4.1 in Fig.1. As for
data of the types 3.1 and 5.1 where there are “bridges” between clusters, let us
consider the following example.

1 2 3 4 5 6 7 8 9 10 11 12
1 x x
2 x x x
3 x x x
4 x x x
5 x x x
6 x x
7 x x
8 x x x
9 x x x
10 x x x
11 x x x
12 x x

Table 1. Context (G,G, Iε) for ε2
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Fig. 3. The dotted lines stay for ε1, the dashed lines stay for ε2, and the solid line
stays for ε3.

Example 2. Consider another example in Fig. 4. Here two clusters A1 and A2

are not totally disjoint, but have a “bridge” element g5 shared by both clusters.

1 2 3 4 5 6 7 8 9
1 x x x x
2 x x x x
3 x x x x
4 x x x x x x
5 x x x
6 x x x x x x
7 x x x x
8 x x x x
9 x x x x

Table 2. Context (G,G, Iε) for ε2

In Fig.5 we see the diagram of the axial concept lattice for the context in
Table 2. Notation a, b with a < b denotes the set of elements (both objects and
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Fig. 4. Clusters A1 and A2 share common element g5

Fig. 5. Diagram of the lattice of axial concepts for the context in Table 2

attributes) {a, a+1, . . . , b}. Every concept propose a cluster and every antichain
gives a clusterization, where clusters may intersect.

64



Clustering with Axialities 7

Note that clustering in this case can also be easily performed by using formal
concepts (1, 4, 1, 4), (4, 6, 4, 6), (6, 9, 6, 9), (4, 1, 6), (6, 4, 9), with objects 4 and 6
playing the role of outliers in their clusters.

3 Computing clusters as axial concepts

It is well-known [5] that (A,B) is a axial (disjunctuve) concept of context
(G,M, I) iff (G \ A, (G \ A)′) is a formal concept of (G,M, Ī). So, to compute
axial concepts of (G,G, Iϵ), one can use standard FCA algorithms like CbO [10].
‘1 For example, to compute maximal (both by extent and intent) axial concepts,
one can compute minimal extents of (G,G, Īϵ), which can be done in O(k×|G|2)
time.

Although clusters correspond to axial extents of ε-kernel context, not every
extent makes a “good” cluster. For Example 1 with the context in Table 1 every
subset 1, k for k ∈ 1, 12, except for k = 7, makes an axial extent, however the
desired cluster among them is only 1, 6, which corresponds to the axial concept
(1, 6, 1, 6). Consider a CbO-like object-wise strategy of computing axial concepts
by adding object k + 1 to the current axial extent 1, k. Till k = 6 it runs in a
uniform way by adding new row and new column. However, when one tries to
add object 7 (or any of the objects 8,9,10,11,12) to the extent 1, 6 of the concept
(1, 6, 1, 6), one again, performing ← and → operations, obtains axial concept
(1, 6, 1, 6). This actually signifies that objects 7,8,9,10,11,12 have no similarity
to objects 1, 6 and the construction of the cluster should be terminated, making
it 1, 6. This observation can be formalized as a general rule as follows: if for a
current axial extent A adding any new object and performing operations ∨ and
∧ results in the old extent A, then one should output A as a cluster. One can
design other similar rules as the “termination criterion” depending on the data
and problem setting.

For example, consider data in Fig. 4 with ε2 and respective context in Ta-
ble 3. Since 5 has only two neighbors, the respective column and row have only
three entries. All other elements have at least three neighbors. So, the algorithm
computing axial concepts here may have a termination condition such that if
the algorithm gets a row (column) with less than 4 entries, thus outputting two
clusters A1 and A2 as required.

It is also worth noting that transforming initial data to the ε-kernel context
given by a table results in quadratic increase of the data size. The kernel context
is a convenient tool for mathematical modeling, but computation of axialities
for clustering can be made more efficient if the algorithms are adapted to the
initial data representation. Then, instead of traversing rows and columns of the
kernel cross-table, one can operate with circles of ε-neighborhoods of the points
in original representation.
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4 Conclusion

We have proposed an idea of a clustering framework based on ε-kernel trick,
axialities, and respective axial concepts, so that clusters correspond to special
types of axial concepts of the ε-kernel context related to the original dataset.
Axialities propose a natural way to express continuity in clusters, where not all
points of a cluster are close to each other, however, as in dynamical data like
streaming data, there is a continuous path joining any two points of the cluster.
The proposed formalization allows a natural way of computing clusters by means
of standard FCA-algorithms. However, not all axial concepts correspond to good
clusters, so the main challenge for a particular clustering setting remains to find
easily computable conditions that would allow efficiently selecting exactly those
axial concepts that correspond to best clustering. The further work would also
require extensive experiments for choosing optimal values of parameter ϵ.
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Abstract 
In this paper, programming library and algorithms for solving formal concept related tasks in real 
world domains are presented. The main goal of the proposed system is the searching of all closed 
itemsets (concepts). Constructing Galois lattice of concepts allows to additionally generate good 
classification tests and functional dependences for given classifications on a given data set. In general, 
these tasks are based on ordinal procedure for shallow or deep machine learning for classifications. We 
show that formal concept analysis is closely related to modeling plausible classification reasoning 

Keywords  
formal concepts, good classification tests, functional dependencies, plausible reasoning1 

1. Introduction 

Modern accent in Machine Learning (ML) is shifted to the numerical solutions as opposed to 

plausible reasoning. Of course, the linear additive model or kernel model allows great data 

compression but at the same time the source of information is lost. On the other hand, the Formal 

Concept Analysis (FCA) has a native ability to model plausible reasoning. When there is no 

explanation based on a model that is difficult for understanding and sometimes conflicting with 

human sense, then the obtained results are not reliable. Obviously, integration of plausible 

reasoning with the FCA as one of the instruments of ML is crucial in the context of AI. 

The problem of finding all closed sets (concept lattice) has been solved by many researchers: 

B. Ganter, D. Borchmann, M. Zaki, S. Kuznetsov, and many others. The source for many of these 

works was the algorithm of B. Ganter [1]. The Nex-Closure algorithm was proposed in [2] as an 

improvement of previous versions of this algorithm. One of the most efficient algorithms, Charm, 

has been proposed by M. Zaki in [3]. The algorithm presented in this paper is based on a 

previously developed algorithm for extracting only good classification tests (GCTs) [4] from a 

given context. The algorithm uses the original decomposition of the source context into the 

attributive and object sub-contexts described in [5]. 

In the paper [4], it was shown that good classification tests (GCTs) are formal concepts and 

therefore they are contained in the Galois lattice built over a given context with additional 

attribute(s) that specify the partitioning of context’s objects into non-overlapping classes. 

However, all the algorithms developed for deriving GCTs as formal concepts did not aim to build 

and did not build the complete Galois lattice over a given context, on the contrary, these 

algorithms generate only those elements of the lattice that correspond to all good classification 

(diagnostic) tests (redundant and non-redundant, i.e. test generators).  
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The first algorithm for generating good maximally redundant classification tests (GMRTs) 

was implemented in system SISIF [6], but it had a very small memory. In addition to GMRTs, the 

SISIF also has generated functional dependencies (FDs) as the best approximation of a given 

classification of given objects. The system also implemented an algorithm for extracting all 

generators from a given GMRT, equivalent to it. An overview of the main algorithms developed 

for building GCTs can be found in [5]. 

This paper presents a new system for extracting the different types of itemsets (concepts, 

dependencies, logical rules, classification tests) based on constructing the lattice of all closed 

frequent concepts in a given context. This system has the following features: 

1. Work with large datasets;  

2. Work with multivalued attributes of objects; 

3. Well-structured and simple for usage; 

4. Applicable for multiple FCA task; 

Further, the work is organized as follows. Section 2 gives basic definitions related to the FCA, 

GCTs, and plausible reasoning rules. Section 3 describes Diagnostic Test Machine (DTM) as a 

software library for finding different concepts and logical rules in data sets. Section 4 briefly 

describes the experiments. Section 5 deals with the plausible reasoning rules application, and 

Section 6 offers some concluding remarks and describes some future investigation. 

2. Basic definition 

Let S = {1, 2,…, N} be the set of objects’ indices (objects, for short) and T = {A1, A2, …, Aj, …Am} be 

the set of attributes’ values (values, for short). Each object is described by a collection of values 

from T. Let s  S, t  T. Denote by ti, ti  T, i = 1,…, N the description of object with index i. 

The definition of good test is based on two mapping 2S → 2T and 2T → 2S determined as 

follows: 

t = val(s) = {intersection of all ti: ti  T, i  s} and 

s = obj(t) = {i: i  S, t  ti}.  

Of course, we have obj(t) = {intersection of all s(A): s(A)  S, A  t}. Operations val(s), obj(t) 

are reasoning operations related to discovering the general feature of objects the indices of 

which belong to s and to discovering the indices of all objects possessing the feature t. 

The basic operator of plausible reasoning [3] connecting it with the FCA, is the generalization 

rule (GR) defined as follows: 

generalization_of(t) = t = val(obj(t)): generalization_of(s) = s = obj(val(s)). 

Galois Lattice consists of closed pairs (s, t) called concepts and defined by the generalizing 

rule: val(obj(t)) = t, obj(val(s)) = s.  

In general, the concept has maximal coverage of examples of some dataset by a given itemset 

that cannot be extended by any other attribute to get the same sample coverage. 

2.1. Classification (diagnostic) tests 

In classification problems, each object has a class label, which is not part of the domain 

description. Labeling is a kind of partitioning of a data set or ontology. 

Let S(+) and S(−) = S\S(+) be the sets of positive and negative class of objects, respectively. 

A diagnostic (classification) test for S(+) is a pair (s, t) such that t ⊆ T (s = obj(t) ≠ ∅), s ⊆ 

S(+) and t  t t, t  S(−). 

A diagnostic test (s, t), t ⊆ T (s = obj(t) ≠ ∅) is good for S(+) if and only if any extension s* = 

s ∪ i, i ∉ s, i ∈ S(+) implies that (s*, val(s*)) is not a test for S(+). 
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It means that if (s, t) is a good test for S(+), then s of it is non-extendable, i. e. adding to s any i 

from S(+) not belonging to s implies that for val(s ∪ i) there exists such  a t  S(−) that val(s ∪ i) 

 t. 

A good test (s, t), t ⊆ T (s = obj(t) ≠ ∅) for S(+) is irredundant (GIRT) if any narrowing t* = 

t\A, A ∈ t implies that (obj(t*), t*)) is not a test for S(+). 

A good test (s, t) for S(+) is maximally redundant (GMRT) if any extension of t* = t ∪ A, A ∉ 

t, A ∈ T implies that (obj(t*), t*) is a test for S(+), but not a good one. 

To align the above original definitions with FCA terminology, they can be redefined as: 

Maximal test (MT) for S+ is closure itemset (CI) (s, t) with confidence = |s+|/|s|. 

Irredundant test (IT) for S+ is CI (s, t) if any narrowing t*= t\A, A ∈ t implies that obj(t*) ≠ s. 

The goodness of a diagnostic test turns into its confidence. 

2.2. Functional dependencies 

Functional dependency X → C is a relation between the collection X  T of attributes and the 

given classification C of objects into classes C1, ..., Ck. Denote by P(X) = {p1, p2, …., pm) the 

partition of S generated by the values of the collection of attributes X, where pj, j = 1, 2, …, m, m ≥ 

k, are classes of P(X), each of which is associated with one and only one collection of values of 

attributes of X. The definition of functional dependency between attributes is based on the 

definition of the relation of partial order over the set of partitions generated by the set of 

considered attributes. This relation is introduced as follows: P(X)  P(Y) iff P(X) ⊆ P(Y), X, Y  T. 

A pair P(X), P(Y) are said to be in the inclusion relation iff every block of P(X) is contained in 

one and only one block of P(Y). 

If P(X) = P(C), then X is the ideal approximation of classification C or ideal test based on a 

functional dependency. If this condition is not satisfied, then X, X  T, X corresponds to a good 

approximation of C, if P(X) is the closest to P(C) element of Partition Lattice over a given context, 

i. e., for all P(Y), Y  T condition (P(X)  P(Y)  P(C)) implies P(X) = P(Y). In this case, we said 

that X → C is a FD in T. FD in the form X → Y is known as conditional FD. 

In [4], A method is given to transform initial contexts into the contexts for searching for FDs 

by any algorithm of discovering GMRTs. 

2.3. Implicative dependencies as plausible rules of the first type 

In this paper, we focus on conceptual knowledge the main elements of which are objects, 

properties (attribute values), and classifications (attributes). Taking into account that 

implications express the links between concepts (object ↔ class, object ↔ property, property ↔ 

class) we deem classification reasoning to be based on using and searching for only one type of 

logical dependencies, namely, implicative dependencies.  

Implicative dependences are the result of GCTs inferring. Consider, for example, a GMRT as a 

pair (obj(t), t). In this pair, t is a collection of attribute values, t  T, and |obj(t)| is the support of 

t , and obj(t)  S(+). Thus, we can form an implicative rule t → S(+). This assertion is transformed 

in a reasoning rule. The left part of this rule is t (a set of values from T) and S(+) can be the name 

of a class in the classification of S. 

Implicative assertions are considered as plausible rules (PR) of the first type. Generally, we 

have the following rules of the first type (the left part of rules can contain any number of different 

values from a given context): Implication: a, b, c, …→ d. Interdiction or forbidden rule: a, b, c, 

… → false (never). This rule can be transformed into several implications such as a, b, … → not c; 

a, c, … → not b; b, c, … → not a. Compatibility (associations): a, b, c, … → VA, where VA is the 

frequency of rule’s occurrence (related to the confidence of the left part of this rule). Generally, 
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the compatibility rule represents a most frequently observed combination of values. Diagnostic 

rule: x, d → a; x, b → not a; d, b → false. For example, d and b can be two values of the same 

attribute. This rule works when the truth of ‘x’ has been proven and it is necessary to determine 

whether ‘a’ is true or not. If ‘x & d’ is true, then ‘a’ is true, but if ‘x & b’ is true, then ‘a’ is false. Rule 

of alternatives: a or b → true (always); a, b → false. This rule says that ‘a’ and ‘b’ cannot be 

simultaneously true, either ‘a’ or ‘b’ can be true but not both. In the rules, a, b, c, d,  T, x  T.  

The plausible reasoning rules of the first type are formed from GCTs (maximally redundant 

and non-redundant). Let X1, X2 and Y1, Y2  T be good maximally redundant and good maximally 

non-redundant classification tests. Let X1 → q1, X2 → q2, Y1 → q1, Y2 → q2 be implications, where 

q1, q2  GOAL, are two different classes of objects. We can form the following forbidden rules: X1 

→ not q2, and X2, → not q1.  

The rules of alternative: “a or b → true; a, b → false” is indeed the case when a and b are values 

of the same attribute.  

The diagnostic rule can be obtained from two good maximally non-redundant test. For 

example, compute int = Y1  Y2. Then we have diagnostic rule: ‘if int is true, then int  (Y1\int) → 

q1; int  (Y2\int) → q2. 

Compatibilities rules can be obtained from frequent associations. 

3. Diagnostic Test Machine 

Diagnostic Test Machine (DTM) is a software library for finding, implicative and functional 

dependencies in data sets. All dependencies generated by the system are redundant and 

frequent, until otherwise explicitly declared. In particular. The DTM finds all value-based (like in 

the Charm algorithm [3]) and attribute-based frequent formal concepts that are independent of 

the final task. Once the lattice of concepts is found, it can generate all good (confident) maximally 

redundant diagnostic (classification) tests (GMRT) and good approximating FDs for a given 

classification (partition of objects). This step is task-dependent (Figure 1). It also has the ability 

to generate all non-redundant implications from redundant dependencies and associative rules. 

 

Figure 1: The tasks flow diagram in the DTM 
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The library is applicable for a number of scenarios and purposes, but mainly: 

- to construct FDs and simultaneously the dimensionality reduction in initial data; 

- to construct GCTs for classification task. 

Below some details for main steps and details of the library implementation are listed. 

3.1. Row data preprocessing. 

The library supports categorical (ordinal/nominal) and numerical (discrete/continuous) 

domains for attributes. One of the main problems in this area is working with numeric attributes. 

In addition to the trivial simple partitioning into equal wide ranges, the library includes 

additional methods to solve this problem, namely: Minimum Description Length (MDL) [8] and 

the Kolmogorov-Smirnov algorithm. These methods must be provided with a target partition. 

There are two obvious options for this: to use a forward-defined classification or, in the case of 

categorical attributes, to use its composite partitioning. Despite this, there are still questions on 

this issue. 

We transform the row data to dual horizontal - vertical bit vector representation. This allows 

to work effectively with dense datasets (like “Mushrooms”) due to having the equal width 

records and sparse ones like any store of transactions db. 

3.2. Concepts searching algorithm 

This algorithm is described in [6]. It is based on the procedure of decomposing the main task into 

attributive and object subtasks (projections) most fully described in [7]. 

The root of search tree or initial task (Alg.1, init_task) is built on a given preprocessed 

training set. It can be attribute-based or sample (object)-based (transposed) task, which initiates 

the search from the join (lower bound) or meet (upper bound) of the lattice [14]. The choice of 

attribute or object together with the lattice traversal strategy provides a powerful basis for 

implementing various algorithms for the FCA problems. Only a row coverage vector is used for 

concept representation, which correspondents to the ‘rows’ vector in the Task structure (see 

Main structures). The algorithm recursively decomposes the current task into depth-first search 

subtasks, selecting attribute/value according to selected strategy.  

The search tree generates only closed elements of concept lattice (closed itemsets) (Alg. 1, 

find_concepts) and does not produce any redundant subtasks. The traversal strategy 

(attribute/sample selection) may vary depending on the task. So, if the task is to find all frequent 

concepts, the optimal strategy will be to select the attribute with the minimum support, but when 

the task is diagnostic, the strategy with the maximum support will be much more reliable. Once 

the attribute is selected, the subtask corresponding to some concept is formed using the 

generalization rule (Alg. 1, sub_task). Of course, the search tree could achieve the same task in 

several ways. The logic of cutting off a dead-end or solved subtasks and stopping the search is 

also encapsulated (Alg. 1, add_concept). 

Some of the main structures and operations on them are defined below. The "." operator 

provides access to the structure fields. 

 

Main structures  

BitVector :  
 

Operations: 
&  - bitwise and operation 
∨  - bitwise  or operation 
¬  - bitwise  not operation 
weight()  -  sum of all bit values   
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DualBitMatrix – structure effectively supports dataset (DS) representation (horizontal and 
vertical) 

 
Fields: 

rows : [BitVector] // set of BitVector corresponding to each example in the DS 
cols :   [BitVector] // transposed rows BitVector set  for each attribute in the DS 
height: int // number of rows 
width:  int // number of cols 

 
Operations: 

 
BitVector & (BitVector vector)   // returns intersection of given  rows/cols   
BitVector ∨ (BitVector vector)   // returns union of given rows/cols 

 

Task – subset of DS (DualBitMatrix) in both dimension. It is corresponds to concept and defined 
by the generalizing rule: val(obj(t)) = t 

 
Fields: 

cols   : BitVector      // cols subset of the DS 
rows  : BitVector    // rows subset of the DS 
cross : BitVector     // the task rows intersection db.&( rows ) 

 
 

Lattice –  structure consists of founded concepts and responsible for  search tree pruning  
 

Fields: 
concepts :   { BitVector } //set of concept 
minsup : int   // minimal support threshold 

 

Algorithm 1. Frequent concepts search procedure 

Input:  db : DualBitMatrix, minsup: int // training set, minimal support  
Output: L: Lattice 

 
T = init_task(db) 
L = Lattice (∅, minsup) 

 
find_concepts(T, L) begin   // traversal of the task lattice 

if add_concept(L, T.rows) then 
while (sub_T = select_subtask(T, strategi)) is not null do 

find_concepts(sub_T, L) 
T.cols = T.cols & ¬sub_T.cross // removes subtask 

end while 
end if 

end find_concepts 
 
init_task(db) begin 

rows  = ¬BitVector(db.height) 
cols  = ¬BitVector(db.width) 
cross = db.&(rows) 
return Task(rows ,  cols, cross)  

end init_task 
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select_subtask(Task t, strategy) begin 
 a =  find_best_sub_task(t, strategy) // return best attribute according the strategy 
if a >=0 then  

return sub_task(t, a) 
else 

return null 
end if 

end select_subtask 
 
sub_task(Task t, int a) begin // get sub task/concept by given attribute 

rows  := t.rows  &  db.cols[a]         // t = obj(a) 
cross := db.&(rows)                         // s = val(t) 
cols  := t.cols  & ¬cross 
return Task(rows ,  cols, cross)  

end sub_task 
 
add_concept(L, c) begin 

support = c.weight() 
if support < L.minsup then 

return false 
else if c ∈ L.concepts then // all subtask were solved 

return false 
end if 
L.concepts= L.concepts ∪{c} 
return true 

end add_ concept 
 

 

3.3. Maximal tests generator for given classification 

Once we have all frequent concepts, obtaining all MTs (frequent implications) is as trivial as 

intersecting of the goal vector (bit vector with ones for the target class objects) with the concept 

and thresholding the result by the minimum confidence parameter (Alg. 2). 

 

 

Algorithm 2. Concept to maximal test procedure 
Input:  
goal : BitVector,  concept : BitVector  

minconf: float [0:1]  // minimal confidence 
Output: 

implication : (concept, confidence)-> goal 
 
concept_to_implication(goal, concept , minconf) begin 

goal weight = (concept & goal).weight() 
concept weight = concept. weight() 
float confidence = goal weight /concept weight  
if( confidence >= minconf) then 

return (concept, confidence)-> goal 
else then 

return null 
end if 

end concept_to_implication 
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3.4. Diagnostic task 

The diagnostic or classification task is to assign an unlabeled example to a certain class for which 

tests were obtained in the previous step. One problem here is that the tests are generally 

redundant. But the task to generate all non-redundant tests has the exponential complexity. 

Therefore, the DTM bypasses the problem with a simple check below (Alg.3).  

As mentioned earlier, the concept has a dual representation of objects/attributes, and the 

algorithms described above use only the first one. Of course, the diagnostic task requires the 

second representation, the creation of which is trivial for the given training dataset and has been 

omitted here. Therefore, the test structure used below has both representations (rows and 

columns).  

 

Algorithm 3. Procedure for checking the equivalence of coverings 

Input: sample: BitVector, Test test, BitMatrix db 
Output: Boolean 
 
test_sample(sample, test,  db) begin 

BitVector u  = test.cols & sample; 
return test.rows = db.&(u); 

end  test_sample 
 

The project code and some other datasets can be found at https://gitlab.com/shagalovv/dtm  

3.5. Example 

To illustrate the process, we use a small dataset from [3] (Table 1). The original data is 

transformed into an internal dense representation with an additional column, which is the 

external classification. The classification column will be masked during the concept discovery 

stage. Now, the Examples are presented in Tables 2-6. 

  

Table 1: Raw dataset 

Object Index Itemset 

1  A C T W 0 

2  C D W 0 

3  A C T W 0 

4  A C D W 1 

5  A C D T W 1 

6  C D T 1 

Value-based dependencies are in Table 2. 
 

Table 2: Closed frequent itemsets (min confidence = 1) 

N Support Objects Items 

1 1 5  ACDTW 

2 3 1 3 5  ACTW 

3 2 4 5  ACDW 

4 3 2 4 5  CDW 

5 4 1 3 4 5  ACW 
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6 5 1 2 3 4 5  CW 

7 2 5 6  CDT 

8 4 1 3 5 6  CT 

9 4 2 4 5 6  CD 

10 6 1 2 3 4 5 6  C 

 

Table 3: Frequent tests in the case (min confidence = 1) 

N Support Confidence Goal Tests 

1 1 1 GOAL[1] A C D T W 

2 2 1 GOAL[1] A C D W 

3 2 1 GOAL[1] C D T 

 

Functional dependencies: dense source data is transformed to the data for functional 

dependencies search (with no duplicates for brevity). As in value-based task, the classification 

column will be masked on concepts discovery stage. 

 

Table 4: Transformed raw data for attributive task 

N A C D T W GOAL 

1 0 1 1 0 0 0 

2 0 1 0 1 0 0 

3 1 1 0 0 1 0 

4 0 1 1 0 1 0 

5 1 1 0 1 1 0 

6 0 1 1 0 0 1 

7 0 1 1 1 0 1 

8 0 1 0 0 1 1 

9 1 1 1 0 1 1 

10 1 1 0 1 1 1 

 

Table 5:Intents of concepts containing frequent functional dependencies (min support = 1) 

N Support Objects Intents of 

concepts 

1 1 7 CDT 

2 1 9 ACDW 

3 2 4 9 CDW 

4 5 1 4 6 7 9 CD 

5 2 5 10 ACTW 

6 4 2 5 7 10 CT 

7 4 3 5 9 10 ACW 

8 6 3 4 5 8 9 10 CW 

9 10 1 2 3 4 5 6 7 8 9 10 C 
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Table 6: Frequent functional dependencies for the given classification (min confidence = 1) 

N Support Confidence Goal Left part of 

dependency 

1 1 1 GOAL[0] C D T 

2 1 1 GOAL[0] A C D W 

 

4. Experiments 

For the DTM performance testing experiments, the well-known Mushroom dataset and the 

lesser-known Adult dataset were used, see Table 7. Both were shuffled and split in a ratio of 80% 

training set to 20% testing set  

Table 7: Datasets description 

Data sets Type Attributes 

per Types 

Records № 

  

Issues 

mushrooms dense 22- categorical 

+ label  

8124 missing values 

adults dense 8 - categorical 
6 - numerical 

+ label 

32561 missing values, 

class imbalance, 

repeated samples 

 

The search processes are controlled by a search strategy for selecting subtasks by attributes. 

Namely, the strategies are: “support (max)” (the choice of attributes with max support, “the 

unordered or left-to-right choice of attributes” (uno), and “maximum support (min)” (the choice 

of attributes with min support).  

Table 8 shows the results of the search for value-based concepts, and Table 9 shows the 

results of searching for the diagnostic tests. The number of solved subtask/time in the Table 8 is 

determined for concept task only. The ‘-’ means the absence of data. 

Table 8: Value-based concepts result for min support 1 

Table 9: Test search results for min confidence 1 

Data sets Task 

dimensions 

Concepts № Coverage Number of Solved 

subtasks/time(ms): 

min/uno/max 

mushrooms 6499 x 116 212959 6499 301718/ 2189 

793889/ 5533 

1447275/ 12161 

adults 26048 x 146 2037104 26048 2456837/ 52693 

7522715/ - 

20394837/ - 

Data sets Class/members № Tests № Coverage 

Mushrooms p /3161 

e/ 3338 

76855 

78867 

3161 

3338 
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In Tables 8 and 9, “Coverage” means the number of objects in the given context belonging to 

at list one of obtained tests. 

Table 10 shows the results of the search for both functional dependencies and conditional 

ones. 

Table 10: Functional dependencies search results for min support 1 and confidence 1 

5. Plausible rule application 

The FCA is certainly one of the most powerful tools for analyzing data and building knowledge 

models based on the lattice of formal concepts extracted from a learning context. Remarkable 

introduction to the FCA and its applications in information retrieval and related fields is 

contained in [9]. 

However, the FCA has a number of drawbacks, one of which should be recognized as the 

impossibility of directly using formal concepts in the tasks of classifying objects. Computer 

knowledge structures are traditionally declarative, mechanisms of their using are separated 

from them and, as a rule, these mechanisms are often fixed. 

Currently, various methods for building classifiers are proposed based on concepts extracted 

from training contexts. These methods use several ideas: 1) forming formal concepts as 

classifiers and recognizing classes of new objects by navigating through the levels of the 

conceptual lattice [10, 11]; 2) transition from classifiers constructed by methods other than the 

FCA to a lattice of formal concepts containing only concepts associated with the decision rules of 

these classifiers [12]. 

The first method is quite cumbersome. Essentially, it's about extracting concepts whose 

extents contain objects of only one class. To do this, the authors in [11] move from the two-digit 

to the nominal (multivalued) description of objects and introduce the labeling of objects into a 

context. Now, a nominal (multi-valued) context is a quadruple Inom, Anom, , Rnom, where nom is 

the set of nnom instances, nom is the set of mnom attributes,  is the set of values, Rnom is a relation 

defined between nom, nom and . Rnom is a set of triples.  

A similar idea, but more easily implemented, is given in [13]. In [12], the decision tree is 

considered as a set of classification rules and a method for transforming the constructed decision 

tree over a given context into an isomorphic lattice of concepts is proposed. 

The extraction of GCTs is the basis for obtaining rules for classification plausible reasoning. 

Consider plausible reasoning rules of the second type and a model of plausible inference. 

Let х be a pattern (a set of true values of some attributes observed simultaneously). Our goal 

is to define the target value, i.e. the label of a possible class of objects to which this pattern can 

Adults  50K/ 19729 

 50K/ 6319 

683836 

55822 

17257 

4260  

Data sets Task 

dimensions 

Attributive 

Concepts № 

FDs № Solved tasks № 

/time(ms): 

min/uno/max 

mushrooms 16901x 22 202150 27254 225445/ 3497 

332896/ 5391 

438333/7161 

adults 23879x 14 12288 0 12288/ 248 

12288/234 

16384/303 
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be associated. Deductive steps of reasoning consist of inferring consequences from some 

observed values with the use of the rules of the first kind (i.e., knowledge). 

Using implication: Let r be an implication, left(r) and right(r) be the left and right part of r, 

respectively. If left(r)  x, then x can be extended by right(r): х  х  right(r). Using 

interdiction: Let r be an implication x  → not k. If left(r)  x, then k is the forbidden value for all 

extensions of x. Using compatibility: Let r = ‘a, b, c, … → k, VA (confidence of the rule)’. If left(r) 

 x, then k can be used to extend x along with the calculated value VA for this extension. Using 

diagnostic rules: Let r be a diagnostic rule such as ‘x, d → a; x, b → not a’, where ‘х’ is true, and 

‘a’, ‘not a’ are hypotheses or possible values of some attribute. Using diagnostic rule implies to 

infer whether ‘a’ or ‘not a’ is true. 

The rules listed above are the rules of “forward inference”. Another way to include the first-

type rules in natural reasoning can be called “backward inference”. Generating hypothesis or 

abduction rule. Let r be an implication y → k. Then the following hypothesis is generated “if k is 

true, then y may be true”. 

When applied, the above rules generate the reasoning, which is not demonstrative. The 

purpose of reasoning is to infer all possible hypotheses on the value of some target attribute. It 

is essential that hypotheses do not contradict with knowledge (the first type rules) and the 

observable real situation under which the reasoning takes place. Inference is reduced to obtain 

all intrinsically consistent extensions of x, in which the number of involved attributes is 

maximum possible and there are no prohibited pairs of values in such extensions. All hypotheses 

have different admissibility, which is determined by the quantity and “quality” of rules of 

compatibility involved in inferring each of them. 

As a result of learning, we can form the following knowledge bases (KB): the Attribute Base 

(AtB), containing the relations between problem domain concepts (Ontology), and the Assertion 

Base (AsB), containing the assertions, formulated in terms of the concepts, and the rules of the 

first type obtained from learning context. Let a request to the KB be: SEARCHING VALUE OF class 

of object IF (an observable pattern of object’s values = x).  

Step 1. Take out all the assertions as  AsB containing at least one value from the request x. 

Step 2. Delete from the set of selected assertions all of these that contradict with the request. 

Assertion contradicts with the request if it contains the value of an attribute which is different 

from the value of this attribute in the request. Step 3. Take out the values of attributes appearing 

in remaining assertions. If we have several hypotheses (several names of target classes), an 

attempt is made to refute one of the hypotheses. For this goal, it is necessary to find a forbidden 

rule containing one of the hypotheses, some subset of values from the request and does not 

contain any other value. Step 4. If we have not a hypothesis or we cannot refute the existing 

hypotheses, then an attempt is made to find a value of some attribute that is not in the request 

(in order to extend the request). For this goal, it is necessary to find an assertion (implication) 

that contains a subset of values from the request and one and only one value of some new 

attribute which are not in the request. For extending request, the compatibilities rules can also 

be used. The extending obtained must not contain any forbidden set of values. Step 5. Forming 

the extended request. Steps 1, 2, 3, 4 are repeated.  

The process of pattern recognition can require inferring new rules of the first type from data 

when i) the result of reasoning contains several hypotheses and it is impossible to choose one 

and only one of them (uncertainty), and ii) there does not exist any hypothesis. 

6. Conclusion 

In this paper, a system for solving formal concept related tasks in real world domains is 

presented. The main goal of the system is the searching for all closed itemsets (concepts). 

Constructing Galois lattice of concepts allows to additionally generate GCTs and approximating 
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FDs for given classifications on a given data set. In general, these tasks are based on ordinal 

procedure for shallow or deep machine learning for classifications. We show that the FCA is 

closely related to modeling plausible classification reasoning. 

In future work, we plan to implement a fully scalable incremental version of the algorithm 

for distributed computing to cope with truly “big data” problems. We plan also to improve the 

lattice navigation to reduce some dead ends in the context of probabilistic reasoning. 

Another urgent task is to create a system for generating plausible reasoning rules and models 

of plausible reasoning based on constructing and browsing a lattice of concepts. 
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Improvements to lattice drawing with fca.sty
Tobias Schlemmer

Dresden, Germany

Abstract
For documenting theoretical and empirical results with of Formal Concept Analysis Bernhard Ganter provided
a LATEX package that allows to typeset Formal Contexts and Line diagrams of Lattices and ordered sets. This
package has been heavily reworked during the last years. Here a short status of the achievements and open
challenges shall be given.

Keywords
LaTeX package, typesetting FCA, typesetting, formal context, lattice diagrams

1. Introduction

Bernhard Ganter’s fca.sty is a LATEX [1] package for typesetting Formal Concept Analysis [2]. This
includes special symbols, Formal Contexts, and Lattice Diagrams. This package has been overhauled by
the author in the last two years [3]. In the result, the package has improved support for formal contexts
and drawing line diagrams.

The intention behind this effort was no less than to improve the typographical quality of papers about
Formal Concept Analysis and related subjects. Furthermore, the package should provide a maximum
amount of compatibility to existing LATEX code based on former versions of fca.sty.

The main changes are:

• remove limits to the number of columns, rows, concepts, etc. of formal contexts and concept
lattices,

• add a parser for Burmeister Context files,
• add an interface to allow a arbitrary LATEX code for symbols in context tables – this also includes
new symbols and colouring of crosses,

• use pgf [4] as backend for simple lattice diagrams and TikZ [4] for more sophisticated documen-
tations

• expose the improvements from these packages to the users.

In the following sections these changes are shortly introduced one by one. These improvements offer
tools that can help to improve the quality of publications about Formal Concept Analysis, however they
do not reach this goal. Several hurdles lie on its way. Some of these shall be discussed at the end of this
paper.

2. Keeping things separated

The new fca.sty consequently uses prefixes to macros and environments in order to avoid interference
with other packages. In most cases this should be transparent to the users. However, this cannot be
fully avoided:

• Global configuration macros that originally didn’t start with \fca or cxt must be adapted to the
new system. Inside the cxt and diagram environments these macros are provided without prefix
in order to avoid unnecessary errors.
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Envelope-Open Tobias.Schlemmer@web.de (T. Schlemmer)
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© 2024 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

81



• All new diagram styles (see below) must be called using their full path starting with /fca/ when
accessed from outside of FCA macros. If possible they are mapped to the corresponding /pgf/ or
/tikz/ styles. Details are given in the documentation of fca.sty.

3. Improvements to formal contexts

Formula 1

1. 2. di
sq
ua

lif
ie
d

Verstappen ×
Hamilton ×
Leclerc × ×

\ begin { c x t }
\ c x t i n p u t { fo rmula 1 . c x t }

\ end { c x t }

Figure 1: A formal context loaded from a Burmeister file. Left: Context, Right: source code.

Support for typesetting formal contexts had been added to fca.sty long ago. This support had its
limitations. Some of them have been lifted. The way how object and attribute names are stored has
been reworked as well as the table header generation. So the number of possible columns is not limited
by the package, anymore. The general TEXnical limits should be large enough, even for unusual useage
of the package: the number of possible macros, the maximum counter value, and the available memory.

New macros have been introduced that allow the definition of new symbols, and redefine existing
ones. The characters denoting the symbols are stored as macros. So they can be defined to consume
arguments. Additionally, digits have been predefined so that simple many-valued contexts can be
typeset without additional setup. In cases where it is really necessary, it is a new macro allows to inject
arbitrary code in the tabular environment of the context.

An optional positional argument has been added to the cxt environment, so that it is easier to place
them in multi column environments. These improvements are demonstrated in Fig. 2.

Last but not least, a parser for contexts in the Burmeister format has been integrated into the package,
as shown in Fig. 1. This parser maps the different parts of a .cxt file to the corresponding macros of a
cxt environment. So markup or special signs can be typeset in the same way as in the corresponding
macros of the LATEX environment cxt.

4. Lattice diagrams

Lots of work has been invested into the rejuvenation of the diagram code. The syntax has been carefully
adapted such that existing diagrams can be directly integrated in new documents, or they need only
minor adjustments. An example is given in Fig. 3. Each vertex has a name (traditionally a number) and
coordinates. The edges and labels are anchored using these names. Additionally, labels have a printed
description and can be shifted relatively to their position.

In order to allow a consistent appearance in sophisticated diagrams, the different elements of a
diagram are organised in layers.

The original fca.sty package used the \emlines macro from the emTEX distribution in combination
with standard LATEXs picture environment. Unfortunately, support for the emTEX specials has been
removed from current TEX distributions, so the lines disappear from the diagrams. The package
tsemlines [5] depends on TikZ. So it is more a quick hack than a lightweight solution to this problem.
Another goal was to bridge the gap between the very simple picture environment and modern graphics
drawing tools like TikZ. Thus the diagram environment is now based on pgf, a new environment
tikzdiagram has been introduced as a TikZ version of diagram, and the important macros have been
enhanced to use the syntax of TikZ.
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A demo context

1. 2. di
sq
ua

lif
ie
d

Verstappen 1 ∨
Hamilton ∧ × ↗↙
Leclerc 𝑖 23 ×
nothing

\ begin { c x t } [ c ]
\ renewcommand { \ f c aCx tA r rowS ty l e } { \ footnotes ize \ c o l o r { red

} } %
\ fcaNewContextChar { v } { \ c x t r l a p { $ \ vee $ } }
\ fcaNewContextChar { n } [ 1 ] { \ c x t r l a p { # 1 } }
\ f c aP rov ideContex tCha r { \wedge } { \ c x t r l a p { $ \wedge $ } }
\ f c aP rov ideContex tCha r { d } { −− i gno r ed −− }
\ fcaRenewContextChar { d } { \ c x t r l a p { $ i $ } }
\ cxtName {A demo con t e x t }
\ a t t { 1 . }
\ a t t { 2 . }
\ a t r { d i s q u a l i f i e d }
\ ob j { 1 . v } { Vers tappen }
\ ob j { \wedge xb } { Hamilton }
\ ob j { dn { 2 3 } x } { L e c l e r c }
\ f r e e o b j { \ multicolumn { 3 } { c | } { } } { no th ing }

\ end { c x t }

Figure 2: A formal context typeset with the new features of the FCA packages. Left: Context, Right: correspond-
ing source code.

1.

disqualified

2.

Verstappen

Leclerc

Hamilton

\ s e t l e n g t h { \ unit length } { 0 . 9mm}
\ begin { diagram }

\ Node ( 1 ) ( 2 0 , 1 0 )
\ Node ( 2 ) ( 3 5 , 2 0 )
\ Node ( 3 ) ( 5 , 3 0 )
\ Node ( 4 ) ( 3 5 , 4 0 )
\ Node ( 5 ) ( 2 0 , 5 0 )
%
\ Edge ( 1 ) ( 2 )
\ Edge ( 1 ) ( 3 )
\ Edge ( 2 ) ( 4 )
\ Edge ( 3 ) ( 5 )
\ Edge ( 4 ) ( 5 )
%
\ l e f t A t t b o x ( 3 ) { 1 . }
\ r i g h tA t t b o x ( 2 ) { d i s q u a l i f i e d }
\ r i g h tA t t b o x ( 4 ) { 2 . }
\ l e f tOb j b o x ( 3 ) { Vers tappen }
\ r i gh tOb jbox ( 2 ) { L e c l e r c }
\ r i gh tOb jbox ( 4 ) { Hamilton }

\ end { diagram }

Figure 3: A diagram example with 5 Vertices and 5 edges, attribute and object labels.

Between full TikZ support and the picture like environment there are several intermediate steps.
At first the package can be loaded using \usepackage{fca}. This uses only the graphics layer of pgf
and omits the syntax layer of TikZ. At this stage a limited support for TikZ like styles and attributes
has been implemented. Naturally this is linked to the styles that have been implemented in fca.sty.

On the other end it is possible to load the package using the TikZ macro \usetikzlibrary{fca}.
This enables to use of diagram inside a tikzpicture environment and the tikzdiagram environment
which combines both in one environment. Using this approach all drawing macros are mapped to the
corresponding TikZ macros which enables full TikZ support.

It is also possible to use \usepackage{fca} after loading TikZ. Both approaches enable additional
styles to be used in a diagram environment, as fca.sty uses similar internals to TikZ. However, future
versions of TikZ may cause errors and the set of supported styles may change depending on the TikZ
version. So the latter approach is not recommended.
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top Attribute

left Attribute right Attribute

bottom object

left object right object

\Node(join)(0,1)

\Node(meet)(0,-1)

\Node(top)(0,2)

\Node(left)(-1,0) \Node(right)(1,0)

\centerAttBox(top){top Attribute}

\leftAttBox(join){left Attribute} \rightAttBox(join){right Attribute}

\leftObjBox(join){left Object} \rightObjBox(join){right Object}

\centerObjBox(meet){bottom Object}

\Edge(meet)(bottom)

Figure 4: Elements of a diagram environment. The diagram shows a concept lattice. Arrows indicate which
code is used to draw certain elements. The diagram is drawn using a tikzdiagram environment.

1.

disqualified

2.

Verstappen Leclerc

Hamilton

\ s e t l e n g t h { \ unit length } { 0 . 9mm}
\ d e f i n e c o l o r { da rkgreen } { rgb

} { 0 . 0 5 , 0 . 5 , 0 . }
\ begin { diagram }

\ Node [ draw=red , f i l l = green ,
l i n e width = . 5mm,
r a d i u s = 1 . 5mm] ( 1 ) ( 2 0 , 1 0 )

\ Node ( 2 ) ( 3 5 , 2 0 )
\ Node [ opa c i t y = 0 . 3 , f i l l = red ] ( 3 ) ( 5 , 3 0 )
\ Node [ f i l l = darkgreen ] ( 4 ) ( 3 5 , 4 0 )
\ Node [ / t i k z / r e c t a n g l e ] ( 5 ) ( 2 0 , 5 0 )
%
{ \ c o l o r { da rkgreen } \ Edge ( 1 ) ( 2 ) }
\ Edge [ draw=red , dot ted ,

l i n e width =1 . 5 pt ] ( 1 ) ( 3 )
\ Edge ( 2 ) ( 4 )
\ Edge [ draw= red ! 5 0 ,

l i n e width =1mm] ( 3 ) ( 5 )
\ Edge ( 4 ) ( 5 )
%
\ r i g h tA t t b o x [ conexp s t y l e ] ( 2 ) {

d i s q u a l i f i e d }
\ l e f t A t t b o x ( 3 ) { 1 . }
\ r i g h tA t t b o x ( 4 ) { 2 . }
\ l e f tOb j b o x [ draw=red , i nn e r sep =1 pt ] ( 3 )

( 1 , − 1 0 ) { Vers tappen }
\ r i gh tOb jbox [ conexp s t y l e ] ( 2 ) { L e c l e r c }
\ r i gh tOb jbox [ t e x t = darkgreen ] ( 4 ) ( 0 , − 2 )

{ Hamilton }
\ end { diagram }

Figure 5: An overly styled concept lattice demonstrating different kinds of markup including the use of TikZ
styles.

Unfortunately, TikZ and the picture environment have different base units. While picture only
allows to define one unit length, pgf and TikZ apply at least two affine transformations from the input
to the output file. Though the behaviour of a picture environment can be emulated in pgf/TikZ, this
behaviour is unstable and counter-intuitive to new users. The compatibility issue is solved using the
following compromise:

• the digaram environment uses the old coordinate system if it is located outside of any graphics
environment or inside a pgfpicture environment,

• the tikzdiagram environment and diagram inside tikzpicture use the tikz coordinate system.
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Ef Es
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Re [LSTM]

[CNN]

App: Traffic Prediction

HiDeNN

ADAIN

GCN-LSTM

STDN

GCN-LSTM

AEST
CL-TRANSMODE

DGSR
DHSTNet

DMVST-Net
Dynamic-GRCNN
end-to-end DNN

MT-STNets
STCL-Net

SRCNs
MVC-STNet

AEST
CL-TRANSMODE

DHSTNet
DMVST-Net

Dynamic-GRCNN
end-to-end DNN

HMDLF
MT-STNets
MVC-STNet

SRCNs

CLSTM
HAST-IDS
PHRNN, MSCNN
sDTD
STCL-Net
ST-MDF

end-to-end DNN
HMDLF

Figure 6: An iceberg lattice [6, Fig. 8], reworked for readability according to the standards defined in [2] with
emphasis on the lower part.

• translation of old diagrams into TikZ diagrams can be easily done by opening the diagram with
\begin{tikzdiagram}[x=\unitlength,y=\unitlengh,…].

• All configuration macros in diagram environments are either available directly in tikzdiagram
or can be expressed using style options.

As a real-world example, in Fig. 6 an iceberg lattice [6, Fig. 8] has been reworked using a chain
decomposition layout exploiting the calc library of TikZ and the style used in [2]. As usual in Formal
Concept Analysis, attributes are named only on their highest occurrences and apply to all nodes below
them that can be connected with only rising lines to the corresponding label. This is in principle also
true for object labels, which are valid for every node that can be connected going strictly upwards
following the lines. However, many of the objects are attached to nodes that are not visible in the
diagram. Their names are repeated at the lowest visible node, which often leads to multiple occurrences
of he same name. Where appropriate, labels are reused for multiple nodes.

The lower part of the diagram is drawn with bolder lines. This part is referenced in an emphasised
discussion in the text of the given article.

5. Open issues

It is planned to publish the package on CTAN, so that it can be integrated in the standard LATEX
distributions and Docker images. And despite the fact that the package is perfectly usable, some issues
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arise. However, it currently does not fulfil its primary goal: to improve the typographical quality of
published diagrams in formal concept analysis. As it can be seen, in this paper both high-quality as well
as low-quality typesetting is possible with this package. So how can it be modified to achieve this goal?

One approach would be to allow only good diagrams or make it at least hard to draw bad diagrams.
One could argue that LATEX also makes it hard to change dangerous parameters. This is impossible
on the technical level as no algorithm exists that can check whether a diagram is good or bad. This
decision depends on the writer’s intention. Formalising this intention is nearly impossible. The levers
we can pull (or not) are basically features and documentation. If we remove all possibly dangerous
features from the package or its documentation, the package would be very inflexible. And it would be
nearly impossible to interact with other graphical content.

On the other hand, documenting the package as a reference that simply lists all features, and
encouraging people to play around with these features, also leads to over-styled diagrams that are hard
to understand (cf. Fig. 2 and Fig. 5). Recall: Typography does not consider the taste of the author but
studies how to format things such that they can be easily understood by the readers.

Also here, LATEX can be used as a reference. Since the first version of LATEX more and more features
got configurable. So at first it simplified the use of TEX and then, it simplified the change of the layout.

This is the main issue that blocks publication on CTAN. Currently it is unclear, how to solve it. It
seems as if a compromise could be to proper organise the information for the documentation. Other
packages like TikZ and the beamer start with tutorials on their subjects. The difficulty of this approach
lies in the fact, that such a tutorial should satisfy all stakeholders.

Other issues contain small inconsistencies between the pgf and the TikZ implementation of the
diagram drawing code. These will be ironed out with the growth of the reference section in the
documentation. However also the development of the reference is influenced by the above issue.

6. Conclusion
Despite the issues the new version of fca.sty is a powerful and usable package that provides:

• Certain symbols for Formal Concept Analysis,
• Context tables drawn from LATEX code and Burmeister context files,
• Lattice Diagrams that can be drawn and enhanced with annotations in pgf and TikZ environments.

Happy TEXing!
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